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PROFESSOR: Let's get started then. We went through Rayleigh fading very, very quickly last time.

I want to spend a little more time on it today since it's one of the sort of classical

models of wireless channels. And it's good to understand how it works. And it's good

to also understand what all the assumptions that are made when one assumes

Rayleigh fading, because they're really quite a few of them. OK, so what we're doing

is we're assuming flat fading. In other words when we talk about flat fading, we're

talking about fading where if you generate a discrete model for the channel, that

discrete model is just going to have one path in it. In other words, the output is

going to look like a faded version of the input. It'll be shifted in phase because of the

unknown phase in the channel. It'll be attenuated by some random amount. But if

you look at the waveform, it'll look like the waveform that you transmitted except for

the noise. And that's what really is represented by this one tap model that we've

been looking at.

In general we've said that you can model a pretty arbitrary channel for purposes of

somewhat narrow band communication by using a sequence of taps where usually

for want of something better to do, we model those taps as being Gaussian random

variables, complex Gaussian random variables with zero mean, and variables which

are circularly symmetric. And we assume for not any very good reason, that the

taps are independent of each other. I mean we have to make some assumptions or

we can't start to make any progress on trying to analyze these channels. But we

should realize that all of these assumptions are subject to a certain amount of

question.

OK. When we assume a single tap model, and these tap models are always given

with the number of the tap given first, and the time given second. So what we're

assuming here is the only tap is the tap at time 0. And it's at time 0 because we're
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assuming the receiver timing is locked at transmitter timing. And we're just going to

get rid of the zero because there's only one tap, and call this G sub m. We're also

going to pretty much assume that G sub m stays relatively constant for a relatively

long amount of time. Except as far as this analysis of Rayleigh fading goes, we don't

have to assume that. Because in fact, when we're assuming Rayleigh fading, the

analysis that we're going to follow, the receiver doesn't know anything about the

channel at all, except that it's a single tap model. And therefore what the receiver

does is it goes through maximum likelihood detection assuming that that single tap

is just a complex Gaussian random variable.

OK when you have a complex Gaussian random variable as you've seen in the

problem sets and we've noted a number of times, the energy in that complex

Gaussian random variable is exponential. And the magnitude is just a square root of

the magnitude squared, namely the energy. And that has a Rayleigh distribution

which looks like this, namely the probability density of how much response you get.

We'll base this law here. And the phase of course, is equally likely to be anything.

Namely the phase is uniform and random. This density looks like this. I wanted to

draw this so it would emphasize the fact that the magnitude is in fact, always

nonnegative. But also to emphasize the fact there's a whole lot of probability down

here where there's very, very little channel. And this is in fact what gives rise to the

fact that if you try to communicate over Rayleigh fading, and you don't make any

use of diversity-- and we'll talk later about diversity-- in fact you can't communicate

very well at all. And that's because of this very bad region here where the channel is

very badly faded. You send a bit on this channel which is very badly faded, and

there's nothing much the receiver can do. And that's the thing we want to try to get

a real feeling for.

OK so the output of the channel when you put in an input U sub m, and we'll think of

this as being a binary digit for this time being. So the output is going to be the input

times this tap variable, which is this complex Gaussian random variable plus a noise

random variable, which we're also assuming is complex Gaussian and circularly

symmetric. OK so what we have, if you're going to make two hypotheses about two
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possible values of U sub m, look at what this random phase does here. No matter

what U sub m you transmit in one epoch of time, the channel is going to rotate this

around by a completely random phase. It's going to add a noise to it which has a

completely random phase. And the output is going to come out. And the output has

a completely random phase. Namely the phase of the output cannot possibly tell

you anything about what input you're putting into the channel. OK so in other words,

in this model that we're using, the phase is completely useless. And if we want to

talk about anything connected to using likelihoods, the only thing we can use is the

magnitude of the output. OK.

Now, why don't we just analyze it in terms of the magnitude of the output? Well

when you analyze these problems, Gaussian things are usually much easier to

analyze than things like this. Not always, I mean we have to get used to analyzing

all of them. But this particular problem of Rayleigh fading is really easier to analyze

in terms of these Gaussian random variables. But it's easier to understand in terms

of recognizing that the only thing you can make any use is these magnitudes.

OK if we only use one complex degree of freedom in a signal, namely if we try to

send some signal and we only use one input to the channel, then we only get one

output. Namely we sent U sub 0, we get V sub 0. And we try to decide from V sub 0

what was sent. We're really in a very bad pickle at that point. Because the only thing

that makes any sense, since we can only use the magnitudes, is to send a very

small magnitude or a positive magnitude. Magnitudes are positive anyway. So if

you're going to send binary signals, this is your only choice-- if it makes any sense--

if you make this larger than zero you're just wasting energy. So you only have this

choice. And you can choose the amplitude a that you're using. But that's the only

thing that you can do.

