
Chapter 8 

Detection, coding, and decoding 

8.1 Introduction 

The previous chapter showed how to characterize noise as a random process and this chapter 
uses that characterization to retrieve the signal from the noise corrupted received waveform. 
As one might guess, this is not possible without occasional errors when the noise is unusually 
large. The objective then, is to retrieve the data while minimizing the effect of these errors. 
This process of retrieving data from a noise corrupted version is known as detection. 

Detection, decision making, hypothesis testing, and decoding are synonyms. The word detection 
refers to the effort to detect whether some phenomenon is present or not on the basis of obser­
vations. For example, a radar system uses the observations to detect whether or not a target is 
present; a quality control system attempts to detect whether a unit is defective; a medical test 
detects whether a given disease is present. The meaning of detection has been extended in the 
digital communication field from a yes/no decision to a decision at the receiver from a finite set 
of possible transmitted signals. Such a decision from a set of possible transmitted signals is also 
called decoding, but here the possible set is usually regarded as the codewords in a code rather 
than the signals in a signal set.1 Decision making is, again, the process of deciding between a 
number of mutually exclusive alternatives. Hypothesis testing is the same, and here the mutually 
exclusive alternatives are called hypotheses. We use the word hypotheses for the possible choices 
in what follows, since the word conjures up the appropriate intuitive image of making a choice 
between a set of alternatives, where only one alternative is correct and there is a possibility of 
erroneous choice. 

These problems will be studied initially in a purely probabilistic setting. That is, there is a 
probability model within which each hypothesis is an event. These events are mutually exclusive 
and collectively exhaustive, i.e., the sample outcome of the experiment lies in one and only one 
of these events, which means that in each performance of the experiment, one and only one 
hypothesis is correct. Assume there are M hypotheses2, labeled a0, . . .  , aM−1. The sample 
outcome of the experiment will lie in one of these M events. This defines a random symbol U 

1As explained more fully later, there is no fundamental difference between a code and a signal set. 
2The principles here apply essentially without change for a countably infinite set of hypotheses; for an uncount­

ably infinite set of hypotheses, the process of choosing an hypothesis from an observation is called estimation. 
Typically, the probability of choosing correctly in this case is 0 and the emphasis is on making an estimate that 
is close in some sense to the correct hypothesis. 
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250 CHAPTER 8. DETECTION, CODING, AND DECODING 

which, for each m, takes the sample value am when event am occurs. The marginal probability 
pU (am) of hypothesis am is denoted pm and is usually referred to as the a priori probability of 
am. There is also a random variable (rv) V , called the observation. This is the data on which the 
decision must be based. A sample value v of V is observed, and on the basis of that observation, 
the detector selects one of the possible M hypotheses. The observation could equally well be a 
complex random variable, a random vector, a random process, or a random symbol, and these 
generalizations are discussed in what follows. 

Before discussing how to make decisions, it is important to understand when and why decisions 
must be made. As a binary example, assume that the conditional probability of hypothesis a0, 
given the observation, is 2/3 and that of hypothesis a1 is 1/3. Simply deciding on hypothesis a0 

and forgetting about the probabilities throws away the information about the probability that 
the decision is correct. However, actual decisions sometimes must be made. In a communication 
system, the user usually wants to receive the message (even partly garbled) rather than a set of 
probabilities. In a control system, the controls must occasionally take action. Similarly managers 
must occasionally choose between courses of action, between products, and between people to 
hire. In a sense, it is by making decisions that we return from the world of mathematical 
probability models to the world being modeled. 

There are a number of possible criteria to use in making decisions. Initially assume that the 
criterion is to maximize the probability of correct choice. That is, when the experiment is 
performed, the resulting experimental outcome maps into both a sample value am for U and a 
sample value v for V . The decision maker observes v (but not am) and maps v into a decision 
ũ(v). The decision is correct if ũ(v) =  am. In principal, maximizing the probability of correct 
choice is almost trivially simple. Given v, calculate p

U |V 
(am | v) for each possible hypothesis am. 

This is the probability that am is the correct hypothesis conditional on v. Thus the rule for 
maximizing the probability of being correct is to choose ũ(v) to be that am for which p

U|V 
(am | v) 

is maximized. For each possible observation v, this is denoted 

ũ(v) = arg max [p
U|V 

(am v)] (MAP rule), (8.1) 
m 

| 

where arg maxm means the argument m that maximizes the function. If the maximum is not 
unique, the probability of being correct is the same no matter which maximizing m is chosen, so 
to be explicit, the smallest such m will be chosen.3 Since the rule (8.1) applies to each possible 
sample output v of the random variable V , (8.1) also defines the selected hypothesis as a random 
symbol Ũ(V ). The conditional probability p

U|V 
is called an a posteriori probability. This is in 

contrast to the a priori probability pU of the hypothesis before the observation of V . The decision 
rule in (8.1) is thus called the maximum a posteriori probability (MAP) rule. 

An important consequence of (8.1) is that the MAP rule depends only on the conditional prob­
ability p

U|V 
and thus is completely determined by the joint distribution of U and V . Everything 

else in the probability space is irrelevant to making a MAP decision. 

When distinguishing between different decision rules, the MAP decision rule in (8.1) is denoted 
as ũMAP(v). Since the MAP rule maximizes the probability of correct decision for each sample 
value v, it also maximizes the probability of correct decision averaged over all v. To see this 

3As discussed in the appendix, it is sometimes desirable to choose randomly among the maximum aposteriori 
choices when the maximum in (8.1) is not unique. There are often situations (such as with discrete coding and 
decoding) where non-uniqueness occurs with positive probability. 
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analytically, let ũD (v) be an arbitrary decision rule. Since ũMAP maximizes pU |V (m | v)] over m, 

p
U |V 

(ũMAP(v) | v) − p
U |V 

(ũD (v) | v) ≥ 0; for each rule D and observation v. (8.2) 

Taking the expected value of the first term on the left over the observation V , we get the 
probability of correct decision using the MAP decision rule. The expected value of the second 
term on the left, for any given D is the probability of correct decision using that rule. Thus, 
taking the expected value of (8.2) over V shows that the MAP rule maximizes the probability 
of correct decision over the observation space. The above results are very simple, but also 
important and fundamental. They are summarized in the following theorem. 

Theorem 8.1.1. The MAP rule, given in (8.1), maximizes the probability of correct decision, 
both for each observed sample value v and as an average over V . The MAP rule is determined 
solely by the joint distribution of U and V . 

Before discussing the implications and use of the MAP rule, the above assumptions are reviewed. 
First, a probability model was assumed in which all probabilities are known, and in which, for 
each performance of the experiment, one and only one hypothesis is correct. This conforms very 
well to the communication model in which a transmitter sends one of a set of possible signals, 
and the receiver, given signal plus noise, makes a decision on the signal actually sent. It does not 
always conform well to a scientific experiment attempting to verify the existence of some new 
phenomenon; in such situations, there is often no sensible way to model a priori probabilities. 
Detection in the absence of known a priori probabilities is discussed in the appendix. 

The next assumption was that maximizing the probability of correct decision is an appropriate 
decision criterion. In many situations, the cost of a wrong decision is highly asymmetric. For 
example, when testing for a treatable but deadly disease, making an error when the disease is 
present is far more costly than making an error when the disease is not present. As shown in 
Exercise 8.1, it is easy to extend the theory to account for relative costs of errors. 

With the present assumptions, the detection problem can be stated concisely in the following 
probabilistic terms. There is an underlying sample space Ω, a probability measure, and two rv’s 
U and V of interest. The corresponding experiment is performed, an observer sees the sample 
value v of rv V , but does not observe anything else, particularly not the sample value of U , say  
am. The observer uses a detection rule, ũ(v), which is a function mapping each possible value 
of v to a possible value, a0 to aM−1, of  U . If ṽ(v) =  am, the detection is correct, and otherwise 
an error has been made. The above MAP rule maximizes the probability of correct detection 
conditional on each v and also maximizes the unconditional probability of correct detection. 
Obviously, the observer must know the conditional probability assignment p in order to use 
the MAP rule. 

U |V 

The next two sections are restricted to the case of binary hypotheses, (M = 2). This allows us 
to understand most of the important ideas but simplifies the notation considerably. This is then 
generalized to an arbitrary number of hypotheses; fortunately this extension is almost trivial. 

8.2 Binary detection 

Assume a probability model in which the correct hypothesis U is a binary random variable with 
possible values {a0, a1} and a priori probabilities p0 and p1. In the communication context, 
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the a priori probabilities are usually modeled as equiprobable, but occasionally there are multi­
stage detection processes in which the result of the first stage leads to non-equiprobable a priori 
probabilities in subsequent stages. Thus let p0 and p1 = 1  − p0 be arbitrary. Let V be a 
rv with a conditional probability density f

V |U 
(v | am) that is finite and non-zero for all v ∈ R 

and m ∈ {0, 1}. The modifications for zero densities, discrete V , complex V , or vector V are 
relatively straight-forward and discussed later. 

The conditional densities f (v | am), m  ∈ {0, 1} are called likelihoods in the jargon of hypothesis 
V |U 

testing. The marginal density of V is given by fV (v) =  p0fV |U 
(v | a0) +  p1fV |U 

(v | a1). The a 
posteriori probability of U , for m = 0 or 1, is given by 

p
U|V 

(am | v) =  
pmf

V 

f
|

V

U 

(
(
v

v 

)
| am) 

. (8.3) 

Writing out (8.1) explicitly for this case, 

p0f (v a0) Ũ=a0 p1f (v a1)V |U 
| ≥ V |U 

|
. (8.4)

fV (v) <Ũ=a1 
fV (v) 

This “equation” indicates that the MAP decision is a0 if the left side is greater than or equal 
to the right, and is a1 if the left side is less than the right. Choosing the decision Ũ = a0 when 
equality holds in (8.4) is an arbitrary choice and does not affect the probability of being correct. 
Canceling fV (v) and rearranging, 

Λ(v) =  
f

V |U 
(v | a0) ≥Ũ=a0 p1 = η. (8.5)

f
V |U 

(v | a1) <Ũ=a1 
p0 

Λ(v) =  f
V |U 

(v | a0)/f
V |U 

(v | a1) is called the likelihood ratio, and is a function only of v. The 
ratio η = p1/p0 is called the threshold and depends only on the a priori probabilities. The 
binary MAP rule (or MAP test, as it is usually called) then compares the likelihood ratio to 
the threshold, and decides on hypothesis a0 if the threshold is reached, and on hypothesis a1 

otherwise. Note that if the a priori probability p0 is increased, the threshold decreases, and 
the set of v for which hypothesis a0 is chosen increases; this corresponds to our intuition—the 
more certain we are initially that U is 0, the stronger the evidence required to make us change 
our minds. As shown in Exercise 8.1, the only effect of minimizing over costs rather than error 
probability is to change the threshold η in (8.5). 

An important special case of (8.5) is that in which p0 = p1. In this case η = 1, and the rule 
chooses Ũ(v) =  a0 for f 

V |U 
(v | a0) ≥ f 

V |U 
(v | a1) and chooses Ũ(v) = 1 otherwise. This is called 

a maximum likelihood (ML) rule or test. In the communication case, as mentioned above, the 
a priori probabilities are usually equal, so MAP then reduces to ML. The maximum likelihood 
test is also often used when p0 and p1 are unknown. 

The probability of error, i.e., one minus the probability of choosing correctly, is now derived 
for MAP detection. First we find the probability of error conditional on each hypothesis, 
Pr{e |U=a1} and Pr{e |U=a0}. The overall probability of error is then given by 

Pr{e} = p0 Pr{e |U=a0} + p1 Pr{e |U=a1}. 

In the radar field, Pr{e |U=a0} is called the probability of false alarm, and Pr{e |U=a1} is 
called the probability of a miss. Also 1 − Pr{e |U=a1} is called the probability of detection. In 
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statistics, Pr{e | U=a1} is called the probability of error of the second kind, and Pr{e | U=a0} is 
the probability of error of the first kind. These terms are not used here. 

Note that (8.5) partitions the space of observed sample values into 2 regions. R0 = {v : Λ(v) ≥ η}
is the region for which Ũ = a0 and R1 = {v : Λ(v) < η} is the region for which Ũ = a1. For  
U = a1, an error occurs if and only if v is in R0, and for U = a0, an error occurs if and only if 
v is in R1. Thus, 

Pr{e | U=a0} = 
R1 

f
V |U 

(v | a0) dv. (8.6) 

Pr{e | U=a1} = 
R0 

f 
V |U 

(v | a1) dv. (8.7) 

Another, often simpler, approach is to work directly with the likelihood ratio. Since Λ(v) is  
a function of the observed sample value v, the random variable, Λ(V ), also called a likelihood 
ratio, is defined as follows: for every sample point ω, V (ω) is the corresponding sample value 
v, and Λ(V ) is then shorthand for Λ(V (ω)). In the same way, Ũ(V ) (or more briefly Ũ) is the 
decision random variable. In these terms, (8.5) states that 

Ũ = a0 if and only if Λ(V ) ≥ η. (8.8) 

Thus, for MAP detection with a threshold η, 

Pr{e | U=a0} = Pr{Ũ=a1 | U=a0} = Pr{Λ(V ) < η  | U=a0}. (8.9) 

Pr{e | U=a1} = Pr{Ũ=a0 | U=a1} = Pr{Λ(V ) ≥ η | U=a1}. (8.10) 

A sufficient statistic is defined as any function of the observation v from which the likelihood ratio 
can be calculated. As examples, v itself, Λ(v), and any one-to-one function of Λ(v) are sufficient 
statistics. Λ(v), and functions of Λ(v), are often simpler to work with than v in calculating 
the probability of error. This will be particularly true when vector or process observations are 
discussed, since Λ(v) is always one dimensional and real. 

