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Problem Set 7 Solutions 

Problem 7.1 (State space sizes in trellises for RM codes)


Recall the |u|u + v| construction of a Reed-Muller code RM(r, m) with length n = 2m and

minimum distance d = 2m−r :


RM(r, m) =  {(u,u + v) | u ∈ RM(r, m − 1),v ∈ RM(r − 1, m − 1)}. 

C

Show that if the past P is taken as the first half of the time axis and the future F as the 
second half, then the subcodes CP and CF are both effectively equal to RM(r − 1, m  − 1) 
(which has the same minimum distance d = 2m−r as RM(r, m)), while the projections 
|P and C|F are both equal to RM(r, m− 1). Conclude that the dimension of the minimal 

central state space of RM(r, m) is 

dim S = dim RM(r, m − 1) − dim RM(r − 1, m − 1). 

The subcode CP is the set of all codewords with second half u + v = 0, which implies that 
u = v. Thus  CP = {(v,0) | v ∈ RM(r − 1, m − 1)}, which implies that CP is effectively 
RM(r − 1, m − 1). 

Similarly, the subcode CF is the set of all codewords with first half u = 0. Thus  CF = 
{(0,v) | v ∈ RM(r− 1, m− 1)}, which implies that CF is also effectively RM(r− 1, m− 1). 

The past projection C|P is clearly {u | u ∈ RM(r, m− 1)} = RM(r, m− 1). Similarly, since 
RM(r− 1, m− 1) is a subcode of RM(r, m− 1), the future projection C|F is RM(r, m− 1). 

Since dim S = dim C|P − dim CP = dim C|F − dim CF , it follows that 

dim S = dim RM(r, m − 1) − dim RM(r − 1, m − 1). 

Evaluate dim S for all RM codes with length n ≤ 32.


For repetition codes RM(0, m), dim S = dim RM(0, m−1)−dim RM(−1, m−1) = 1−0 = 

1.


2
For SPC codes RM(m− 1, m), dim S = dim RM(m− 1, m− 1) − dim RM(m− 2, m− 1) =


m − (2m − 1) = 1.


For the (8, 4, 4) code, we have dim S = dim(4, 3, 2) − dim(4, 1, 4) = 2.


For the (16, 11, 4) code, we have dim S = dim(8, 7, 2) − dim(8, 4, 4) = 3.


For the (16, 5, 8) code, we have dim S = dim(8, 4, 4) − dim(8, 1, 8) = 3.


For the (32, 26, 4) code, we have dim S = dim(16, 15, 2) − dim(16, 11, 4) = 4.


For the (32, 16, 8) code, we have dim S = dim(16, 11, 4) − dim(16, 5, 8) = 6.


For the (32, 6, 16) code, we have dim S = dim(16, 5, 8) − dim(16, 1, 16) = 4.
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Similarly, show that if the past P is taken as the first quarter of the time axis and the 
future F as the remaining three quarters, then the subcode C P is effectively equal to RM(r− 
2, m− 2), while the projection C |P is equal to RM(r, m− 2). Conclude that the dimension 
of the corresponding minimal state space of RM(r, m) is 

dim S = dim RM(r, m − 2) − dim RM(r − 2, m − 2). 

Similarly, since 

RM(r − 1, m − 1) = { (u ′ ,u + v ) | u ′ ∈ RM(r − 1, m − 2),v ′ ∈ RM(r − 2, m − 2)} , 

we  now have that  C P = { (v′ ,0) | v ∈ RM(r − 2, m  − 2)} , which implies that C P is 
effectively RM(r − 2, m − 2). Also, since 

RM(r, m − 1) = { (u ′′ ,u + v ) | u ′′ ∈ RM(r, m − 2),v ′′ ∈ RM(r − 1, m − 2)} , 

we now have that C |P = { u′′ | u′′ ∈ RM(r, m− 2)} , which implies that C |P is RM(r, m− 2). 
Therefore 

dim S = dim C |P − dim C P = dim RM(r, m − 2) − dim RM(r − 2, m − 2). 