OK, this is a very nasty thing to analyze for one thing. It gives you a very large error

probability for another thing. Nobody uses it for another thing. And therefore almost

all systems of trying to transmit in this kind of Rayleigh fading, always use at least

two sample values. In other words, instead of just putting one complex degree of

freedom into the channel, you're going to put two complex degrees of freedom into
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the channel. And the thing that we're going to analyze, because it's the easiest thing

to do in this discrete time model we've developed, is to think of modeling hypothesis

0 as sending two symbols U sub 0 and U sub 1 will make U sub 0 equal to a, and U

sub 1 equal to 0. And the alternative case, if we're going to try to send input 1, this

is binary transmission. You can talk about more than binary transmission, but binary

is awful enough. You get U sub 0 and U sub 1 is equal to 0 and a. So what you're

going to be doing here in this pulse-position modulation, is choosing one of these

two different epochs to put the data in. So in one case, you put all your energy in

the first one. In the other case, you put all your energy in the second one.

Mathematically, this is completely equivalent to frequency-shift keying, that's

completely equivalent to phase-shift keying. And if we had a little more time, we

could talk about that. And I'll probably put an appendix in which talks about those

two systems. But in fact, it's completely the same thing. It's just that you're using

different complex degrees of freedom than we're using here. So we're really

analyzing FSK and PSK. And that's where people usually come up with these

analyses of Rayleigh fading.

OK when we have input 0, what we receive then, is the 0 is going to be the input a,

times the magnitude of the channel of time 0, plus a noise variable. The noise is

complex Gaussian, remember. The second input is just going to be the noise

variable. Alternatively, if we're sending the second symbol, which means we put our

energy into the second degree of freedom, it means that what we're going to get is

the 0 was just going to be the noise. And the second output is going to be the signal

plus the noise. And remember, both this variable and this variable are both complex

Gaussian. The phase doesn't mean anything. So what we can use is simply the

magnitude.

OK, so when we have hypothesis equal to 0, what comes out is going to be, the 0 is

going to be a complex Gaussian random variable. Let me introduce a new piece of

notation now. Because it gets to be a real mess to constantly talk about a Gaussian

complex random variable, and talk about it's real part and imaginary part as being

independent Gaussian. So I'll just call this normal complex. And this first thing is the

mean, which is a real and imaginary part, but it's zero in most of the things we deal
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with. And the second one is the mean square value of this random variable V sub

zero. So this quantity here is now twice the variance of the real part of V sub 0, and

twice the imaginary part of the variance of v0.

We scaled the noise in a peculiar way here. And I apologize for all of the mess that

occurs when we do this. Because sometimes we think of the noise as having

variance N sub 0 over 2 in each real and imaginary degree of freedom. And

therefore N sub 0 in a complex degree of freedom. And sometimes we think of it as

having variance N sub 0 W Where does that difference come from? It's this infernal

problem of the sampling theorem being so critical in most of the models that we talk

about. OK because when you use the sampling theorem, the sinc x over x

waveforms that we use are not orthonormal, they're orthogonal. And this factor of W

appears exactly because of that. They appear because the magnitude of the signal

is a, and the energy and the power in the signal is then a-squared. OK. In this case

the power in the signal is not quite a-squared because we only send energy in one

or the other of alternate degrees of freedom. So therefore, if we look at a time one

second, we get W complex degrees of freedom to use. We only send energy in half

of those so that the actual power that we're sending is a-squared divided by 2.

OK. Because of that, when we normalize the noise the same way the signal is

normalized, we get this variance W N sub 0. If you're confused by that, everyone is

confused by it. Everyone I know, when they go through calculations like this, they

always start out with some arbitrary fudge factor like this. And after they get all

done, they think it through or more likely they look it up in a book to see what

somebody else has gotten. And then they sweat about it a little bit, and they finally

decide what it ought to be. And that's just the way it is. It's the problem of having

both the sampling theorem and orthonormal waveforms sitting around. It's also the

problem of multiplying the power by 2 as soon as we go to passband. Because both

of those things together generate all of this difficulty.

But anyway, this is the way it is. And the important thing for us is that what we can

have now is under these two hypotheses. We just have two Gaussian random

variables, complex Gaussian random variables. And in one case, the larger mean
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square value is in one. And in the other case the larger mean square value is in the

other.

OK. So just reviewing that. If H is equal to zero, V sub 0 and V sub 1 are these

complex Gaussian random variables. If H is equal to one, then we have this set of

Gaussian random variables. The probability density of V sub 0 and V sub 1, and

now it's more convenient to use the real and imaginary parts for the Gaussian

density. Anytime you're working problems of this type, try both densities using real

and imaginary parts, and using magnitude in phase, and see which one is easier.