We have seen that the MAP rule (and thus also the ML rule) is a threshold test on the likelihood 
ratio. Similarly the min-cost rule, (see Exercise 8.1), and the Neyman-Pearson test (which, as 
shown in the appendix, makes no assumptions about a priori probabilities), are threshold tests 
on the likelihood ratio. Not only are all these binary decision rules based only on threshold 
tests on the likelihood ratio, but the properties of these rules, such as the conditional error 
probabilities in (8.9) and (8.10) are based only on Λ(V ) and η. In fact, it is difficult to imagine 
any sensible binary decision procedure, especially in the digital communication context, that is 
not a threshold test on the likelihood ratio. Thus, once a sufficient statistic has been calculated 
from the observed vector, that observed vector has no further value in any decision rule of 
interest here. 

The log likelihood ratio, LLR(V ) = ln[Λ(V )] is an important sufficient statistic which is often 
easier to work with than the likelihood ratio itself. As seen in the next section, the LLR is 
particularly convenient with Gaussian noise statistics. 
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8.3 Binary signals in white Gaussian noise 

This section first treats standard 2-PAM, then 2-PAM with an offset, then binary signals with 
vector observations, and finally binary signals with waveform observations. 

8.3.1 Detection for PAM antipodal signals 

Consider PAM antipodal modulation (i.e., 2 -PAM), as illustrated in Figure 8.1. 

{0,1} 
Input � Encoder 

{0, 1} → ±a 
� 

U = ±a 
Baseband 
modulator 

� Baseband to 
passband 

� ©+ 

Baseband 
Demodulator 

� Passband to 
baseband{0, 1} 

Output� 
V = U+Z 

Detector 
V → ̃U→{0, 1} 

� � 

� WGN 

Figure 8.1: The source produces a binary digit which is mapped into U = a. This is ±
modulated into a waveform, WGN is added, the resultant waveform is demodulated and 
sampled, resulting in a noisy received value V = U + Z. From Section 7.8, Z ∼ N (0, N0/2). 
This is explained more fully later. Based on this observation the receiver makes a decision
Ũ and maps this back to the binary output, which is the hypothesized version of the binary 
input. 

The correct hypothesis U is either a0 = a or a1 = −a. Let Z ∼ N (0, N0/2) be a Gaussian noise 
rv of mean 0 and variance N0/2, independent of U . That is, 

fZ (z) =  � 1 
exp 

−z2 

. 
2πN0/2 N0 

Assume that 2-PAM is simplified by sending only a single binary symbol (rather than a sequence 
over time) and by observing only the single sample value v corresponding to that input. As seen 
later, these simplifications are unnecessary, but they permit the problem to be viewed in the 
simplest possible context. The observation V (i.e., the channel output prior to detection) is a+Z 
or −a + Z, depending on whether U = a or −a. Thus, conditional on U = a, V ∼ N (a, N0/2) 
and, conditional on U = −a, V ∼ N (−a, N0/2). 

1 a)2	 1 −(v+a)2 
f

V |U 
(v | a) =  √

πN0 
exp 

−(v
N

−
0 

; f
V |U 

(v | − a) =  √
πN0 

exp 
N0 

. 

The likelihood ratio is the ratio of these likelihoods, and given by


Λ(v) = exp 
−(v−a)2 + (v+a)2 

= exp 
4av 

.	 (8.11)
N0	 N0 

Substituting this into (8.5), 

exp	
4av ≥Ũ=a p1 = η. (8.12)
N0 <Ũ=−a p0 
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This is further simplified by taking the logarithm, yielding 

LLR(v) =  
�
4av 

� 
≥Ũ=a 

ln(η). (8.13)
N0 <Ũ=−a 

v ≥
Ũ=a N0 ln(η) 

. (8.14)
<Ũ=−a 4a 

Figure 8.2 interprets this decision rule. 

��������� � v 

f 
V |U 

(v|a)f 
V |U 

(v| − a) 

(N0/4a) ln  η 

Ũ=a� 
Ũ= − a� 

−a 0 �� a 

Pr{Ũ = a|U = −a}
Figure 8.2: Binary hypothesis testing for antipodal signal, 0 → a, 1 → −a. The a priori 
probabilities are p0 and p1, the threshold is η = p0/p1, and the noise is N (0, N0/2). 

The probability of error, given U= − a, is seen to be the probability that the noise value is 
greater than a + N0 ln(η) . Since the noise has variance N0/2, this is the probability that the4a � � � 
normalized Gaussian rv Z/ N0/2 exceeds a/ N0/2 + N0/2 ln(η)/(2a). Thus, 

Pr{e |U= − a} = Q � 
N

a 

0/2
+ 

N0

2
/

a 
2 ln η

, (8.15) 

where Q(x), the complementary distribution function of N (0, 1), is given by 

Q(x) =  
∞ 

√1
2π 

exp 
−
2 
z2 

dz. 
x 

The probability of error given U=a is calculated the same way, but is the probability that Z is 
less than or equal to −a + N0 ln(η) . Since −Z has the same distribution as Z,4a 

Pr{e |U=a} = Q � 
N

a 

0/2 
− 

N0/2 ln η
. (8.16)

2a 

It is more insightful to express a/ N0/2 as 2a2/N0. As seen before, a2 can be viewed as the 
energy per bit, Eb, so that (8.15) and (8.16) become 

2Eb ln η
Pr{e |U= − a} = Q

N0 
+

2 
� 

2Eb/N0 

, (8.17) 

Pr{e |U=a} = Q 
2
N

E

0 

b − 
2 
� 

2
ln 
E

η 

b/N0 

. (8.18) 
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Note that these formulas involve only the ratio Eb/N0 rather than Eb or N0 separately. If the 
signal, observation, and noise had been measured on a different scale, then both Eb and N0 

would change by the same factor, helping explain why only the ratio is relevant. In fact, the 
scale could be normalized so that either the noise has variance 1 or the signal has variance 1. 

The hypotheses in these communication problems are usually modeled as equiprobable, p0 = 
p1 = 1/2. In this case, ln η = 0 and MAP detection is equivalent to ML. Eqns. (8.17) and (8.18) 
then simplify to 

2E
Pr{e} = Pr{e | U= − a} = Pr{e | U=a} = Q

N0 

b 
. (8.19) 

In terms of Figure 8.2, this is the tail of either Gaussian distribution from the point 0 where 
they cross. This equation keeps reappearing in different guises, and it will soon seem like a 
completely obvious result for a variety of Gaussian detection problems. 

8.3.2 Detection for binary non-antipodal signals 

Next consider the slightly more complex case illustrated in Figure 8.3. Instead of mapping 0 to 
+a and 1 to −a, 0 is mapped to an arbitrary number b0 and 1 to an arbitrary number b1. To  
analyze this, let c be the mid-point between b0 and b1, c = (b0 + b1)/2. Assuming b1 < b0, let 
a = b0 − c = c − b1. Conditional on U=b0, the observation is V = c + a + Z; conditional on 
U=b1, it  is  V = c− a + Z. In other words, this more general case is simply the result of shifting 
the previous signals by the constant c. 

(N0/4a) ln  η 

��������� � v 

f
V |U 

(v|b0)f
V |U 

(v|b1) 

Ũ=b0�Ũ=b1� 

b1 c ���
b0 

Pr{Ũ = b0|U = b1}
Figure 8.3: Binary hypothesis testing for arbitrary signals, 0 b0, 1 b1, for b0 > b1. With→ → 
c = (b0+b1)/2 and a = |b0 − b1|/2, this is the same as Figure 8.2 shifted by c. For  b0 < b1, the 
picture must be reversed, but the answer is the same. 

Define Ṽ = V − c as the result of shifting the observation by −c. Ṽ is a sufficient statistic and 
Ṽ = ±a + Z. This is the same as the problem above, so the error probability is again given by 
(8.15) and (8.16). 

The energy used in achieving this error probability has changed from the antipodal case. As­
suming equal a priori probabilities, the energy per bit is now (b2

0 + b1
2)/2 =  a2 + c2 . A center 

value c is frequently used as a ‘pilot tone’ in communication for tracking the channel. We see 
that Eb is then the sum of the energy used for the actual binary transmission (a2) plus the 

aenergy used for the pilot tone (c2). The fraction of energy Eb used for the signal is γ = 
a2+

2 

c2 
. 

This changes (8.19) to 

2γEbPr{e | U=b1} = Pr{e | U=b0} = Q
N0 

(8.20) 
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For example, a common binary communication technique called on-off keying uses the binary 
signals 0 and 2a. In this case, γ = 1/2 and there is an energy loss of 3 dB from the antipodal 
case. For ML, the probability of error then becomes, Q( Eb/N0). 

8.3.3 Detection for binary real vectors in WGN 

Next consider the vector version of the Gaussian detection problem. Suppose the observation 
is a random n-vector V = U + Z . The noise Z is a random n-vector (Z1, Z2, . . .  , Zn)T , 
independent of U , with iid components given by Zk ∼ N  (0, N0/2). The input U is a random 
n-vector with M possible values (hypotheses). The mth hypothesis, 0 ≤ m ≤ M − 1, is denoted 
by am = (am1, am2, . . .  , amn)T. A sample value v of V is observed and the problem is to make 
a MAP decision, denoted Ũ , about U . 

Initially assume the binary antipodal case where a1 = −a0. For notational simplicity, let a0 be 
denoted as a = (a1, a2, . . .  , an)T . Thus the two hypotheses are U = a and U = −a and the 
observation is either a + Z or −a + Z . The likelihoods are then given by 

n � � 
f 

V |U 
(v | a) =

(πN

1 

0)n/2 
exp 

� −(vk 

N

− 

0 

ak)2 =
(πN

1 

0)n/2 
exp 

−‖v 
N

− 

0 

a‖2 

k=1 
n � � 

f
V |U 

(v | -a) =
(πN

1 

0)n/2 
exp 

� −(vk 

N

+ 
0 

ak)2 =
(πN

1 

0)n/2 
exp 

−‖v 
N

+ 
0 

a‖2 

. 
k=1 

The log likelihood ratio is thus given by 

LLR(v) =  
−‖v − a‖2 + ‖v + a‖2 

=
4〈v , a〉

, (8.21)
N0 N0 

and the MAP test is 

p1LLR(v) =
4〈v , a〉 ≥Ũ=a 

ln = ln(η). 
N0 <Ũ=−a p0 

This can be restated as 

〈v ,a〉 ≥Ũ=a N0 ln(η) 
. (8.22)

< ˜‖a‖ U=−a 4‖a‖ 

aThe projection of the observation v onto the signal a is 〈v ,a〉 . Thus the left side of (8.22) is ‖a‖ ‖a‖
the component of v in the direction of a , thus showing that the decision is based solely on that 
component of v . This result is rather natural; the noise is independent in different orthogonal 
directions, and only the noise in the direction of the signal should be relevant in detecting the 
signal. 

The geometry of the situation is particularly clear in the ML case (see Figure 8.4). The noise is 
spherically symmetric around the origin, and the likelihoods depend only on the distance from 
the origin. The ML detection rule is then equivalent to choosing the hypothesis closest to the 
received point. The set of points equidistant from the two hypotheses, as illustrated in Figure 
8.4, is the perpendicular bisector between them; this bisector is the set of v satisfying 〈v ,a〉 = 0.  
The set of points closer to a is on the a side of this perpendicular bisector; it is determined by 
〈v ,a〉 > 0 and is mapped into a by the ML rule. Similarly, the set of points closer to −a is 
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Figure 8.4: ML decision regions for binary signals in WGN. A vector v on the threshold 
boundary is shown. The distance from v to a is d = ‖v − a‖. Similarly the distance to −a 

is d ′ = ‖v + a‖. As shown algebraically in (8.21), any point at which d2 − d ′2 = 0 is a point 
at which 〈v ,a〉 = 0, and thus at which the LLR is 0. Geometrically, from the Pythagorean 
theorem, however, d2 − d ′2 = d̃2 − d̃ ′ 2, where d̃ and d̃ ′ are the distances from a and −a to 
the projection of v on the straight line generated by a . This demonstrates geometrically why 
it is only the projection of v onto a that is relevant . 

determined by 〈v ,a〉 < 0, and is mapped into −a . In the general MAP case, the region mapped 
into a is again separated from the region mapped into −a by a perpendicular to a , but in this 
case it is the perpendicular defined by 〈v ,a〉 = N0 ln(η)/4. 