Using the relation dim RM(r, m) = dim RM(r, m− 1) + dim RM(r− 1, m− 1), show that 

dim RM(r, m − 2) − dim RM(r − 2, m − 2) = dim RM(r, m − 1) − dim RM(r − 1, m − 1). 

This follows from dim RM(r, m − 1) = dim RM(r, m − 2) + dim RM(r − 1, m  − 2) and 
dim RM(r − 1, m − 1) = dim RM(r − 1, m − 2) + dim RM(r − 2, m − 2). 

Problem 7.2 (Projection/subcode duality and state space duality)


Recall that the dual code to an (n, k, d) binary linear block code C is defined as the orthog
-
onal subspace C ⊥, consisting of all n-tuples that are orthogonal to all codewords in C , and

that C ⊥ is a binary linear block code whose dimension is dim C ⊥ = n − k.


Show that for any partition of the time axis I of C into past P and future F , the subcode

(C ⊥)P is equal to the dual (C |P )

⊥ of the projection C |P , and vice versa. [Hint: notice that

(a,0) is orthogonal to (b, c) if and only if a is orthogonal to b.]


Following the hint, because inner products are defined componentwise, we have


〈 x,y〉 = 〈 x|P ,y|P 〉 + 〈 x|F ,y|F 〉 . 
Moreover 〈 (a,0), (b, c)〉 = 0 if and only if 〈 a,b〉 = 0. We therefore have the following 
logical chain: 

a ∈ C  P ⇐⇒ (a,0) ∈ C ⇐⇒ (a,0) ⊥ C⊥ ⇐⇒ a ⊥ (C⊥)|P , 

where we have used the definitions of the subcode C P , the fact that the dual code of C ⊥ 

is C, the fact that (a,0) is orthogonal to (b, c) if and only if a is orthogonal to b, and  
the definition of (C ⊥)|P , respectively. 
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Conclude that at any time the minimal state spaces of C and C⊥ have the same dimension. 

The dimension dim S of the minimal state space of C for a given partition into past and 
future is dim C|P − dim CP . The dimension dim S of the minimal state space of C⊥ for a 
given partition into past and future is 

dim(C⊥)|P − dim(C⊥)P = (nP − dim CP ) − (nP − dim C|P ) = dim C|P − dim CP , 

where nP = |P|, and we have used projection/subcode duality and the fact that the 
dimension of the dual of a code of dimension k on a time axis of length nP is nP − k. 

The fact that the state spaces of a linear code and its dual have the same dimensions is 
called the dual state space theorem. 

Problem 7.3 (Trellis-oriented generator matrix for (16, 5, 8) RM code) 

Consider the following generator matrix for the (16, 5, 8) RM code, which follows directly 
from the |u|u + v| construction: 

⎡	 ⎤ 
1111111100000000 

⎥⎢ 1111000011110000 ⎢	 ⎥ ⎥⎢ 1100110011001100 . ⎢	 ⎥ ⎦⎣	 1010101010101010 
1111111111111111 

(a) Convert this generator matrix to a trellis-oriented generator matrix. 

A trellis-oriented generator matrix is obtained by adding the first generator to each of the 
others: ⎡ ⎤ 

1111111100000000 
⎥⎢ 0000111111110000 ⎢	 ⎥ ⎥⎢ 0011001111001100 . ⎢	 ⎥ ⎦⎣	 0101010110101010 

0000000011111111 

(b) Determine the state complexity profile of a minimal trellis for this code. 

The starting times of the generator spans are {1, 2, 3, 5, 9}, and the ending times are 
{8, 12, 14, 15, 16}. The state dimension profile (number of active generators at cut times) 
of a minimal trellis for this code is therefore 

{0, 1, 2, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 2, 1, 0}. 
Note that the state-space dimensions at the center, one-quarter, and three-quarter points 
are equal to 

dim(8, 4, 4) − dim(8, 1, 8) = dim(4, 3, 2) − dim(4, 0, ∞) = 3, 

in accord with Problem 7.1. 