Here it turns out that the easiest thing is just to use the ordinary conventional

density over real and imaginary parts. And what we wind up with is this Gaussian

density. On V sub 0 the density is V sub 0 squared divided by the variance a-

squared plus W N sub 0. And on V sub 1, it's this Gaussian density V sub 1 squared

divided by W N sub 0. Just because here we have this variance. Here we have this

variance. OK, on the alternative hypothesis when H is equal to one, you have the

same thing but the denominators are switched around. When you take the likelihood

ratio, you want to take the ratio of this, to the ratio of this. If you look at it and you

take the logarithm of that, you're taking the ratio of this to this. Incidentally the

coefficient here, you could write it out if you want to. It's 1 over the square root of

blah, times 1 over the square root of blah. But if you recognize that the coefficient

here has to be the same as the coefficient here, you don't have to worry about it.

So when you take the log likelihood ratio, you get this divided by this. You have the

same form in both cases. In one case, you have this term minus this term and this

term minus this term. And the other case well, for V sub 0, you have this term minus

this term. And for V sub 1 you have this term minus this term. Because of the

symmetry between the two, this just comes out to V sub 0 squared minus V sub 1

squared times a-squared. And when you do the algebra, the denominator is a-

squared plus W N sub 0 times W N sub 0.

OK. What do we do for making a maximum likelihood decision? Maximum likelihood

is map when the threshold is equal to 1, which is when the logarithm of the correct

threshold is equal 0. Which says that you take this quantity, and if it's nonnegative,
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you choose H equals zero. And if it's negative, you choose H equals one. Which

says you compare V sub 0 squared and V sub 1 squared. And whichever one is

larger, that's the one you choose. And if you go back and look at the problem, it's

pretty obvious that that's what you want to do anyway. I mean you'd be very, very

surprised when you're comparing two Gaussian random variables where one of

them has a larger variance than the other. And on the other hypothesis, the absolon

has the larger variance. If you came up with any rule other than to take the

magnitude squares and to then compare those two magnitude squares, you would

go back and look at the problem again realizing you must have done something

wrong.

But anyway when you deal with problems like this, I advise you to take log likelihood

ratio anyway. Because every once in awhile you find something which comes out in

a somewhat peculiar way. But anyway, here there's nothing peculiar. So what we

have to do now is to find the probability of error. Now what's the probability of error?

OK if we actually transmit zero, then V sub 0 squared is exponential. It's exponential

with this mean. Namely this is the mean of V sub 0 squared. And V sub 1 is

exponential with this mean. In other words, this is a big exponential. And this is a

little exponential. The two of them have probability densities that look like this. This

is not going to work. The big one has a probability density that looks like this. And

the little one-- this is big-- and the little one has a probability density that looks like

this. And what you want to do is to subtract a random variable with this density from

a random variable with this density. So you're convolving two exponential densities

with each other. And unfortunately, you're taking the differences of two. So you're

convolving the negatives of this with this. And then you have to integrate the thing.

And it's just something you have to do. And the answer is, the probability of error is

then 2 plus a-squared over W N sub 0 to the minus 1.

OK that is really an awful result. Because that says that if you increase the energy

that you're using, the probability of error goes down very, very, very slowly. And if

you look at this picture you think about it a little bit, it should be clear that that's the

only thing that can happen. OK. Because if you increase a-squared a little bit, it's

not going to save you much here. Because when you have a bigger a-squared, it's
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not going to save you much here. Because when you have a bigger a-squared, it's

just going to move down the value of g bar that's going to give you trouble. Namely

when you double a, the value of magnitude of g that gives you trouble just goes

down by a factor of two. When that goes down by a factor two, this bad part of the

curve just goes down in a quadratic way. Well that's what this is telling us. OK. I

mean the thing that we see is a quadratic and a. So we're sort of assured that we're

doing the right thing. And we're sort of also assured that the reason why this result

is so awful, is just that sometimes the fading is so bad there's nothing you can do

about it.

OK now the signal power as we said before is a-squared over 2. Since half the

inputs are zero. So we can put twice as much energy into the ones that are non-

zero. And therefore when you put this in terms of the average signal energy that

you're sending, what we get is E sub b over N sub 0. OK. So that again says exactly

the same thing that this does. It's worthwhile keeping both of these notions around,

because we have done something kind of peculiar here. I should mention it for you.

As soon as you're looking at a fading channel, the power that you're talking about

becomes a little peculiar. Because remember when we were looking at white noise

channels? What we were looking at is the power at the receiver, the signal power as

received at the receiver.

Now at this point, we still want to talk about E sub b. We still want to isolate this

problem from the attenuation that occurs just because of distance and things like.

Because of that, when we model g, this original model that we use here was a

model in which the magnitude of g had mean one. And we made it have mean one

so that the energy would come out right. Which is another reason why you get

confused with these E sub b over N sub 0 terms. OK so anyway, that's the answer.

And E sub b is in terms of the received energy using the average value of fading.

OK we next want to look at non-coherent detection. Non-coherent detection is

another thing that communication engineers use all the time, talk about all the time.