Another way of interpreting (8.22) is to view it in a different co-ordinate system. That is, 
choose φ1 = a/‖ a‖ as one element of an orthonormal basis for the n-vectors and choose 
another n−1 orthonormal vectors by the Gram-Schmidt procedure. In this new co-ordinate 
system v can be expressed as (v1

′ , v2
′ , . . .  , v′ )T, where for 1 ≤ k ≤ n, v′ = 〈v , φk〉. Sincen k 

〈v ,a〉 = ‖a‖〈v ,φ1 〉 = ‖a‖v′ , the left side of (8.22) is simply v1
′ , i.e., the size of the projection1 

of v onto a . Thus (8.22) becomes 

v′ ≥Ũ=0 N0 ln(η) 
1 . 

<Ũ=1 4‖a‖ 

This is the same as the one-dimensional MAP test in (8.14). In other words, the n-dimensional 
problem is the same as the one dimensional problem when the appropriate co-ordinate system 
is chosen. Actually, the derivation of (8.22) has shown something more, namely that v1

′ is a 
sufficient statistic. The components v2

′ , . . .  , vn
′ , which contain only noise, cancel out in (8.21) 

if (8.21) is expressed in the new co-ordinate system. The fact that the co-ordinates of v in 
directions orthogonal to the signal do not affect the LLR is sometimes called the theorem of 
irrelevance. A generalized form of this theorem is stated later as Theorem 8.4.2. 

Some additional insight into (8.22) (in the original co-ordinate system) can be gained by writing 
〈v ,a〉 as k vkak. This says that the MAP test weights each co-ordinate linearly by the amount 
of signal in that co-ordinate. This is not surprising, since the two hypotheses are separated more 
by the larger components of a than by the smaller. 

Next consider the error probability conditional on U = −a . Given U= − a , V = −a + Z , and 
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thus 

〈V ,a〉 
= −‖a‖ + 〈Z ,φ1〉. ‖a‖ 

The mean and variance of this, given U= − a , are −‖a‖ and N0/2. Thus, 〈V ,a〉/‖a‖ is 
N (−‖a‖, N0/2). From (8.22), the probability of error, given U= − a , is the probability that 
N (−‖a‖, N0/2) exceeds N0 ln(η)/(4 ‖a‖). This is the probability that Z is greater than ‖a‖ + 
N0 ln(η)/(4 ‖a‖). Normalizing as in subsection 8.3.1, �  

Pr{e | U= − a} = Q 2‖
N

a

0 

‖2 

+
2 
� 

2‖
ln 
a

η 

‖2/N0 

 . (8.23) 

By the same argument, �  
Pr{e | U=a} = Q 2‖

N

a

0 

‖2 

− 
2 
� 

2‖
ln 
a

η 

‖2/N0 

 . (8.24) 

It can be seen that this is the same answer as given by (8.15) and (8.16) when the problem is 
converted to a coordinate system where a is collinear with a coordinate vector. The energy per 
bit is Eb = ‖a‖2, so that (8.17) and (8.18) follow as before. This is not surprising, of course, 
since this vector decision problem is identical to the scalar problem when the appropriate basis 
is used. 

For most communication problems, the a priori probabilities are assumed to be equal so that 
η = 1. Thus, as in (8.19), 

Pr{e} = Q 
2Eb 

. (8.25)
N0 

This gives us a useful sanity check - the probability of error does not depend on the orthonormal 
coordinate basis. 

Now suppose that the binary hypotheses correspond to non-antipodal vector signals, say b0 and 
b1. We analyze this in the same way as the scalar case. Namely, let c = (b0 + b1)/2 and 
a = b0 − c. Then the two signals are b0 = a + c and b1 = −a + c. As before, converting 
the observation V to Ṽ = V − c shifts the midpoint and converts the problem back to the 
antipodal case. The error probability depends only on the distance 2‖a‖ between the signals and 
is given by (8.23) and (8.24). The energy per bit is again different, and assuming equiprobable 
input vectors, the energy per bit is Eb = ‖a‖2 + ‖c‖2 . Thus the center point c contributes to 
the energy, but not to the error probability. 

It is often more convenient, especially when generalizing to M >  2 hypotheses, to express the 
LLR for the non-antipodal case directly in terms of b0 and b1. Using (8.21) for the shifted 
vector Ṽ , the LLR can be expressed as 

LLR(v) =  
−‖v − b0‖2 + ‖v − b2

1‖2 

. (8.26)
N0 

For ML detection, this is simply the minimum distance rule, and for MAP, the interpretation is 
the same as for the antipodal case. 
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8.3.4 Detection for binary complex vectors in WGN 

Next consider the complex vector version of the same problem. Assume the observation is a 
complex random n-vector V = U + Z . The noise, Z = (Z1, . . .  , Zn)T, is a complex ran­
dom vector of n zero-mean complex iid Gaussian rv’s with iid real and imaginary parts, each 
N (0, N0/2). Thus each Zk is circularly symmetric and denoted by CN (0, N0). The input U is 
independent of Z and binary, taking on value a with probability p0 and −a with probability p1 

where a = (a1, . . .  , an)T is an arbitrary complex n-vector. 

This problem can be reduced to that of the last subsection by letting Z ′ be the 2n dimensional 
real random vector with components �(Zk) and �(Zk) for 1 ≤ k ≤ n. Similarly let a ′ be the 2n 
dimensional real vector with components �(ak) and �(ak) for 1 ≤ k ≤ n and let U ′ be the real 
random vector that takes on values a ′ or −a ′. Finally, let V ′ = U ′ + Z ′. 

Recalling that probability densities for complex random variables or vectors are equal to the 
joint probability densities for the real and imaginary parts, 

f
V |U 

(v a) =  f 
V ′|U ′ (v

′ a ′) =  
1

exp 
n −�(vk − ak)2 −�(vk − ak)2 | |

(πN0)n N0
k=1 

f f (v ) =  
1

exp 
n −�(vk + ak)2 −�(vk + ak)2 

.
V |U 

(v |−a) =  
V ′|U ′ 

′|−a ′
(πN0)n N0

k=1 

The LLR is then 

LLR(v) =  
−‖v − a‖2 + ‖v + a‖2 

. (8.27)
N0 

Note that 

‖v − a‖2 = ‖v‖2 − 〈v ,a〉 − 〈a , v〉 + ‖a‖2 = ‖v‖2 − 2�[〈v ,a〉] +  ‖a‖2 

Using this and the analagous expression for ‖v + a‖2, (8.27) becomes 

LLR(v) =
4�[〈v ,a〉] 

(8.28)
N0 

The MAP test can now be stated as 

�[〈v ,a〉] ≥Ũ=a N0 ln(η) 
. (8.29) ‖a‖ <Ũ=−a 4‖a‖ 

Note that the value of the LLR and the form of the MAP test are the same as the real vector case 
except for the real part of 〈v ,a〉. The significance of this real part operation is now discussed. 

In the n-dimensional complex vector space, 〈v ,a〉/‖a‖ is the complex value of the projection of 
v in the direction of a . In order to understand this projection better, consider an orthonormal 
basis in which a = (1, 0, 0, . . .  , 0)T . Then 〈v ,a〉/‖a‖ = v1. Thus  �(v1) =  ±1 +  �(z1) and 
�(v1) =  �(z1). Clearly, only �(v1) is relevant to the binary decision. Using �[〈v ,a〉/‖a‖] in  
(8.29) is simply the general way of stating this elementary idea. If the complex plane is viewed 
as a 2-dimensional real space, then taking the real part of 〈v ,a〉 is equivalent to taking the 
further projection of this two dimensional real vector in the direction of a (see Exercise 8.12). 
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The other results and interpretations of the last subsection remain unchanged. In particular, 
since ‖a ′‖ = ‖a‖, the error probability results are given by �  

Pr{e | U= − a} = Q  2‖
N

a

0 

‖2 

+
2 
� 

2‖
ln 
a

η 

‖2/N0 

 (8.30) 

�  
Pr{e | U=a} = Q  2‖

N

a

0 

‖2 

− 
2 
� 

2‖
ln 
a

η 

‖2/N0 

 . (8.31) 

For the ML case, recognizing that ‖a‖2 = Eb, we have the familiar result 

Pr{e} = Q 
2Eb 

. (8.32)
N0 

Finally, for the non-antipodal case with hypotheses b0 and b1, the LLR is again given by (8.26). 

8.3.5 Detection of binary antipodal waveforms in WGN 

This section extends the vector case of the previous two subsections to the waveform case. 
It will be instructive to do this simultaneously for both passband real random processes and 
baseband complex random processes. Let U(t) be the baseband modulated waveform. As 
before, the situation is simplified by transmitting a single bit rather than a sequence of bits, 
so for some arbitrary, perhaps complex, baseband waveform a(t), the binary input 0 is mapped 
into U(t) =  a(t) and 1 is mapped into U(t) =  −a(t); the a priori probabilities are denoted by p0 

and p1. Let {θk(t); k ∈ Z} be a complex orthonormal expansion covering the baseband region 
of interest, and let a(t) =  k akθk(t). 

Assume U(t) =  ±a(t) is modulated onto a carrier fc larger than the baseband bandwidth. The 
resulting bandpass waveform is denoted X(t) =  ±b(t) where, from Section 7.8, the modulated 
form of a(t), denoted b(t), can be represented as 

b(t) =  bk,1ψk,1(t) +  bk,2ψk,2(t) 
k 

where 

bk,1 = �(ak); ψk,1(t) =  �{2θk(t) exp[2πifct]}; 
bk,2 = �(ak); ψk,2(t) =  −�{2θk(t) exp[2πifct]}. 

From Theorem 6.6.1, the set of waveforms {ψk,j(t); k ∈ Z, j  ∈ {1, 2}} are orthogonal, each with 
energy 2. Let {φm(t); m ∈ Z} be a set of orthogonal functions, each of energy 2 and each 
orthogonal to each of the ψk,j(t). Assume that {φm(t); m ∈ Z}, together with the ψk,j(t), span 
L2.


The noise W (t), by assumption, is WGN. It can be represented as


W (t) =  (Zk,1ψk,1(t) +  Zk,2ψk,2(t)) + Wmφm(t), 
k m 

where {Zk,m; k ∈ Z, m  ∈ {1, 2}} is the set of scaled linear functionals of the noise in the L2 vector 
space spanned by the ψk,m(t), and {Wm; m ∈ Z} is the set of linear functionals of the noise in 
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the orthogonal complement of the space. As will be seen shortly, the joint distribution of the 
Wm makes no difference in choosing between a(t) and −a(t), so long as the Wm are independent 
of the Zk,j and the transmitted binary digit. The observed random process at passband is then 
Y (t) =  X(t) +  W (t), 

Y (t) =  [Yk,1ψk,1(t) +  Yk,2ψk,2(t)] + Wmφm(t) where 
k m 

Yk,1 = (±bk,1 + Zk,1) ;  Yk,2 = (±bk,2 + Zk,2) . 

First assume that a finite number n of orthonormal functions are used to represent a(t). This 
is no loss of generality, since the single function a(t)/‖a(t)‖ would be sufficient. Suppose also, 
initially, that only a finite set, say W1, . . .  , W	 of the orthogonal noise functionals are observed. 
Assume also that the noise variables, Zk,j and Wm are independent and each4 N (0, N0/2). Then 
the likelihoods are given by   � � � 2 

f
Y |X 

(y | b) =
(πN

1 
0)n exp  n 2 −(yk,j 

N

− 

0 

bk,j)2 + 
	 −

N

w

0 

m  , 
k=1 j=1 m=1   

1 � � � 2 

f 
Y |X 

(y | −b) =
(πN0)n exp  n 2 −(yk,j 

N

+ 

0 

bk,j)2 + 
	 −

N

w

0 

m  . 
k=1 j=1 m=1 

The log likelihood ratio is thus given by 

n 2

LLR(y) =  
−(yk,j − bk,j)2 + (yk,j + bk,j)2 

N0
k=1 j=1 

= 
−‖y − b‖2 + ‖y + b‖2 

(8.33)
N0 

n 2

=
4yk,jbk,j =

4〈y , b〉
. (8.34)

N0 N0
k=1 j=1 

and the MAP test is 

〈y , b〉 ≥X̃=b N0 ln(η)
= . 

<X̃=−b 4‖b‖ 

This is the same as the real vector case analyzed in Subsection 8.3.3. In fact, the only difference 
is that the observation here includes noise in the degrees of freedom orthogonal to the range of 
interest, and the derivation of the LLR shows clearly why these noise variables do not appear 
in the LLR. In fact, the number 
 of rv’s Wm can be taken to be arbitrarily large, and they can 
have any joint density. So long as they are independent of the Zk,j (and of X(t)), they cancel 
out in the LLR. In other words, WGN is noise that is iid Gaussian over a large enough space to 
represent the signal, and is independent of the signal and noise elsewhere. 