Note: this state dimension profile meets the Muder bound at all times (see Problem 7.6), 
and thus is the best possible for a (16, 5, 8) code. 
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(c) Determine the branch complexity profile of a minimal trellis for this code. 

From the trellis-oriented generator matrix, the branch dimension profile (number of active 
generators at symbol times) of a minimal trellis for this code is therefore 

{1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 1}. 
Note: this branch dimension profile meets the Muder bound at all times, and thus is the 
best possible for a (16, 5, 8) code. 

Problem 7.4 (Minimum-span generators for convolutional codes)


Let C be a rate-1/n binary linear convolutional code generated by a rational n-tuple g(D),

and let g′(D) be the canonical polynomial n-tuple that generates C. Show that the gener
-
ators {Dk g′(D), k  ∈ Z} are a set of minimum-span generators for C.


Since g′(D) is canonical, it is noncatastrophic; i.e., a code sequence u(D)g′(D) is 

finite only if u(D) is finite. Therefore if u(D)g′(D) is finite, then u(D) is finite and 
deg u(D)g′(D) = deg  u(D)+deg  g′(D), where the degree of an n-tuple of finite sequences 
is defined as the maximum degree of its components. Similarly, g′(D) is delay-free, so 
del u(D)g′(D) = del  u(D) + del  g′(D), where the delay of an n-tuple of finite sequences 
is defined as the minimum delay of its components. Hence the shortest finite sequence in 
C with delay k is Dk g (D), for all k ∈ Z. The  set  {Dk g (D)} of shifted generators are 
thus a set of minimum-span generators for C— i.e., a trellis-oriented generator matrix. 
We easily verify that all starting times are distinct, and so are all stopping times. 

Problem 7.5 (Trellis complexity of MDS codes, and the Wolf bound) 

Let C be a linear (n, k, d = n − k + 1)  MDS code over a finite field Fq . Using the property 
that in an MDS code there exist q − 1 weight-d codewords with support J for every subset 
J ⊆ I  of size |J | = d, show that a trellis-oriented generator matrix for C must have the 
following form: ⎡ ⎤ 

xxxx0000 
⎥⎢ 0xxxx000 ⎢ ⎥ ⎥⎢ 00xxxx00 , ⎢ ⎥ ⎦⎣ 000xxxx0 

0000xxxx 

where xxxx denotes a span of length d = n − k + 1, which shifts right by one position for 
each of the k generators (i.e., from the interval [1, n  − k + 1]  to [k, n]). 

For any given d coordinates, an MDS code has a codeword of weight d which is nonzero 
only in those coordinates. Therefore, if we look for a set of k linearly independent gen-
erators with the shortest possible span, we will find k codewords of span d = n − k + 1  
in the k possible positions shown in the array above. These codewords are all obviously 
linearly independent, because the starting and ending times of their spans are all different. 
Therefore this is a trellis-oriented generator matrix for C. 

For example, show that binary linear (n, n − 1, 2) and (n, 1, n) block codes have trellis-
oriented generator matrices of this form. 
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An (n, n − 1, 2) SPC code has a trellis-oriented generator matrix of the form 
⎡ ⎤ 

1100000 
⎥⎢ 0110000 ⎢ ⎥ ⎥⎢ 0011000 ⎢ ⎥ ⎥⎢ 0001100 

, 
⎢ ⎥ ⎦⎣	 0000110 

0000011 

and an (n, 1, n) binary repetition code has a generator matrix consisting of a single gen
-
erator equal to the all-one codeword.


Conclude that the state complexity profile of any (n, k, d = n − k + 1)  MDS code is

2{1, q, q  2 , . . .  , |S|max, |S|max, . . .  , q  , q, 1}, 

where |S|max = qmin(k, n−k). 