And you have to understand what the difference is between coherent transmission

and incoherent transmission. The general idea is that when you're doing incoherent

detection, you're assuming that you don't know what the phase of the channel is.
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And somehow you want to do your detection without knowing that phase. The

difference between Rayleigh fading on this kind of channel and incoherent

detection, is that with incoherent detection the receiver is assumed to know what the

magnitude of the channel is, but not the phase. It's harder to measure the phase of

the channel than it is the measure of the magnitude. Because the phase changes

very, very fast. If you look at these equations we have for what the response of the

channel is, you see the phase changing many, many times during the time where

the amplitude of the fading changes by just a little bit.

So a very common assumption that people make when trying to do detection is that

it's incoherent. Partly, people get used to analyzing incoherent communication. And

I've seen this so many times. And they insist on building communication systems

using incoherent detection. They will swear up and down there's no way you can

measure the phase. And what they're really saying is that's the only kind of

communication they understand. And because that's the only thing they understand,

they become very, very upset if anyone suggests that you ought to try to measure

the phase. But that's a tale for another day.

OK so now we want to look at the case where we're assuming that we know the

magnitude of the channel. It's just some quantity that we'll call g tilde. We're

assuming that the same magnitude occurs both on U sub 0 and U sub 1. We're

going to use the same transmission system that we used before, namely pulse-

position modulation. We'll either put our energy in U sub 0 or we'll put our energy in

U sub 1. We'll try to detect what's going on. But we just give the detector this little

extra amount of ability of knowing what the channel is. I'm going to talk more later

about how you can use this knowledge of what the channel is, and how you can

measure what the channel is. But for now we just assume that we know it. So the

phase is random and independent of everything else. So under hypothesis H equals

zero, we have the output of the channel. And times 0 is whatever input level we put

in a, times what the channel does to us, times e to this random phase. And V sub 1

it's just-- plus Z sub 0. And in the other case we have V sub 1 equals Z sub 1. And

under the other hypothesis V sub 1 is this input with a random phase but a known
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magnitude and again, a Gaussian random variable.

Phases are independent of the hypothesis. The phases are independent of the

magnitudes which are known. The phases are independent of everything and

therefore, we just want to forget about them. So the question is, how do we make a

maximum likelihood decision on this problem? Well you look at the problem. And for

the same reason as before you say, it's obvious how to make a maximum likelihood

decision just from all the symmetry that you have. If the magnitude of V sub 0 is

bigger than the magnitude of V sub 1, V sub 0 corresponds to this little bit of extra

energy that you have. So if V sub 0, the magnitude of V sub 0 is positive, is bigger

than the magnitude of V sub 1, you want to choose H equals 0. And alternatively

you'll want to choose H equals 1. It's obvious right?

I've tried for years to find a way to prove that. And the only way I can prove it is by

going into Bessel functions which is the way that everybody else proves it. And this

seems like absolute foolishness to me. And if any of you can find a way to do this, I

would be delighted to hear it. I will be in great admiration of you. Because I'm sure

there has to be an easy way to look at this problem. And I just can't find it.

OK anyway, we're not going to worry about all these Bessel functions, because

that's just arithmetic in a sense. So we're just going to say well it can be proven

using all of this machinery. So what we really want to find is what is the probability of

error when we make that decision. And when we make that decision, namely what

we're looking for is the probability of this magnitude then, is bigger than this

magnitude when H equals one is the correct hypothesis. Because that's the

probability of error then. So you have these two different terms. You just go through

all of the junk that's in the appendix to the notes we passed out last time. If you want

to go through that, I think it's great. It's an interesting analysis. Certainly not going to

do it now.

When you get done doing that you find out the probability of error is exactly one half

times e to the minus a-squared times this known magnitude of the channel. I mean,

a-squared and g tilde have to appear together here. OK because what's coming out
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of the channel, the magnitude of what's coming out of the channel without noise is

just a times g tilde. They both come together everywhere. And therefore, they have

to come together anytime you're talking about optimal detection, probability of error,

or anything else. So these two appear together. We have the same noise term

down here as we had before. Because again we're using a sampling theorem

analysis and the noise in each of these random variables is W N sub 0.

OK so that's a little surprising that that's what the noise is. If you knew the phase

also, if the detector knew both the magnitude and the phase of the channel, it would

be the conventional Gaussian problem that we've analyzed many times before. And

the solution would be that probability of error is equal to Q of a-squared times g tilde

squared divided by W N sub 0. Now if you remember the estimates we've come up

with and the bounds we've come up with on the Q function, the simplest bound that

we came up with was this. Namely you take this thing, you take one half of it, which

is the Gaussian density with the coefficient. You multiply it by one half. So this is the

simplest estimate we can get of this. On the other hand when this quantity is large,

a much better estimate of this is to have that estimate which has a 1 over the

square root of pi times W N sub 0 over a-squared g tilde squared in it. So we have

that term extra. Which says that when this is large, whenever we're communicating

at all reasonably, this probability of error is much smaller than this probability of

error.