4Recall that N0/2 is the noise variance using the same scale as used for the signal waveform. Since the input 
energy is measured at baseband, the noise is also. At passband, the signal energy is scaled up by a factor of 2, 
and the noise energy is similarly scaled. 
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The argument above leading to (8.33) and (8.34) is not entirely satisfying mathematically, since 
it is based on the slightly vague notion of the signal space of interest, but in fact it is just this 
feature that makes it useful in practice, since physical noise characteristics do change over large 
changes in time and frequency. 

The inner product in (8.34) is the inner product over the L2 space of real sequences. Since these 
sequences are coefficients in an orthogonal (rather than orthonormal) expansion, the conversion 
to an inner product over the corresonding functions (see Exercise 8.5) is given by � 1 

yk,jbk,j = y(t)b(t) dt. (8.35)
2 

k,j 

This shows that the LLR is independent of the basis, and that this waveform problem reduces 
to the single dimensional problem if b(t) is a multiple of one of the basis functions. Also, if a 
countably infinite basis for the signal space of interest is used, (8.35) is still valid. 

Next consider what happens when Y (t) =  ±b(t)+W (t) is demodulated to the baseband waveform 
V (t). The component Wm(t) of  Y (t) extends to frequencies outside the passband, and thus m � 
Y (t) is filtered before demodulation, preventing an aliasing like effect between m Wm(t) and 
the signal part of Y (t) (see Exercise 6.11). Assuming that this filtering does not affect b(t), b(t) 
maps back into a(t) =  k akθk(t) where ak = bk,1 + ibk,2. Similarly W (t) maps into 

Z(t) =  Zkθk(t) +  Z (t)⊥
k 

where Zk = Zk,1 + iZk,2 and Z (t) is the result of filtering and frequency demodulation on � ⊥
Wmφm(t). The received baseband complex process is then m 

V (t) =  Vkθk(t) +  Z⊥(t) where Vk = ±ak + Zk. (8.36) 
k 

By the filtering assumption above, the sample functions of Z (t) are orthogonal to the space ⊥
spanned by the θk(t) and thus the sequence {Vk; k ∈ Z} is determined from V (t). Since Vk = 
Yk,1 + iYk,2, the sample value LLR(y) in (8.34) is determined as follows by the sample values of 
{vk; k ∈ Z}, 

LLR(y) =
4〈y , b〉 

=
4�[〈v , a〉] 

. (8.37)
N0 N0 

Thus {vk; k ∈ Z} is a sufficient statistic for y(t), and thus the MAP test based on y(t) can be 
done using v(t). Now an implementation that first finds the sample function v(t) from y(t) and 
then does a MAP test on v(t) is simply a particular kind of test on y(t), and thus cannot achieve 
a smaller error probability than the MAP test on y . Finally, since {vk; k ∈ Z} is a sufficient 
statistic for y(t), it is also a sufficient statistic for v(t) and thus the orthogonal noise Z (t) is  ⊥
irrelevant. 

Note that the LLR in (8.37) is the same as the complex vector result in (8.28). One could repeat 
the argument there, adding in an orthogonal expansion for Z (t) to verify the argument that ⊥
Z (t) is irrelevant. Since Z (t) could take on virtually any form, the argument above, based on ⊥ ⊥ � 
the fact that Z (t) is a function of m WmφM (t), which is independent of the signal and noise ⊥
in the signal space, is more insightful. 
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To summarize this subsection, the detection of a single bit sent by generating antipodal signals 
at baseband and modulating to passband has been analyzed. After adding WGN, the received 
waveform is demodulated to baseband and then the single bit is detected. The MAP detector at 
passband is a threshold test on y(t)b(t) dt. This is equivalent to a threshold test at baseband 
on �[ v(t)a∗(t) dt]. This shows that no loss of optimality occurs by demodulating to baseband 
and also shows that detection can be done either at passband or at baseband. In the passband 
case, the result is an immediate extension of binary detection for real vectors, and at baseband, 
it is an immediate extension of binary detection of complex vectors. 

The results of this section can now be interpreted in terms of PAM and QAM, while still assuming 
a “one-shot” system in which only one binary digit is actually sent. Recall that for both PAM 
and QAM modulation, the modulation pulse p(t) is orthogonal to its T -spaced time shifts if 
|p̂(f)|2 satisfies the Nyquist criterion. Thus, if the corresponding received baseband waveform 
is passed through a matched filter (a filter with impulse response p∗(t)) and sampled at times 
kT , the received samples will have no intersymbol interference. For a single bit transmitted at 
discrete time 0, u(t) =  ±a(t) =  ap(t). The output of the matched filter at receiver time 0 is 
then � 

v(t)p∗(t) dt = 
�[〈v , a〉] 

, 
a 

which is a scaled version of the LLR. Thus the receiver from Chapter 6 that avoids intersymbol 
interference also calculates the LLR, from which a threshold test yields the MAP detection. 

The next section shows that this continues to provide MAP tests on successive signals. It 
should be noted also that sampling the output of the matched filter at time 0 yields the MAP 
test whether or not p(t) has been chosen to avoid intersymbol interference. 

It is important to note that the performance of binary antipodal communication in WGN de­
pends only on the energy of the transmitted waveform. With ML detection, the error probability 
is the familiar expression Q(2

N
E
0 

b ) where Eb = |a(t)|2 dt and the variance of the noise in each 
real degree of freedom in the region of interest is N0/2.


This completes the analysis of binary detection in WGN, including the relationship between the

vector case and waveform case and that between complex waveforms or vectors at basebande

and real waveforms or vectors at passband.


The following sections analyze M -ary detection. The relationships between vector and waveform

and between real and complex is the same as above, so the following sections each assume

whichever of these cases is most instructive without further discussion of these relationships.


8.4 M-ary detection and sequence detection 

The analysis in the previous section was limited in several ways. First, only binary signal 
sets were considered, and second, only the ‘one-shot’ problem where a single bit rather than 
a sequence of bits was considered. In this section, M -ary signal sets for arbitrary M will be 
considered, and this will then be used to study the transmission of a sequence of signals and to 
study arbitrary modulation schemes. 
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8.4.1 M-ary detection 

Going from binary to M -ary hypothesis testing is a simple extension. To be specific, this will 
be analyzed for the complex random vector case. Let the observation be a complex random 
n-vector V and let the complex random n-vector U to be detected take on a value from the set 
{a0, . . .  ,aM −1} with a priori probabilities p0, . . .  , pM−1. Denote the a posteriori probabilities 
by p

U |V 
(am|v). The MAP rule (see Section 8.1) then chooses Ũ (v) = arg maxm pU |V 

(am|v). 
Assuming that the likelihoods can be represented as probability densities f

V |U 
, the MAP rule 

can be expressed as 

Ũ (v) = arg maxm pm fV |U 
(v |am). 

Usually, the simplest approach to this M -ary rule is to consider multiple binary hypothesis 
testing problems. That is, Ũ (v) is that am for which 

f
V |U 

(v |am) pm′
Λm,m′ (v) =  

f
V |U 

(v|am′ ) 
≥ 

pm 

for all m′. In the case of ties, it makes no difference which of the maximizing hypotheses are 
chosen. 

For the complex vector additive WGN case, the observation is V = U + Z where Z is complex 
Gaussian noise with iid real and imaginary components. As derived in (8.27), the log likelihood 
ratio (LLR) between each pair of hypotheses am and am′ is given by 

LLRm,m′ (v) =  
−‖v − am‖2 + ‖v − am

2 
′ ‖2 

. (8.38)
N0 

Thus each binary test separates the observation space5 into two regions separated by the per­
pendicular bisector between the two points. With M hypotheses, the space is separated into 
the Voronoi regions of points closest to each of the signals (hypotheses) (see Figure 8.5). If 
the a priori probabilities are unequal, then these perpendicular bisectors are shifted, remaining 
perpendicular to the axis joining the two signals, but no longer being bisectors. 

a2 

���Ũ = a1 

Ũ = a2 

U = a1
˜
� ���a0 

Ũ =�a0 a1 

Figure 8.5: Decision regions for an M -ary alphabet of vector signals in iid Gaussian noise. For 
ML detection, the decision regions are Voronoi regions, i.e., regions separated by perpendicular 
bisectors between the signal points. 

5For an n dimensional complex vector space, it is simplest to view the observation space as the corresponding 
2n dimensional real vector space. 
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The probability that noise carries the observation across one of these perpendicular bisectors is 
given in (8.29). The only new problem that arises with M -ary hypothesis testing is that the error 
probability, given U = m, is the union of M − 1 events, namely crossing the corresponding per­
pendicular to each other point. This can be found exactly by integrating over the n dimensional 
vector space, but is usually upper bounded and approximated by the union bound, where the 
probability of crossing each perpendicular is summed over the M − 1 incorrect hypotheses. This 
is usually a good approximation (if M is not too large), because the Gaussian density decreases 
so rapidly with distance; thus in the ML case, most errors are made when observations occur 
roughly half way between the transmitted and the detected signal point. 

8.4.2 Successive transmissions of QAM signals in WGN 

This subsection extends the ‘single-shot’ analysis of detection for QAM and PAM in the presence 
of WGN to the case in which an n-tuple of successive independent symbols are transmitted. We 
shall find that under many conditions, both the detection rule and the corresponding probability 
of symbol error can be analyzed by looking at one symbol at a time. 

First consider a QAM modulation system using a modulation pulse p(t). Assume that p(t) has 
unit energy and is orthonormal to its T -spaced shifts {p(t−kT ); k ∈ Z}, i.e., that {p(t−kT ); k ∈
Z} is a set of orthonormal functions. Let A = {a , . . .  , aM −1} be the alphabet of complex input 0

signals and denote the input waveform over an arbitrary n-tuple of successive input signals as 

n

u(t) =  ukp(t − kT ), 
k=1 

where each uk is a selection from the input alphabet A. 

Let {φk(t); k ≥ 1} be an orthonormal basis of complex L2 waveforms such that the first n 
waveforms in that basis are given by φk(t) =  p(t − kT ), 1 ≤ k ≤ n. The received baseband 
waveform is then 

∞ n

V (t) =  Vkφk(t) =  (uk + Zk)p(t − kT ) +  Zkφk(t). (8.39) 
k=1 k=1 k>n 

We now compare two different detection schemes. In the first, a single ML decision between the 
Mn hypotheses for all possible joint values of U1, . . .  , Un is made based on V (t). In the second 
scheme, for each k, 1 ≤ k ≤ n, an ML decision between the M possible hypotheses a0 . . .  , aM−1 

is made for input Uk based on the observation V (t). Thus in this scheme, n separate M -ary 
decisions are made, one for each of the n successive inputs. 

For the first alternative, each hypothesis corresponds to an n dimensional vector of inputs, 
u = (u1, . . .  , un)T . As in Subsection 8.3.5, the sample value v(t) =  k vkφk(t) of the received 
waveform can be taken as an 
-tuple v = (v1, v2, . . .  , v	)T with 
 ≥ n. The likelihood of v 
conditional on u is then given by 

n 	

f (v u) =  f f
V |U 

|
k=1 

Z (vk − uk) 
k=n+1 

Z (vk). 

For any two hypotheses, say u = (u1, . . .  , un)T and u ′ = (u′
1, . . .  , u′

n)T, the likelihood ratio and 
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LLR are � f
Λu ,u ′ (v) =  

n
Z (vk − uk) (8.40)

f (vk − u′ )
k=1 Z k

LLRu ,u ′ (v) =  
−‖v − u‖2 + ‖v − u ′‖2 

. (8.41)
N0 

Note that for each k > n, vk does not appear in this likelihood ratio. Thus this likelihood ratio 
is still valid6 in the limit 
 → ∞, but the only relevant terms in the decision are v1, . . .  , vn. 
Therefore let v = (v1, . . .  , vn)T in what follows. From (8.41), this likelihood ratio is positive if 
and only if ‖v − u‖ < ‖v − u ′‖. The conclusion is that for Mn-ary detection, done jointly on 
u1, . . .  , un, the ML decision is the vector u that minimizes the distance ‖v − u‖. 
Consider how to minimize ‖v − u‖. Note that 

n

‖v − u‖2 (vk − uk)2= . (8.42) 
k=1 

Suppose that ũ = (ũ1, . . .  , ũn)T minimizes this sum. Then for each k, ũk minimizes (vk − uk)2 

over the M choices for uk (otherwise some am = ũk could be substituted for ũk to reduce 
(vk − uk)2 and therefore reduce the sum in (8.42)). Thus the ML sequence detector with Mn 

hypotheses detects each Uk by minimizing (vk − uk)2 over the M hypotheses for that Uk. 

Next consider the second alternative above. For a given sample observation v = v1, . . .  , v	 and 
a given k, 1 ≤ k ≤ n, the likelihood of v conditional on Uk = uk is 

f
V |Uk 

(v |uk) =  fZ (vk − uk) fVj 
(vj ) fZ (vj ) 

j=� k,1≤j≤n j=n+1 

where fVj 
(vj ) =  m pmf

Vj |Uj 
(vj |am) is the marginal probability of Vj . The likelihood ratio of 

v between the hypotheses Uk = am and Uk = am′ is then 

Λ(k) (v) =  
fZ (vk − am) 

m,m′ 
f (vk − aZ m′ 

This is the familiar one-dimensional non-antipodal Gaussian detection problem, and the ML 
decision is to choose ũk as the am closest to uk. Thus, given the sample observation v(t), the 
vector (ũ1, . . .  , ũn)T of individual M -ary ML detectors for each Uk is the same as the Mn-ary 
ML sequence detector for the sequence U = (U1, . . .  , Un)T . Moreover, each of these detectors 
are equivalent to a vector of ML decisions on each Uk based solely on the observation Vk. 