The starting times of the spans are 

{1, 2, . . .  , k}, 
and the ending times are 

{n − k + 1, n − k + 2, . . .  , n}. 
Therefore the state dimension profile is 

{0, 1, 2, . . .  , k, . . . , k, k − 1, . . . , 1, 0} 

if k ≤ n − k, or  

{0, 1, 2, . . .  , n − k, . . .  , n − k, n − k − 1, . . .  , 1, 0} 

if n − k ≤ k. 

Using the state space theorem and Problem 7.2, show that this is the worst possible state 
complexity profile for a (n, k) linear code over Fq. This is called the Wolf bound. 

Since dim S = dim C|P − dim CP , we have  

dim S ≤ dim C|P ≤ nP . 

Similarly dim S ≤ nF . Also  

dim S = dim C − dim C|P − dim CP ≤ dim C. 

The dual state space theorem then implies dim S ≤ dim C⊥ = n − dim C. Putting these 
bounds together, we obtain 

dim S ≤ min{nP , nF , dim C, n − dim C}. 
This is known as the Wolf bound (although it was essentially shown earlier by Bahl, 
Cocke, Jelinek and Raviv). The state dimension profile of an MDS code meets the Wolf 
bound at all times, and therefore is the worst possible state dimension profile of an (n, k) 
linear code. 
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Problem 7.6 (Muder bounds on state and branch complexity profiles of (24, 12, 8) code) 

The maximum possible dimension of an (n, k, d ≥ 8) binary linear block code is known to 
be 

kmax = {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12} 

for n = {1, 2, . . .  , 24}, respectively. [These bounds are achieved by (8, 1, 8), (12, 2, 8),

(16, 5, 8) and (24, 12, 8) codes and shortened codes thereof.]


Show that the best possible state complexity profile of any (24, 12, 8) code (known as a

binary Golay code) is


{1, 2, 4, 8, 16, 32, 64, 128, 64, 128, 256, 512, 256, 512, 256, 128, 64, 128, 64, 32, 16, 8, 4, 2, 1}. 

The Muder bound says that 

dim S = dim C − dim CP − dim CF ≥ dim C − kmax(nP , d) − kmax(nF , d), 

where kmax(n, d) is the maximum dimension of a code of effective length n and the same 
minimum distance d as C. Applying this bound to C = (24, 12, 8), we obtain for the first 
half of the minimal state dimension profile 

nP =  0 1 2 3 4 5 6 7 8 9 10 11 12  
dim C =  12 12 12 12 12 12 12 12 12 12 12 12 12  

kmax(nP , 8)  =  0  0  0  0  0  0  0  0  1  1  1  1  2  . 
kmax(24 − nP , 8)  =  12  11  10  9  8  7  6  5  5  4  3  2  2  

dim SnP ≥ 0 1 2 3 4 5 6 7 6 7 8 9 8 

The second half is symmetrical. 

Show that the best possible branch complexity profile is 

{2, 4, 8, 16, 32, 64, 128, 128, 128, 256, 512, 512, 512, 512, 256, 128, 128, 128, 64, 32, 16, 8, 4, 2}. 

The Muder bound on branch complexity is 

dim Bk = dim C − dim CPk − dim CFk+1 ≥ dim C − kmax(k, d) − kmax(n − k − 1, d). 

Applying this bound to C = (24, 12, 8), we obtain for the first half of the minimal branch 
dimension profile 

k
k

k =  0 1 2 3 4 5 6 7 8 9 10 11  
dim C =  12 12 12 12 12 12 12 12 12 12 12 12  

max(k, 8)  =  0 0 0 0 0 0 0 0 1 1 1 1  . 
max(23 − k, 8)  = 11 10 9  8  7  6  5  5  4  3  2  2  

dim Bk ≥ 1 2 3 4 5 6 7 7 7 8 9 9 

The second half is symmetrical. This yields the given minimal branch complexity profile. 

[Note: there exists a standard coordinate ordering for the Golay code that achieves both 
of these bounds.] 

6 