However you talk to any communication engineer, and they'll say when you have a

good signal noise ratio, incoherent detection is virtually as good as coherent

detection. And why did they say that? Well it's because the probability of error goes

down so quickly with energy here. It's going down as a square of an exponent. Well

it's going down as an exponent in the energy. The question you want to ask is how

much extra energy do I have to use? If I'm using coherent detection, how much

more energy does an incoherent detector need at the input in order to get the same

results? And then you see the question is very different. Because if I increase this

quantity just a little bit, this probability of error goes down like a bat. OK. So what

happens then, when you compare these two terms is that as the signal to noise

ratio gets larger and larger, the amount of extra energy you need to make
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incoherent detection work as well as coherent detection goes down with 1 over a-

squared.

Which says that these communication engineers who swear that they like

incoherent detection in fact, have something on their side. because they don't have

to assume so much about the channel. They have something which is more robust.

And in fact what's turning out here, is that even though this error probability is a little

bigger than this error probability, there's only a very negligible amount of extra dB

required to make the two the same. So it only costs a little bit of extra energy to be

able to use incoherent detection instead of coherent detection.

OK so this is very strange now. We have a nice error probability which is almost as

good as the Gaussian error probability using incoherent detection. This is assuming

that the channel, that the receiver knows what g tilde is. But now we go back and

think about this, and look at our detection rule, which is the optimal detection rule.

And the optimal detection rule is no matter what g tilde happens to be, we compare

the magnitude of V sub 0 with the magnitude of V sub 1. In other words, we have

analyzed this assuming that we know what g tilde is. We know what the gain of the

channel is. But the receiver doesn't pay any attention to it. OK so now we have this

very peculiar situation where incoherent detection with a known value channel is

almost as good as coherent detection is.

But at the same time Rayleigh fading gives this awful error probability. So now you

have the final part of the argument take this probability of error, multiply it by the

probability density of g tilde squared, integrate it to find out what the average error

probability is when we average over the channel fading. And guess what answer

you get? Well you ought to be able to guess it if you've looked at the homework

already. Because in the homework you actually go through this integration. And

bingo you get the Rayleigh fading result. Which says that the problem with Rayleigh

fading is not any lack of knowledge about the channel. Knowing what the channel is

would not give you, even knowing what the phase is of the channel would not give

you a lot of extra help. The only help in knowing what the phase is, is to get this

result instead of this result. And even that won't help you much. The problem is
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anytime you're dealing with Rayleigh fading, the channel has faded so badly a large

fraction of the time, that you can't get an acceptable probability of error.

OK so now we have to stop and think. What do you do about this? Well you have

two general kinds of techniques to use at this point. OK and one of them is to try to

measure the channel at the receiver. You take the measurement of the channel at

the receiver. You send it to the transmitter. And the transmitter then does something

to compensate for the amount of fading. One thing that the transmitter can do is

anytime the channel is badly faded, it increases the amount of power that it's

sending. That's what typical voice systems do. And the other thing that you can do

is change the rate at which you're transmitting. You can do all sorts of things with

the transmitter if you know what the channel is. You can respond to it in various

ways. And all these different communication systems have various ways of dealing

with that. And we'll talk a little about that on Wednesday when we talk about CDMA.

The other thing you can do about it is use something called diversity. And the idea

of diversity is that instead of sending this one bit, trying to use as few degrees of

freedom as possible, you try to send your bits using as many degrees of freedom as

possible. If you can use a large number of degrees of freedom, and if the fading is

independent on these different degrees of freedom, then in fact you gain

something. Because instead of having one random variable which can totally cripple

you, you have lots of random variables. And if any one of them is good, you get

through. So you get a benefit out of diversity.

OK so that's our next topic. Namely, how do you measure the channel? Because if

you're going to use diversity it's a help to know the channel. If you're going to use

coding, coding is just another way to get diversity. Again your coding will work better

if you know what the channel is. So somehow we would like to be able to measure

the channel and send it back to the transmitter if we want to alter the power, the

rate of the transmitter, and to let the receiver use it if the receiver is going to. Well

we have seen that when you use one bit on just a couple of degrees of freedom,

knowing what the channel is does not do you much help. If you use coding or if you

use one bit and spread it over a large number of degrees of freedom, then knowing
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what the channel is gives you a great deal.

This is one of the basic confusions that everyone has when they deal with Rayleigh

fading. Because when you look at a Rayleigh faded channel, the first thing you

analyze is this incredibly small number of degrees of freedom. And you say wow,

that's awful. There's no way to deal with that. And then you start looking for

something. And you say, well diversity helps me. But in general, this is the general

scheme of things that we're going to use.

OK. So as we said channel measurement helps if diversity is available. Why does

that help when diversity is available? OK, think of sending this one bit. You get one

reception, and then you get another reception. And on this reception, you get one

amount of fading. On this reception you get another amount of fading. If I don't

know how much fading there is it doesn't help me an awful lot. It helps me some.