Summarizing, we have proved the following theorem: 

Theorem 8.4.1. Let U(t) =  n Ukp(t− kT ) be a QAM (or PAM) baseband input to a WGN k=1 

channel and assume that {p(t− nT ); 1 ≤ k ≤ n} is an orthonormal sequence. Then the Mn-ary 
ML decision on U = (U1, . . . Un)T is equivalent to making separate M -ary ML decisions on each 
Uk, 1 ≤ k ≤ n, where the decision on each Uk can be based either on the observation v(t) or the 
observation of vk. 

6In fact, these final � − n components do not have to be independent or equally distributed, they simply must 
be independent of the signals and noise for 1 ≤ k ≤ n. 
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Note that the theorem states that the same decision is made for both sequence detection and 
separate detection for each signal. It does not say that the probability of an error within the 
sequence is the same as the error for a single signal. Letting P be the probability of error for a 
single signal, the probability of error for the sequence is 1 − (1 − P )n . 

The theorem makes no assumptions about the probabilities of the successive inputs, although 
the use of ML detection would not minimize the probability of error if the inputs were not 
independent and equally likely. If coding is used between the n input signals, then not all of 
these Mn n-tuples are possible. In this case, ML detection on the possible encoded sequences (as 
opposed to all Mn sequences) is different from separate detection on each signal. As an example, 
if the transmitter always repeats each signal, with u1 = u2, u3 = u4, etc., then the detection of 
u1 should be based on both v1 and v2. Similarly, the detection of u3 should be based on v3 and 
v4, etc. 

When coding is used, it is possible to make ML decisions on each signal separately, and then 
to use the coding constraints to correct errors in the detected sequence. These individual signal 
decisions are then called hard decisions. It is also possible, for each k, to save a sufficient 
statistic (such as vk) for the decision on Uk. This is called a soft decision since it saves all the 
relevant information needed for an ML decision between the set of possible codewords. Since 
the ML decision between possible encoded sequences minimizes the error probability (assuming 
equi-probable codewords), soft decisions allow for smaller error probabilities than hard decisions. 

Theorem 8.4.1 can be extended to MAP detection if the input signals are statistically indepen­
dent of each other (see Exercise 8.15). One can see this intuitively by drawing the decision 
boundaries for the two-dimensional real case; these decision boundaries are then horizontal and 
vertical lines. 

A nice way to interpret Theorem 8.4.1 is to observe that the detection of each signal Uk de­
pends only on the corresponding received signal Vk; all other components of the received vector 
are irrelevant to the decision on Uk. The next subsection generalizes from QAM to arbitrary 
modulation schemes and also generalizes this notion of irrelevance. 

8.4.3 Detection with arbitrary modulation schemes 

The previous sections have concentrated on detection of PAM and QAM systems, using real 
hypotheses A = {a0, . . .  , aM−1} for PAM and complex hypotheses A = a0, . . .  , aM−1 for QAM. 
In each case, a sequence {uk; k ∈ Z} of signals from A is modulated into a baseband waveform 
u(t) =  k ukp(t − kT ). The PAM waveform is then either transmitted or first modulated to 
passband. The complex QAM waveform is necessarily modulated to a real passband waveform. 

This is now generalized by considering a signal set A to be an M -ary alphabet, {a0, . . .  ,aM−1}, 
of real n-tuples. Thus each am is an element of Rn. The n components of the mth signal vector 
are denoted by am = (am,1, . . .  , am,n)T . The selected signal vector am is then modulated into 
a signal waveform bm(t) =  k

n 
=1 am,kφk(t) where {φ1(t), . . .  , φn(t)} is a set of n orthonormal 

waveforms. 

The above provides a general scenario for mapping the symbols 0 to M − 1 into a set of signal 
waveforms b0(t) to  bM−1(t). A provision must also be made for transmitting a sequence of such 
M -ary symbols. If these symbols are to be transmitted at T -spaced intervals, the most straight­
forward way of accomplishing this is to choose the orthonormal waveforms φ1(t), . . .  , φn(t) in  
such a way that φk(t − 
T ) and φj (t−
′T ) are orthonormal for all j, k, 1  ≤ j, k ≤ n and all 
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integer 
, 
′. In this case, a sequence of symbols, say s1, s2, . . . , each drawn from the alpha­
bet {0, . . .  , M−1}, could be mapped into a sequence of waveforms bs1(t), bs2(t − T ), . . . . The 
transmitted waveform would then be bs� (t − 
T ). 

PAM is a special case of this scenario where the dimension n is 1. The function φ1(t) in this case 
is the real modulation pulse p(t) for baseband transmission and 

√
2 p(t) cos(2πfct) for passband 

transmission. QAM is another special case where n is 2 at passband. In this case, the complex 
signals am are viewed as 2-dimensional real signals. The orthonormal waveforms (assuming real 
p(t)) are φ1(t) =  

√
2 p(t) cos(2πfct) and 

√
2 p(t) sin(2πfct). 

More generally, it is not necessary to start at baseband and shift to passband7, and it is not 
necessary for successive signals to be transmitted as time shifts of a basic waveform set. For 
example, in frequency-hopping systems, successive n-dimensional signals can be modulated to 
different carrier frequencies. What is important is that the successive transmitted signal wave­
forms are all orthogonal to each other. 

Let X(t) be the first signal waveform in such a sequence of successive waveforms. Then X(t) is a  
choice from the set of M waveforms, b0(t), . . .  , bM−1(t). We can represent X(t) as  n Xkφk(t)k=1 

where, under hypothesis m, Xk = am,k for 1 ≤ k ≤ n. Let φn+1(t), φn+2(t) . . .  be an additional 
set of orthonormal functions such that the entire set {φk(t); k ≥ 1} spans the space of real 
L2 waveforms. The subsequence φn+1(t), φn+2(t) . . .  might include the successive time shifts of 
φ1(t), . . .  , φn(t) for the example above, but in general can be arbitrary. We do assume, however, 
that successive signal waveforms are orthogonal to φ1(t), . . .  , φn(t), and thus that they can be 
expanded in terms of φn+1(t), φn+2(t), . . .  ,  . The received random waveform Y (t) is assumed to 
be the sum of X(t), the WGN Z(t), and contributions of signal waveforms other than X. These 
other waveforms could include successive signals from the given channel input and also signals 
from other users. This sum can be expanded over an arbitrarily large number, say 
, of these 
orthonormal functions as 

	 n 	

Y (t) =  Ykφk(t) =  (Xk + Zk)φk(t) +  Ykφk(t). (8.43) 
k=1 k=1 k=n+1 

Note that in (8.43), the random process {Y (t); t ∈ R} specifies the random variables Y1, . . .  , Y	. 
Assuming that the sample waveforms of Y (t) are L2, it also follows that the limit as 
 → 0 of  
Y1, . . .  , Y	 specifies Y (t) in the L2 sense. Thus we consider Y1, . . .  , Y	 to be the observation at 
the channel output. It is convenient to separate these terms into two vectors, Y = (Y1, . . .  , Yn)T 

and Y ′ = (Yn+1, . . .  , Y	)T . 

Similarly, the WGN Z(t) =  k Zkφk(t) can be represented by Z = (Z1, . . .  , Zn)T and 
Z ′ = (Zn+1, . . .  , Z	)T and X(t) can be represented as X = (X1, . . .  , Xn)T . Finally let 
V (t) =  k Vkφk(t) be the contributions from other users and successive signals from the 
given user. Since these terms are orthogonal to φ1(t), . . .  , φn(t), V (t) can be represented by 
V ′ = (Vn+1, . . .  , V	)T. With these changes, (8.43) becomes 

Y = X + Z ; Y ′ = Z ′ + V ′. (8.44) 

The observation is a sample value of (Y ,Y ′), and the detector must choose the MAP value 
of X . Assuming that X ,Z ,Z ′, and V ′ are statistically independent, the likelihoods can be 

7It seems strange at first that the real vector and real waveform case here is more general than the complex 
case, but the complex case is used for notational and conceptual simplifications at baseband, where the baseband 
waveform will be modulated to passsband and converted to a real waveform. 
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expressed as 

fYY ′|X (yy ′|am) =  fZ (y − am)fY ′ (y ′). 

The likelihood ratio between hypothesis am and am′ is then given by 

fZ (y − am) 
. (8.45)Λm,m′ (y) =  

fZ (y − am′ )

The important thing here is that all the likelihood ratios (for 0 ≤ m, m′ ≤ M−1) depend only 
on Y and thus Y is a sufficient statistic for a MAP decision on X . Y ′ is irrelevant to the 
decision, and thus its probability density is irrelevant (other than the need to assume that Y ′ 

is statistically independent of (Z ,X )). This also shows that the size of 
 is irrelevant. This 
is summarized (and slightly generalized by dropping the Gaussian noise assumption) in the 
following theorem. 

Theorem 8.4.2 (Theorem of irrelevance). Let {φk(t); k ≥ 1} be a set of real orthonormal 
functions. Let X(t) =  k

n 
=1 Xkφk(t) and Z(t) =  k

n 
=1 Zkφk(t) be the input to a channel and the 

corresponding noise respectively, where X = (X1, . . .  , X )T and Z = (Z1, . . .  , Z )T are random � n n

vectors. Let Y ′(t) =  k>n Ykφk(t) where for each 
 > n, Y′ = (Yn+1, . . .  , Y	)T is a random 
vector that is statistically independent of the pair X, Z. Let  Y = X+ Z. Then the LLR and the 
MAP detection of X from the observation of Y,Y′ depends only on Y. That is, the observed 
sample value of Y′ is irrelevant. 

The orthonormal set {φ1(t), . . .  , φn(t)} chosen above appears to have a more central importance 
than it really has. What is important is the existence of an n-dimensional subspace of real L2 

that includes the signal set and has the property that the noise and signals orthogonal to this 
subspace are independent of the noise and signal within the subspace. In the usual case, we 
choose this subspace to be the space spanned by the signal set, but there are also cases where 
the subspace must be somewhat larger to provide for the independence between the subspace 
and its complement. 

The irrelevance theorem does not specify how to do MAP detection based on the observed 
waveform, but rather shows how to reduce the problem to a finite dimensional problem. Since the 
likelihood ratios specify both the decision regions and the error probability for MAP detection, 
it is clear that the choice of orthonormal set cannot influence either the error probability or the 
mapping of received waveforms to hypotheses. 

One important constraint in the above analysis is that both the noise and the interference (from 
successive transmissions and from other users) are additive. The other important constraint is 
that the interference is both orthogonal to the signal X(t) and also statistically independent of 
X(t). The orthogonality is why Y = X + Z , with no contribution from the interference. The 
statistical independence is what makes Y ′ irrelevant. 

If the interference is orthogonal but not independent, then a MAP decision based on Y alone 
could still be made. The resulting error probability, however, would be greater than or equal to 
that for a MAP decision based on {Y ,Y ′}. Thus the dependence generally permits a decrease 
in error probability 

On the other hand, if the interference is non-orthogonal but independent, then Y would include 
both noise and a contribution from the interference, and the error probability would typically be 
larger, but never smaller, than in the orthogonal case. As a rule of thumb, then, non-orthogonal 
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interference tends to increase error probability, whereas dependence (if the receiver makes use 
of it) tends to reduce error probability. 

If successive statistically independent signals, X 1,X 2, . . .  ,  are modulated onto distinct sets of 
orthonormal waveforms (i.e., if  X1 is modulated onto the orthonormal waveforms φ1(t) to  φn(t)), 
X2 is modulated onto φn+1(t) to  φ2n(t), etc.) then it also follows, as in Subsection 8.4.2, that 
ML detection on a sequence X1, . . .  , X	 is equivalent to separate ML decisions on each input 
signal Xj , 1  ≤ j ≤ 
. The details are omitted since the only new feature in this extension is 
more complicated notation. 

The higher dimensional mappings allowed in this subsection are sometimes called channel codes, 
and are sometimes simply viewed as more complex forms of modulation. The coding field is 
very large, but the following sections provide an introduction. 

8.5 Orthogonal signal sets and simple channel coding 

An orthogonal signal set is a set a0, . . .  ,aM−1 of M real orthogonal M -vectors, each with the 
same energy E. Without loss of generality we choose a basis for RM in which the mth basis vector 
is am/

√
E. In this basis, a0 = (

√
E, 0, 0, . . .  , 0)T ,a1 = (0,

√
E, 0, . . .  , 0)T, etc. Modulation onto 

an orthonormal set {φm(t)} of waveforms then maps hypothesis am (0 ≤ m ≤ M−1) into the 
waveform 

√
Eφm(t). After addition of WGN, the sufficient statistic for detection is a sample 

value y of Y = A + Z where A takes on the values a0, . . .  ,aM−1 with equal probability and 
Z = (Z0, . . .  , ZM−1)T has iid components N (0, N0/2). It can be seen that the ML decision is 
to decide on that m for which ym is largest. 