But if I know that this channel is faded badly and this channel is not faded, then I'm

going to use what comes out here instead of what comes out here. And then my

detector is going to work much, much better. When you look at diversity results,

always ask yourself a couple of questions. Is the detector using knowledge of what

the strength of the channel is on these two diversity outputs? Is the transmitter

using it's knowledge of what those channels are? You get very different results for

diversity depending on the answers to both of those questions.

OK, so if you have a multi-tap model for a channel-- OK remember the multi-tap

models that we came up with. We we're looking at transmission using multipath.

And we had multipath in different ranges of a delay. We came up with a model

which gave us multiple taps for a discrete model of the channel. You get a large

number of taps if you're using broadband communication. Because using

broadband communication 1 over W becomes very small. And therefore these

ranges of delay become very small. And if you're using very narrow band

communication, that's when you have the flat fading. Namely flat fading is not flat

fading, it's fading which is flat over the bandwidth that you're using. So if you use a

broader bandwidth and you have multiple taps, then these taps are going to be

independent of each other. And you automatically have diversity.
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So the question is how do you use that. Well if you're going to use it, you better be

able to measure it. OK so now we're going to try to figure out how to do that

measurement. And the first thing to do is to assume the simplest possible thing. I

mean, suppose you know how many taps the channel has. Suppose it has k sub 0

channel taps. So the channel looks like this, G sub 0, G sub 1, and G sub 2. You're

transmitting a sequence of inputs. OK remember all of this stuff came from trying to

model a channel in terms of discrete inputs, where you're sending one input each

one over W seconds. So you put in a sequence of inputs. You have these three

different channel taps here. And what comes out when you put in a single bit here

or a single symbol. You get something out when this tap right away. You get

something out here one time unit later. You get something out here, one epoch still

later.

So all of these outputs get added up. And therefore the output here at time m, is the

input at time m times this tap, plus the input at time m minus 1 times this tap, plus

the input at time m minus 2 times this tap. Because it takes these inputs that long to

go through there. All this is is just digital convolution, OK. I'm just drawing it out in

the figure so you see what's going on. Because otherwise you tend to think

everything happens at one instant of time. Then we're adding this white Gaussian

noise. When we're talking about digital systems, white Gaussian noise just means

that each of these random variables are independent at each other random

variable. They all have the same variance. And the real parts and imaginary parts

have the same variance. And they're independent of each other. Namely these are

all normal random variables. Since we're sending a, or minus a, or something with

magnitude a, we want to divide by a out here, if we want to figure out anything

about what these taps are.

OK so suppose that what we send now is a bunch of zeros, followed by a single

input, followed by a bunch of zeros. What comes out? Well the thing that comes out

is at the point that this big input comes in, we get a G sub 0 out at the time that you

put in a. I mean we're leaving out propagation delay here. We got a times G sub 1,

the next epoch. Then we get a times G sub 2, the next epoch. And by that time the
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input is completely out of the filter. And we get zeros after that. So if you put in a

bunch of zeros and then a single a, you got a nice measurement of the channel.

There's Gaussian noise added to each of these inputs. But in fact you do get a

reading of each channel output. When you divide these by the a here, then you get

something which is a measurement of the appropriate tap G plus Gaussian noise on

it.

OK now you try to make an estimation from this. And the trouble is we don't want to

say much about estimation theory. But in fact the notes gives you a very brief

introduction into estimation. There are two well-known kinds of estimation. One of

them is maximum likelihood estimation. And the other one is minimum mean square

error estimation. Maximum likelihood estimation is in fact exactly the same as

maximum likelihood detection. Namely you look at the likelihoods which is the

probabilities of the outputs given the inputs. And what's the input in this problem?

The input is these channel variables. Because that's the thing we're trying to

measure in this measurement problem. We assume that the probing signal is

known. It's just a bunch of zeros, followed by a, followed by a bunch of zeros. So we

know that. We're trying to estimate these things.

So these are the variables that we're trying to estimate. So we try to find the

probability density of the output conditional on the knowledge of G sub 0. Which is

just the Gaussian density shifted to a times G sub 0. You then look at the maximum

likelihood estimate of G. So you're looking at the value you can put in to maximize

this estimate which comes out here as a times G sub 2. And then at this appropriate

time, you're looking at G sub 2 here, plus a noise random variable. And since the

noise is zero mean, this quantity here is in fact the best estimate in terms of the

maximum likelihood that you can get. If you assume that this is a Gaussian random

variable and this is a Gaussian random variable, you can solve a minimum mean

square error estimation problem. It's much like the map problem except these

random variables are all continuous here. But it's a little different from the map

problem in the sense that you can't have equally likely inputs where you have a

continuous random variable. You make them all equally probable. The only possible

value you can have is zero. Because it has to extend forever. So anyway, maximum
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likelihood detection is just normalize what you get so that in the absence of

Gaussian noise, you would get the variable you're looking for. And then ignore the

Gaussian noise, and that's your estimate.

OK. If you want to do this and you want to use the strategy, it looks like a very nice

strategy. But what's the problem in it? If this sequence is somewhat longer, you

need a whole lot of zeros in between each probing signal. And what that means is

you're going to be using your energy and clumping it all up into the small number of

degrees of freedom. Which means you're going to be sending a lot of energy at one

instant of time and then nothing for a long period of time, then a very big signal for

awhile then nothing for a long period of time, and so forth. If you do that, the FTC is

really going to be down on you. Because you're not supposed to send too much

energy in any small amount of time or any small amount of frequency. So you're

supposed to spread things out a little bit. You say OK, that doesn't work too well.

What am I going to do? How can I choose a sequence of input so they have

relatively constant amplitude, but at the same time so that when I go through this

kind of filter, I can sort out what's coming from here, and what's coming from here,

and what's coming from here. Well it turns out that the answer to that question is to

use a pseudonoise sequence. And the next thing I want to do is to give you some

idea about why these pseudonoise sequences work.

OK so we'll think in terms of vectors now. OK so we have a vector input, u sub 1, u

sub 2, up to u sub n, a vector of length n. So we're putting these discrete signals in

one after the other. We're passing them through this, which is a digital filter now. So

what comes out here V prime is just a convolution of u and G. We then add the

noise to it. I claim that what we ought to do is use the matched filter here to u. And if

I use a matched filter to u here, that matched filter, if I'm using a pseudonoise

sequence, is going to bingo give me the filter that I started out with, plus some

noise.

OK why is that? The property that pseudonoise sequences have, if I choose each of

the inputs to have the magnitude of a, and think of it as being real plus or minus a,

which is what people usually do. If you look at the correlation of this sequence,
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namely the correlation of u sub m with the complex conjugate of u sub m spaced a

little bit, PN sequences have the property that this correlation function looks like an

impulse. OK. Now how you find sequences that have that property is another

question. But in fact they do exist. There are lots of them. They're easy to find. And

they have this very nice property.

Another way to say this is that is that the vector u has to be orthogonal to all of its

shifts. That's exactly what this is saying. And another way of saying it is that u, if you

pass it through the matched filter to u-- now remember what a matched filter is on

an analog waveform. You take a waveform, you switch it around in time. You take

the complex conjugate of it, and that's the matched filter. And when you convolve u

with this matched filter, what it's doing is just exactly the same operation of

correlation. OK in other words, convolution with one of the sequences turned

around this time, is the same as correlation. And most of you have seen that I'm

sure.

So that if we take this matched filter where u tilde sub j is equal to the complex

conjugate of u at time minus j, then I pass u through the filter G. Forget about the

noise for the time being. I then pass it through the matched filter u tilde. What I'm

going to get out, I claim, is G. And I'll show you why that is in just a minute. Let

make caution you about something. Because you can get very confused with this

picture. Because as soon as I take this input, u 1 up to u sub m. This matched filter

is going to start responding at time u sub minus m. And it's going to finish

responding a time u sub minus 1. So it responds before it's hit. Which again is this

business of thinking of timing at the receiver being very much delayed from timing at

the transmitter. Which is a trick that we've always played. Which is why we don't

have to think of filters as being realizable. Still in this example, this becomes

confusing. And I'll show you why in a minute.

OK so I'm going to assume that I picked a good PN sequence. So when I convolve it

with its matched filter I essentially get an impulse function, namely a discrete

impulse. Which is the same as saying that u is orthogonal to all of its shifts. And

that's exactly what you what to do. You want to think of turning it around and
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passing it through. And that's exactly what this is doing. OK so we have the output

of this filter, which is u convolved with G. We're then convolving that with this

matched filter u tilde. And now we use the nice property of convolution, which you

probably don't think of very often. But the nice property that convolution has, is that

it's both associative and commutative. OK. And therefore when we look at V prime

times u tilde, it's the convolution of u with G-- that's what the prime is-- all convolved

with the matched filter u. Because of the associativity and the commutativity, you

can reverse these two things so you're taking the convolution of u with its matched

filter. When you take the convolution of u with its matched filter, you get a delta

function. And you take a delta function and pass it through G. And what comes out

is a delta function weighted by a-squared n, which is just the energy of what we're

putting in. OK so that says that if we can find pseudonoise sequences, all of this

works. And it works just dandy. If you put noise in, what happens there? Well let's

analyze the noise separately. The noise is going through this matched filter. Well if u

is a pseudonoise sequence, if it has this nice correlation property and you flip it

around in time, it's going to have the same nice correlation property. So that in fact

u tilde is going to have the same property that it's orthogonal to all of its time shifts.