The major case of interest for orthogonal signals is where M is a power of 2, say M = 2b. Thus  
the signal set can be used to transmit b binary digits, so the energy per bit is Eb = E/b. The 
number of required degrees of freedom for the signal set, however, is M = 2b ,so the spectral 
efficiency ρ (the number of bits per pair of degrees of freedom) is then ρ = b/2b−1. As  b gets 
large, ρ gets small at almost an exponential rate. It will be shown, however, that for large enough 
Eb, as  b gets large holding Eb constant, the ML error probabiliity goes to 0. In particular, for 
any Eb/N0 < ln 2 = 0.693, the error probability goes to 0 exponentially as b → ∞. Recall that 
ln 2 = 0.693, i.e., -1.59 dB, is the Shannon limit for reliable communication on a WGN channel 
with unlimited bandwidth. Thus the derivation to follow will establish the Shannon theorem for 
WGN and unlimited bandwidth. Before doing that, however, two closely related types of signal 
sets are discussed. 

8.5.1 Simplex signal sets 

Consider the random vector A with orthogonal equiprobable sample values a0, . . .  ,aM−1 as 
described above. The mean value of A is then � �T√

E 
√

E 
√

E 
A = , , . . .  ,  . 

M M M 

We have seen that if a signal set is shifted by a constant vector, the Voronoi detection regions are 
also shifted and the error probability remains the same. However, such a shift can change the 
expected energy of the random signal vector. In particular, if the signals are shifted to remove 
the mean, then the signal energy is reduced by the energy (norm squared) of the mean. In this 
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case, the energy of the mean is E/M . A  simplex signal set is an orthogonal signal set with the 
mean removed. That is, 

S = A − A; sm = am − A; 0  ≤ m ≤ M−1. 

In other words, the mth component of sm is 
√

E (1−1/M) and each other component is 
−
√

E /M . Each simplex signal has energy E(1−1/M), so the simplex set has the same er­
ror probability as the related orthogonal set, but requires less energy by a factor of (1−1/M). 
The simplex set of size M has dimensionality M − 1, as can be seen from the fact that the sum 
of all the signals is 0, so the signals are linearly dependent. Figure 8.6 illustrates the orthogonal 
and simplex sets for M = 2 and 3. 

For small M , the simplex set is a substantial improvement over the orthogonal set. For example, 
for M = 2, it has a 3 dB energy advantage (it is simply the antipodal one dimensional set). 
Also it uses half the dimensions of the orthogonal set. For large M , however, the improvement 
becomes almost negligible. 

Orthogonal�0,1 Simplex Biorthogonal� 

M = 2  �1,0 �-
√

2/2 �√2/2 � � 

� 

0,1,0 

�

� �� 
2/3 � � 

0,0,1 

� 1,0,0M = 3 


Figure 8.6: Orthogonal, simplex, and bi-orthogonal signal constellations, normalized to unit energy. 

8.5.2 Bi-orthogonal signal sets 

If a0 , . . .  ,aM −1 is a set of orthogonal signals, we call the set of 2M signals consisting of 
±a0 , . . .  ,±aM−1 a bi-orthogonal signal set. Two and three dimensional examples of bi-orthognal 
signals sets are given in figure 8.6. 

It can be seen by the same argument used for orthogonal signal sets that the ML detection rule 
for such a set is to first choose the dimension m for which |ym| is largest, and then choose am 

or −am depending on whether ym is positive or negative. Orthogonal signal sets and simplex 
signal sets each have the property that each signal is equidistant from every other signal. For 
bi-orthogonal sets, each signal is equidistant from all but one of the other signals. The exception, 
for the signal am, is the signal −am. 
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The bi-orthogonal signal set of M dimensions contains twice as many signals as the orthogonal 
set (thus sending one extra bit per signal), but has the same minimum distance between signals. 
It is hard to imagine8 a situation where we would prefer an orthogonal signal set to a bi­
orthogonal set, since one extra bit per signal is achieved at essentially no cost. However, for the 
limiting argument to follow, an orthogonal set is used since it is simpler to treat analytically. 
As M gets very large, the advantage of bi-orthogonal signals becomes smaller, which is why, 
asymptotically, the two are equivalent. 

8.5.3 Error probability for orthogonal signal sets 

Since the signals differ only by the ordering of the coordinates, the probability of error does 
not depend on which signal is sent; thus Pr(e) = Pr(e | A=a0). Conditional on A = a0, Y0 is 
N (

√
E, N0/2) and Ym is N (0, N0/2) for 1 ≤ m ≤ M−1. Note that if A=a0 and Y0 =y0, then 

an error is made if Ym ≥ y0 for any m, 1  ≤ m ≤ M−1. Thus � � 
M

−1 

� 
Pr(e) =  

∞ 

fY0|A(y0 | a0) Pr  
m=1 

(Ym ≥ y0 | A = a0) dy0. (8.46) 
−∞ 

The rest of the derivation of Pr(e), and its asymptotic behavior as M gets large, is simplified 
if we normalize the outputs to Wm = Ym 2/N0. Then, conditional on signal a0 being sent, 
W0 is N ( 2E/N0, 1) = N (α, 1), where α is an abbreviation for 2E/N0. Also, conditional on 
A = a0, Wm is N (0, 1) for 1 ≤ m ≤ M−1. 

∞ M

−1 

Pr(e) =  fW0|A(w0 | a0) Pr  
m=1 

(Wm ≥ w0 | A = a0) dw0. (8.47) 
−∞ 

Using the union bound on the union above, 

M

−1 

Pr (Wm ≥ w0 | A = a0) ≤ (M − 1)Q(w0). (8.48) 
m=1 

The union bound is quite tight when applied to independent quantitities that have small aggre­
gate probability. Thus this bound will be quite tight when w0 is large and M is not too large. 
When w0 is small, however, the bound becomes loose. For example, for w0 = 0,  Q(w0) = 1/2 
and the bound in (8.48) is (M − 1)/2, much larger than the obvious bound of 1 for any prob­
ability. Thus, in the analysis to follow, the left side of (8.48) will be upper-bounded by 1 for 
small w0 and by (M − 1)Q(w0) for large w0. Since both 1 and (M − 1)Q(w0) are valid upper 
bounds for all w0, the dividing point γ between small and large can be chosen arbitrarily. It is 
chosen in what follows to satisfy 

exp(−γ2/2) = 1;  γ = 
√

2 ln  M (8.49) 

It might seem more natural in light of (8.48) to replace γ above by the γ1 that satisfies (M −
1)Q(γ1) = 1, and that turns out to be the natural choice in the lower bound to Pr(e) developed 

8One possibility is that at passband a phase error of π can turn am into −am. Thus with bi-orthogonal signals 
it is necessary to track phase or use differential phase. 
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in Exercise 8.10. It is not hard to see, however, that γ/γ1 goes to 1 as M → ∞, so the difference 
is not of major importance. Splitting the integral in (8.47) into w0 ≤ γ and w0 > γ, � γ � 

Pr(e) ≤ 
−∞ 

fW0|A(w� 0 | a0) dw0 + 
γ 

∞ 

fW0|A(w0 | a0)(M� −1)Q(w0� ) dw0 (8.50) 

≤ Q(α − γ) +  
γ 

∞ 

fW0|A(w0 | a0)(M−1)Q(γ) exp 
γ

2 

2 

− 
w

2 
0
2 

dw0 (8.51) 

≤ Q(α − γ) +  
γ 

∞ 

√1
2π 

exp 
−(w0 − α)

2 

2 + γ2 − w0
2 

dw0 (8.52) 

= Q(α − γ) +  
∞ 

√1
2π 

exp 
−2(w0 − α/2)

2 

2 + γ2 − α2/2 
dw0 (8.53) 

γ 

= Q(α − γ) +  √1
2
Q 

�√
2 

� 
γ − 

α 
2 

�� 
exp 

� 
γ

2 

2 

− 
α

4 

2 
� 

. (8.54) 

The first term on the right side of (8.50) is the lower tail of the distribution of W0, and is the 
probability that the negative of the fluctuation of W0 exceeds α−γ, i.e., Q(α−γ). In the second 
term, Q(w0) is upper bounded using Exercise 8.7c, thus resulting in (8.51). This is simplified 
by (M −1)Q(γ) ≤ M exp(−γ2/2) = 1, resulting in (8.52). The exponent is then manipulated to 
‘complete the square’ in (8.53), leading to an integral of a Gaussian density, as given in (8.54). 

The analysis now breaks into three special cases, the first where α ≤ γ, the second where 
α/2 ≤ γ < α  , and the third where γ ≤ α/2. We explain the significance of these cases after 
completing the bounds. 

Case (1): (α ≤ γ) The argument of the first Q function in (8.53) is less than or equal to 0, 
so its value lies between 1/2 and 1. This means that Pr(e) ≤ 1/2, which is a useless result. As 
seen later, this is the case where the rate is greater than or equal to capacity. It is also shown 
in Exercise 8.10 that the error probability must be large in this case. 

Case (2): (α/2 ≤ γ < α) Each Q function in (8.53) has a non-negative argument, so the bound 
Q(x) ≤ 1 exp(−x2 

) applies (see Exercise 8.7b). 2 2 

Pr(e) ≤ 
2
1 

exp 
−(α

2
−γ)2 

+
2
√1 

2 
exp 

−
4 
α2 

+ 
γ

2 

2 

− (γ − α/2)2 (8.55) � � � � � � 
≤ 

1
2 

+ 
2
√1 

2 
exp 

−(α
2
−γ)2 ≤ exp 

−(α
2
−γ)2 

. (8.56) 

Note that (8.56) follows (8.55) from combining the terms in the exponent of the second term. 
The fact that exponents are equal is not too surprising, since γ was chosen to approximately 
equalize the integrands in (8.50) at w0 = γ. 

Case (3): (γ ≤ α/2) The argument of the second Q function in (8.53) is less than or equal to 
0, so its value lies between 1/2 and 1 and is upper bounded by 1, yielding 

Pr(e) ≤ 
1
2 

exp 
−(α

2
−γ)2 

+
2
√1 

2 
exp 

−
4 
α2 

+ 
γ

2 

2 

(8.57) 

exp 
−α2 

+ 
γ2 

. (8.58)≤ 
4 2 

Since the two exponents in (8.55) are equal, the first exponent in (8.57) must be smaller than 
the second, leading to (8.58). This is essentially the union bound derived in Exercise 8.8. 
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The lower bound in Exercise 8.10 shows that these bounds are quite tight, but the sense in 
which they are tight will be explained later. 

We now explore what α and γ are in terms of the number of codewords M and the energy per 
bit, Eb. Recall that α = 2E/N0. Also log2 M = b where b is the number of bits per signal. 
Thus α = 2bEb/N0. From (8.49), γ2 = 2 ln  M = 2b ln(2). Thus 

α − γ = 
√

2b 
�� 

Eb/N0 −
√

ln 2 
� 
. 

Substituting these values into (8.56) and (8.58), 

Pr(e) exp 
� 
−b 

�� 
Eb/N0 −

√
ln 2 

�2 
� 

for 
4
E

N
b 

0 
≤ ln 2 <

Eb (8.59)≤ 
N0 

Eb EbPr(e) ≤ exp −b 
2N0 

− ln 2 for ln 2 < 
4N0 

. (8.60) 

We see from this that if Eb/N0 > ln 2, then as b → ∞ holding Eb constant, Pr(e) → 0. 

Recall that in (7.86), we stated that the capacity (in bits per second) of a WGN channel of 
bandwidth W, noise spectral density N0/2, and power P is 

P 
C = W log 1 +  . (8.61)

WN0 

With no bandwidth constraint, i.e., in the limit W → ∞, the ultimate capacity is C = P .N0 ln 2

This means that, according to Shannon’s theorem, for any rate R < C  = N0 

P 
ln 2 , there are codes 

of rate R bits per second for which the error probability is arbitrarily close to 0. Now P/R  = Eb, 
so Shannon says that if Eb > 1, then codes exist with arbitrarily small error. N0 ln 2 

The orthogonal codes provide a concrete proof of this ultimate capacity result, since (8.59) shows 
that Pr(e) can be made arbitrarily small (by increasing b) so long as Eb > 1. Shannon’s N0 ln 2 

Ebtheorem also says that the error probability can not be made small if N0 ln 2 < 1. We have not 
quite proven that here, although Exercise 8.10 shows that the error probability cannot be made 
arbitrarily small for an orthogonal code9 if Eb < 1.N0 ln 2 

The limiting operation here is slightly unconventional. As b increases, Eb is held constant. This 
means that the energy E in the signal increases linearly with b, but the size of the constellation 
increases exponentially with b. Thus the bandwidth required for this scheme is infinite in the 
limit, and going to infinity very rapidly. This means that this is not a practical scheme for 
approaching capacity, although sets of 64 or even 256 bi-orthogonal waveforms are used in 
practice. 

The point of the analysis, then, is first to show that this infinite bandwidth capacity can be ap­
proached, but second to show also that using large but finite sets of orthogonal (or bi-orthogonal 
or simplex) waveforms does decrease error probability for fixed signal to noise ratio, and decreases 
it as much as desired (for rates below capacity) if enough bandwidth is used. 

9Since a simplex code has the same error probability as the corresponding orthogonal code, but differs in 
energy from the orthogonal code by a vanishingly small amount as M → ∞, the error probability for simplex 

Ebcodes also cannot be made arbitrarily small for any given 
N0 ln 2 

less than 1. It is widely believed, but never 
proven, that simplex codes are optimal in terms of ML error probability whenever the error probability is small. 
There is a known example, however, [30], for all M ≥ 7, where the simplex is non-optimal, but in this example, 
the signal to noise ratio is very small and the error probability is very large. 
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The different forms of solution in (8.59) and (8.60) are interesting, and not simply consequences 
of the upper bounding used. For case (2), which leads to (8.59), the typical way that errors 
occur is when w0 ≈ γ. In this situation, the union bound is on the order of 1, which indicates 
that, conditional on y0 ≈ γ, it is quite likely that an error will occur. In other words, the typical 
error event involves an unusually large negative value for w0 rather than any unusual values for 
the other noise terms. In case (3), which leads to (8.60), the typical way for errors to occur is 
when w0 ≈ α/2 and when some other noise term is also at about α/2. In this case, an unusual 
event is needed both in the signal direction and in some other direction. 

A more intuitive way to look at this distinction is to visualize what happens when E/N0 is held 
fixed and M is varied. Case 3 corresponds to small M , case 2 to larger M , and case 1 to very 
large M . For small M , one can visualize the Voronoi region around the transmitted signal point. 
Errors occur when the noise carries the signal point outside the Voronoi region, and that is most 
likely at the points in the Voronoi surface closest to the transmitted signal, i.e., at points half 
way between the transmitted point and some other signal point. As M increases, the number 
of these midway points increases until one of them is almost certain to cause an error when the 
noise in the signal direction becomes too large. 

8.6 Block Coding 

This section provides a brief introduction to the subject of coding for error correction on noisy 
channels. Coding is a major topic in modern digital communication, certainly far more major 
than suggested by the length of this introduction. In fact, coding is a topic that deserves its 
own text and its own academic subject in any serious communication curriculum. Suggested 
texts are [6] and [15]. Our purpose here is to provide enough background and examples to 
understand the role of coding in digital communication, rather than to prepare the student for 
coding research. We start by viewing orthogonal codes as block codes using a binary alphabet. 
This is followed by the Reed-Muller codes, which provide considerable insight into coding for 
the WGN channel. This then leads into Shannon’s celebrated noisy-channel coding theorem. 

A block code is a code for which the incoming sequence of binary digits is segmented into blocks 
of some given length m and then these binary m-tuples are mapped into codewords. There 
are thus 2m codewords in the code; these codewords might be binary n-tuples of some block 
length n > m, or might be vectors of signals, or might be waveforms. There is no fundamental 
difference between coding and modulation; for example the orthogonal code above with M = 2m 

codewords can be viewed either as modulation with a large signal set or coding using binary 
m-tuples as input. 

8.6.1 Binary orthogonal codes and Hadamard matrices 

When orthogonal codewords are used on a WGN channel, any orthogonal set is equally good from 
the standpoint of error probability. One possibility, for example, is the use of orthogonal sine 
waves. From an implementation standpoint, however, there are simpler choices than orthogonal 
sine waves. Conceptually, also, it is helpful to see that orthogonal codewords can be constructed 
from binary codewords. This digital approach will turn out to be conceptually important in 
the study of fading channels and diversity in the next chapter. It also helps in implementation, 
since it postpones the point at which digital hardware gives way to analog waveforms. 
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One digital approach to generating a large set of orthogonal waveforms comes from first gener­
ating a set of M binary codewords, each of length M and each distinct pair differing in exactly 
M/2 places. Each binary digit can then be mapped into an antipodal signal, 0 +a and 

a. This yields an M -tuple of real-valued antipodal signals, s1, . . .  , sM , which is then 1 → −
→

mapped into the waveform j sj φj (t) where {φj (t); 1≤j≤M} is an orthonormal set (such as 
sinc functions or Nyquist pulses). Since each pair of binary codewords differs in M/2 places, the 
corresponding pair of waveforms are orthogonal and each waveform has equal energy. A binary 
code with the above properties is called an binary orthogonal code. 

There are many ways to generate binary orthogonal codes. Probably the simplest is from a 
Hadamard matrix. For each integer m ≥ 1, there is a 2m by 2m Hadamard matrix Hm. Each 
distinct pair of rows in the Hadamard matrix Hm differs in exactly 2m−1 places, so the 2m rows 
of Hm constitute an binary orthogonal code with 2m codewords. 

It turns out that there is a simple algorithm for generating the Hadamard matrices. The 
Hadamard matrix H1 is defined to have the rows 00 and 01 which trivially satisfy the con­
dition that each pair of distinct rows differ in half the positions. For any integer m >  1, the 
Hadamard matrix Hm+1 of order 2m+1 can be expressed as four 2m by 2m submatrices. Each of 
the upper two submatrices is Hm, and the lower two submatrices are Hm and Hm, where Hm 

is the complement of Hm. This is illustrated in Figure 8.7 below. 

0 
0 0 

1 

0 
0 1 

0 

0 
0 1 

0 

0 
0 1 

0 

1 
1 0 

1 

0000 0000 
0101 0101 
0011 0011 
0110 0110 
0000 1111 
0101 1010 
0011 1100 
0110 1001 

m = 1  m = 2  m = 3  
Figure 8.7: Hadamard Matrices. 

Note that each row of each matrix in Figure 8.7, other than the all zero row, contains half zeroes 
and half ones. To see that this remains true for all larger values of m, we can use induction. 
Thus assume, for given m, that Hm contains a single row of all zeros and 2m − 1 rows, each 
with exactly half ones. To prove the same for Hm+1, first consider the first 2m rows of Hm+1. 
Each row has twice the length and twice the number of ones as the corresponding row in Hm. 
Next consider the final 2m rows. Note that Hm has all ones in the first row and 2m−1 ones in 
each other row. Thus the first row in the second set of 2m rows of Hm+1 has no ones in the first 
2m positions and 2m ones in the final 2m positions, yielding 2m ones in 2m+1 positions. Each 
remaining row has 2m−1 ones in the first 2m positions and 2m−1 ones in the final 2m positions, 
totaling 2m ones as required. 

By a similar inductive argument (See Exercise 8.18), the mod-2 sum10 of any two rows of Hm 

is another row of Hm. Since the mod-2 sum of two rows gives the positions in which the rows 
differ, and only the mod-2 sum of a codeword with itself gives the all 0 codeword, this means 
that the set of rows is a binary orthogonal set. 

The fact that the mod-2 sum of any two rows is another row makes the corresponding code a 
10The mod-2 sum of two binary numbers is defined by 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, and 1 ⊕ 1 = 0. The 

mod-2 sum of two rows (or vectors) or binary numbers is the component-wise row (or vector) of mod-2 sums. 

Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



278 CHAPTER 8. DETECTION, CODING, AND DECODING 

special kind of binary code called a linear code, parity-check code or group code (these are all 
synonyms). Binary M -tuples can be regarded as vectors in a vector space over the binary scalar 
field. It is not necessary here to be precise about what a field is; so far it has been sufficient 
to consider vector spaces defined over the real or complex fields. However, the binary numbers, 
using mod-two addition and ordinary multiplication, also form a field and the familiar properties 
of vector spaces apply here also. 

Since the set of codewords in a linear code is closed under mod-2 sums (and also closed under 
scalar multiplication by 1 or 0), a linear code is a binary vector subspace of the binary vector 
space of binary M -tuples. An important property of such a subspace, and thus of a linear 
code, is that the set of positions in which two codewords differ is the set of positions in which 
the mod-2 sum of those codewords contains 1’s. This means that the distance between two 
codewords (i.e., the number of positions in which they differ) is equal to the weight (the number 
of positions containing 1’s) of their mod-2 sum. This means, in turn, that for a linear code, the 
minimum distance dmin, taken between all distinct pairs of codewords, is equal to the minimum 
weight (minimum number of 1’s) of any non-zero codeword. 

Another important property of a linear code (other than the trivial code consisting of all binary 
M -tuples) is that some components xk of each codeword x = (x1, . . .  , xM )T can be represented 
as mod-2 sums of other components. For example, in the m = 3 case of Figure 8.7, x4 = x2 ⊕x3, 
x6 = x2 ⊕ x5, x7 = x3 ⊕ x5, x8 = x4 ⊕ x5, and x1 = 0, Thus only 3 of the components can 
be independently chosen, leading to a 3-dimensional binary subspace. Since each component is 
binary, such a 3-dimensional subspace contains 23 = 8 vectors. The components that are mod-2 
combinations of previous components are called ‘parity checks’ and often play an important role 
in decoding. The first component, x1, can be viewed as a parity check since it cannot be chosen 
independently, but its only role in the code is to help achieve the orthogonality property. It is 
irrelevant in decoding. 

It is easy to modify the binary orthogonal code to generate a binary simplex code, i.e., a binary 
code which, after the mapping 0 → a, 1 → −a, forms a simplex in Euclidean space. The first 
component of each binary codeword is dropped, turning the code into M codewords over M − 1 
dimensions. Note that in terms of the antipodal signals generated by the binary digits, dropping 
the first component converts the signal +a (corresponding to the first binary component 0) into 
the signal 0 (which corresponds neither to the binary 0 or 1) . The generation of the binary 
biorthogonal code is equally simple; the rows of Hm yield half of the codewords and the rows 
of Hm yield the other half. Both the simplex and the biorthogonal code, as expressed in binary 
form here, are linear binary block codes. 

Two things have been accomplished with this representation of orthogonal codes. First, orthog­
onal codes can be generated from a binary sequence mapped into an antipodal sequence, and 
second, an example has been given where modulation over a large alphabet can be viewed as a 
binary block code followed by modulation over a binary or very small alphabet. 

8.6.2 Reed-Muller codes 

Orthogonal codes (and the corresponding simplex and biorthgonal codes) use enormous band­
width for large M . The Reed-Muller codes constitute a class of binary linear block codes that 
include large bandwidth expansion (in fact they include the binary biorthogonal codes) but also 
allow for much smaller bandwidth expansion, i.e., they allow for binary codes with M codewords 
where log M is much closer to the number of dimensions used by the code. 
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The Reed-Muller codes are specified by two integer parameters, m ≥ 1 and 0 ≤ r ≤ m; a binary 
linear block code, denoted RM(r,m), exists for each such choice. The parameter m specifies the 
block length to be n = 2m . The minimum distance dmin(r,m) of the code and the number of 
binary information digits k(r,m) required to specify a codeword are given by 

r � �� m 
dmin(r,m) = 2m−r k(r,m) =  (8.62)

j
j=0 

where m
j = j!(m

m
−
! 
j)! . Thus these codes, like the binary orthogonal codes, exist only at block 

lengths equal to a power of 2. While there is only one binary orthogonal code (as defined through 
Hm) for each m, there is a range of RM codes for each m ranging from large dmin and small k 
to small dmin and large k as r increases. 

For each m, these codes are trivial for r = 0 and r = m. For  r = 0 the code consists of two 
codewords selected by a single bit, so k(0, m) = 1; one codeword is all 0’s and the other is all 
1’s, leading to dmin(0, m) = 2m. For  r = m, the code is the set of all binary 2m tuples, leading 
to dmin(m, m) = 1 and k(m, m) = 2m. For  m = 1, then, there are two RM codes. RM(0, 1) 
consists of the two codewords (0,0) and (1,1), and RM(1, 1) consists of the four codewords (0,0), 
(0,1), (1,0), and (1,1). 

For m >  1 and intermediate values of r, there is a simple algorithm, much like that for Hadamard 
matrices, that specifies the set of codewords. The algorithm is recursive, and, for each m >  1 
and 0 < r < m, specifies RM(r,m) in terms of RM(r,m−1) and RM(r−1, m−1). Specifically, 
x ∈ RM(r,m) if  x is the concatenation of u and u ⊕ v , denoted x = (u , u ⊕ v), for some 
u ∈ RM(r,m−1, ) and v ∈ RM(r−1, m−1). More formally, for 0 < r < m, 

RM(r,m) =  {(u , u ⊕ v) | u ∈ RM(r,m−1), v ∈ RM(r−1, m−1)}. (8.63) 

The analogy with Hadamard matrices is that x is a row of  Hm if u is a row of Hm−1 and v is 
either all ones or all zeros. 