If you now look at what happens when you take Z and send it through this filter, and

you find the covariance matrix for Z passed through this filter, what that

independence gives you is the correlation function is just all diagonal, all terms, all

the same. Which says that all of these terms and this vector here are all white

Gaussian noise variables. So what comes out is the filter plus white noise. Which is

the same thing that happened when we put in a single input with zeros on both

sides. OK. So using a PN sequence works in exactly the same way as this very

special pseudonoise sequence, which just has one input in it. Which happens to be

a pseudonoise sequence in this term also.

OK so the output then, is going to be a maximum likelihood estimate of G. OK, this

is the way that people typically measure channels. They use pseudonoise inputs.

And the output that comes out, namely the output that comes out. When we put in a

finite duration pseudonoise sequence, what we're going to look for is the output at

the exact instant of the last digit as the input goes in. And the output then is G sub
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the exact instant of the last digit as the input goes in. And the output then is G sub

0, followed by G sub 1, followed by G sub 2, and then silence. So you see nothing

coming out until this big burst of energy, which is all digits of G.

OK so now we want to put all of this together into something called a rake receiver. I

wish I could spend more time on the rake receiver because it's a really neat thing. It

was developed in the 50s about the same time that information theory was getting

developed. But it was developed by people who were trying to do radar. And at the

same time trying to do a little communication along with the radar. And this was one

of the things they came up with. So they wanted to measure the channel and make

decisions in transmitting data both at the same time. And the trick here is about the

same as the trick we use in trying to measure carrier frequency, and make

decisions at the same time. Namely you use the decisions you make to measure the

frequency. You use the frequency that you've measured to make future decisions.

And here, we're going to do exactly the same thing. We make decisions. We use

those decisions as a way of measuring the channel. We then use the

measurements of the channel to create this matched filter G tilde. And that's what

we're going to use to make the decisions.

OK if you have two different inputs, I mean here we'll just look at binary inputs. You

take u sub 0 and u sub 1, and you look at what happens when you have those two

inputs. This is just a vector white Gaussian noise problem that we looked at in quite

a bit of detail when we were studying decision theory. What we want to do is to look

at, I mean if these two signals are not antipodal to each other you want to look at

the mean of them. And you'll want to look at u sub 0 minus that mean, and u sub 1

minus that mean as two antipodal signals. When you go through all of that, you find

that the maximum likelihood decision is to take the real part of the output, of the

inner product of the output, with u sub 0 convolved with g, and the real part of v

convolved with u sub 1 convolved with G.

OK in other words, what's happening here is that as far as anybody is concerned,

we're not using u sub 0 and u sub 1 in this making a decision. We know what the

channel is. And therefore what exists right before the white noise is added, is these

two signals u sub 0 convolved with g and u sub 1 convolved with g. So we're doing
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binary detection on those two known signals. And we're using the output to try to

make the best choice between them.

So this is the thing that we do. So we want to use a filter matched to u sub 0

convolved with g. Now how do we build a filter matched to a convolution of two

things? Well we convolve u sub 0 with g. And then we turn the thing around. And

then we see that after turning it around what we've gotten is the turned around

version of u convolved with the turned around version of g. I mean write it down and

you'll see that that's what you have. So what you wind up with is the following figure.

You either send u sub 0 or you send u sub 1. This is a way to send one binary digit.

We're sending it by using these long PN sequences now. If u sub 0 goes through g,

we got a V prime out, which is the output before noise is added. We then add noise

so we get. And then we pass to try to detect whether this or this is true. We take this

output V. We convolve it with u sub 1 convolved with g, and with u sub 0 convolved

with g.

Now you'll all say I'm wasting stuff here. Because I could just put the g over here

and then follow it with u sub 1 or u sub 0. Be patient for a little bit. I want to put both

of them in. And I want to put them in this order. And then I make a decision here.

OK well here comes the clincher to the argument. Look at what happens right there.

If I forget about this and I forget about this, what I get here is u sub 0 coming in. It's

going through the filter g. It has white noise added to it. It goes through the matched

filter to u sub 0. And what comes out is a measurement of g. That's what we

showed before. When we were trying to measure g, that was the way we did it. We

started out with a PN sequence, go through g, add noise-- we can't avoid the noise-

- go through the matched filter. That is a measurement of g at that point there. And

if we send u sub 1, that's a measurement of g at that point there.

So finally we have the rake receiver which does both of these things it once. You

either send u sub 0 or u sub 1. You go through this filter. You add white noise. As

far as making a decision is concerned, you do what we talked about before. You

compare this output with this output to make a decision. After you make a decision

you go forward in time, because we've done everything backwards in time here.
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And you take what is going to come out of here, which hasn't come out yet. And you

use that to make a new estimate of g. You use that estimate of g turned around in

time, to alter your estimate of the matched filter to g. And if you read the notes, the

notes explains what's going on as far as the timing in here, a little bit better than I

can here. But in fact, this is the kind of circuit that people actually use to both

measure channels, and to send data at the same time. I want stop here because

we're supposed to evaluate the class.
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