The first thing to observe about this definition is that if RM(r,m−1) and RM(r−1, m−1) are 
linear codes, then RM(r,m) is also. To see this, let x = (u , u ⊕ v) and x ′ = (u ′, u ′ ⊕ v ′). Then 

x ⊕ x ′ = (u ⊕ u ′, u ⊕ u ′ ⊕ v ⊕ v ′) = (u ′′, u ′′ ⊕ v ′′) 

where u ′′ = u ⊕ u ′ ∈ RM(r,m−1) and v ′′ = v ⊕ v ′ ∈ RM(r−1, m−1). This shows that x ⊕ x ′ ∈
RM(r,m), and it follows that RM(r,m) is a linear code if RM(r,m−1) and RM(r−1, m−1) are. 
Since both RM(0, m) and RM(m, m) are linear for all m ≥ 1, it follows by induction on m that 
all the Reed-Muller codes are linear. 

Another observation is that different choices of the pair u and v cannot lead to the same value 
of x = (u , u ⊕ v). To see this, let x ′ = (u ′, v ′). Then if u =� u ′, it follows that the first half 
of x differs from that of x ′. Similarly if u = u ′, and v = v ′, then the second half of x differs 
from that of x ′. Thus  x = x ′ only if both u = u ′ and v = v ′. As a consequence of this, the 
number of information bits required to specify a codeword in RM(r,m), denoted k(r,m) is equal 
to the number required to specify a codeword in RM(r,m−1) plus that to specify a codeword 
in RM(r−1, m−1), i.e., for 0 < r < m, 

k(r,m) =  k(r,m−1) + k(r−1, m−1) 

Exercise 8.19 shows that this relationship implies the explicit form for k(r,m) given in (8.62). 
Finally Exercise 8.20 verifies the explicit form for dmin(r,m) in (8.62). 
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The RM(1, m) codes are the binary bi-orthogonal codes and one can view the construction in 
(8.63) as being equivalent to the Hadamard matrix algorithm by replacing the M by M matrix 
Hm in the Hadamard algorithm by the 2M by M matrix Hm where Gm = Hm.Gm 

Another interesting case is the RM(m − 2, m) codes. These have dmin(m−2, m) = 4 and  
k(m−2, m) = 2m − m − 1 information bits. In other words, they have m + 1 parity checks. 
As explained below, these codes are called extended Hamming codes. A property of all RM 
codes is that all codewords have an even number11 of 1’s and thus the last component in each 
codeword can be viewed as an overall parity check which is chosen to ensure that the codeword 
contains an even number of 1’s. 

If this final parity check is omitted from RM(m − 2, m) for any given m, the resulting code is 
still linear and must have a minimum distance of at least 3, since only one component has been 
omitted. This code is called the Hamming code of block length 2m − 1 with m parity checks. It 
has the remarkable property that every binary 2m − 1 tuple is either a codeword in this code or 
distance 1 from a codeword12 . 

The Hamming codes are not particularly useful in practice for the following reasons. If one uses 
a Hamming code at the input to a modulator and then makes hard decisions on the individual 
bits before decoding, then a block decoding error is made whenever 2 or more bit errors occur. 
This is a small improvement in reliability at a very substantial cost in transmission rate. On the 
other hand, if soft decisions are made, using the extended Hamming code (i.e., RM(m−2, m) 
extends dmin from 3 to 4, greatly decreasing the error probability with a marginal cost in added 
redundant bits. 

8.7 The noisy-channel coding theorem 

The previous sections provided a brief introduction to coding. It provided several examples 
showing that the use of binary codes could accomplish the same thing, for example, as the use 
of large sets of orthogonal, simplex, or bi-orthogonal waveforms. There was an ad hoc nature to 
the development, however, illustrating a number of schemes with various interesting properties, 
but little in the way of general results. 

The earlier results on Pr(e) for orthogonal codes were more fundamental, showing that Pr(e) 
could be made arbitrarily small for a WGN channel with no bandwidth constraint if Eb isN0 

greater than ln 2. This constituted a special case of the noisy-channel coding theorem, saying 
that arbitrarily small Pr(e) can be achieved for that very special channel and set of constraints. 

8.7.1 Discrete memoryless channels 

This section states and proves the noisy-channel coding theorem for another special case, that 
of discrete memoryless channels (DMC’s). This may seem a little peculiar after all the emphasis 
in this and the last chapter on WGN. There are two major reasons for this choice. The first is 
that the argument is particularly clear in the DMC case, particularly after studying the AEP for 

11This property can be easily verified by induction. 
12To see this, note that there are 22m−1−m codewords, and each codeword has 2m − 1 neighbors; these are 

distinct from the neighbors of other codewords since dmin is at least 3. Adding the codewords and the neighbors, 
we get the entire set of 22m−1 vectors. This also shows that the minimum distance is exactly 3. 
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discrete memoryless sources. The second is that the argument can be generalized easily, as will 
be discussed later. A DMC has a discrete input sequence X = X1, . . .  , Xk, . . . . At each discrete 
time k, the input to the channel belongs to a finite alphabet X of symbols. For example, in 
the last section, the input alphabet could be viewed as the signals ±a. The question of interest 
would then be whether it is possible to communicate reliably over a channel when the decision 
to use the alphabet X = {a,−a} has already been made. The channel would then be regarded 
as the part of the channel from signal selection to an output sequence from which detection 
would be done. In a more general case, the signal set could be an arbitrary QAM set. 

A DMC is also defined to have a discrete output sequence Y = Y1, . . .  , Yk, . . .  ,  where each 
output Yk in the output sequence is a selection from a finite alphabet Y and is a probabilistic 
function of the input and noise in a way to be described shortly. In the example above, the 
output alphabet could be chosen as Y = {a,−a} corresponding to the case in which hard 
decisions are made on each signal at the receiver. The channel would then include the modulation 
and detection as an internal part, and the question of interest would be whether coding at 
the input and decoding from the single-letter hard decisions at the output could yield reliable 
communication. 

Another choice would be to use the pre-decision outputs, first quantized to satisfy the finite 
alphabet constraint. Another, almost identical choice, would be a detector that produced a 
quantized LLR as opposed to a decision. 

In summary, the choice of discrete memoryless channel alphabets depends on what part of the 
overall communication problem is being addressed. 

In general, a channel is described not only by the input and output alphabets but also the 
probabilistic description of the outputs conditional on the inputs (the probabilistic description 
of the inputs is selected by the channel user). Let X n = (X1, X2, . . . Xn)T be the channel input, 
here viewed either over the lifetime of the channel or any time greater than or equal to the 

nduration of interest. Similarly the output is denoted by Y = (Y1, . . .  , Yn). For a DMC, the 
probability of the output n-tuple, conditional on the input n-tuple, is defined to satisfy 

n

p
Y n|Xn (y1, . . .  , yn | x1, . . .  , xn) =  p

Yk|Xk 
(yk|xk) (8.64) 

k=1 

where p
Yk|Xk 

(yk = j|xk = i), for each j ∈ Y and i ∈ X  is a function only of i and j and not of 
the time k. Thus, conditional on a given input sequence, the output symbols are independent 
and each has a conditional distribution depending only on the corresponding input symbol. This 
conditional distribution is denoted Pi,j for all i ∈ X  and j ∈ Y, i.e., p

Yk|Xk 
(yk =j|xk =i) =  Pi,j . 

Thus the channel is completely described by the input alphabet, the output alphabet, and the 
conditional distribution function Pi,j . The conditional distribution function is usually called the 
transition function or matrix. 

The most intensely studied DMC over the past 60 years is the binary symmetric channel (BSC), 
which has X = {0, 1},Y = {0, 1} and satisfies P0,1 = P1,0. This single number P0,1 thus specifies 
the BSC. The WGN channel with antipodal inputs and ML hard decisions at the output is an 
example of the BSC. Despite the intense study of the BSC and its inherent simplicity, the ques­
tion of optimal codes of long block length (optimal in the sense of minimum error probability) is 
largely unanswered. Thus, the noisy-channel coding theorem, which describes various properties 
of the achievable error probability through coding plays a particularly important role in coding. 
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8.7.2 Capacity 

The capacity C of a DMC is defined in this subsection. The following subsection, after defining 
the rate R at which information enters the modulator, shows that reliable communication is 
impossible on a channel if R > C. This is known as the converse to the noisy-channel coding 
theorem, and is in contrast to the final subsection which shows that arbitrarily reliable commu­
nication is possible for any R < C. As in the analysis of orthogonal codes, communication at 
rates below capacity can be made increasingly reliable with increasing block length, while this 
is not possible for R > C. 

The capacity is defined in terms of various entropies. For a given DMC and given sequence length 
n, let p (y xn) be given by (8.64) and let p (xn) denote an arbitrary probability mass 

Y n|Xn 
n|

Xn 
nYfunction chosen by the user on the input X1. . . .  , Xn. This leads to a joint entropy H[X n]. 

From (2.37), this can be broken up as 

H[X nY n] =  H[X n] +  H[Y n|X n], (8.65) 

n n nwhere H[Y |X n] =  E[− log p
Y n|Xn (Y |X n)]. Note that because H[Y |X n] is defined as an 

n n n nexpectation over both X and Y , H[Y X n] depends on the distribution of X as well as the 
n n 

|
conditional distribution of Y given X . The joint entropy H[X nY n] can also be broken up 
the opposite way as 

H[X nY n] =  H[Y n] +  H[X n|Y n], (8.66) 

n nCombining (8.65) and (8.66),it is seen that H[X n] − H[X |Y n] =  H[
n 
Y n] − H[

n 
Y |X n]. This 

difference of entropies is called the mutual information between X and Y and denoted 
I(X n; Y n), so 

I(X n; Y n) =  H[X n] − H[X n|Y n] =  H[Y n] − H[Y n|X n] (8.67) 

The first expression for I(X n; Y n) has a nice intuitive interpretation. H[X n] is understood 
from source coding as representing the number of bits required to represent the channel input. 

n nIf we look at a particular sample value y of the output, H[X Y n=yn] can be interpreted as 
n 

|
the number of bits required to represent X after observing the output sample value yn. Note 
that H[X n|Y n] is the expected value of this over Y n. Thus  I(X n; Y n) can be interpreted as 
the reduction in uncertainty, or number of required bits for specification, after passing through 
the channel. This intuition will lead to the converse to the noisy-channel coding theorem in the 
next subsection. 

The second expression for I(X n; Y n) is the one most easily manipulated. Taking the log of the 
expression in (8.64), 

n

H[Y n|X n] =  H[Yk|Xk] (8.68) 
k=1 

Since the entropy of a sequence of random symbols is upper bounded by the sum of the corre­
sponding terms (see Exercise 2.19) 

n

H[Y n] ≤ H[Yk] (8.69) 
k=1 
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Substituting this and (8.68) in (8.67), 

n

I(X n; Y n) ≤ I(Xk; Yk) (8.70) 
k=1 

If the inputs are independent, then the outputs are also and (8.69) and (8.70) are satisfied 
with equality. The mutual information I(Xk; Yk) at each time k is a function only of the pmf 
for Xk, since the output probabilities conditional on the input are determined by the channel. 
Thus, each mutual information term in (8.70) is upper bounded by the maximum of the mutual 
information over the input distribution. This maximum is defined as the capacity of the channel, � � Pi,j

C = max piPi,j log � , (8.71) 
p p	P	,j

i∈X j∈Y 	∈X 

where p = (p0, p1, . . .  , pX−1) is the set (over the alphabet X ) of input probabilities. The 
maximum is over this set of input probabilities, subject to pi ≥ 0 for each i ∈ X and pi = 1.  i∈X
The above function is concave in p, and thus the maximimization is straight-forward; for the 
BSC, for example, the maximum is at p0 = p1 = 1/2 and C = 1 +  P0,1 log P0,1 + P0,0 log P0,0. 
Since C upper bounds I(Xk; Yk) for each k, with equality if the distribution for Xk is the 
maximizing distribution, 

I(X n; Y n) ≤ nC, (8.72) 

with equality if all inputs are independent and chosen with the maximizing probabilities in 
(8.71). 

8.7.3 Converse to the noisy-channel coding theorem 

Define the rate R for the DMC above as the number of iid equiprobable binary source digits 
that enter the channel per channel use. More specifically assume that nR bits enter the source 
and are transmitted over the n channel uses under discussion. Assume also that these bits are 

nmapped into the channel input X n in a one-to-one way. Thus H[X n] =  nR and X can take on 
M = 2nR equiprobable values. The following theorem now bounds Pr(e) away from 0 if R > C. 

Theorem 8.7.1. Consider a DMC with capacity C. Assume that the rate R satisfies R > C. 
Then for any block length n, the ML probability of error, i.e., the probability that the decoded 

n 
n-tuple X̃ is unequal to the transmitted n-tuple Xn, is lower bounded by 

R − C ≤ Hb(Pr(e)) + R Pr(e), (8.73) 

where Hb(α) is the binary entropy, −α log α − (1 − α) log(1 − α). 

Remark: The right hand side of (8.73) is 0 at Pr(e) = 0 and is increasing for Pr(e) ≤ 1/2, so 
(8.73) provides a lower bound to Pr(e) that depends only on C and R. 

nProof: Note that H[X n] =  nR and, from (8.70) and (8.67), H(X n) − H(X |Y n) ≤ nC. Thus  

H(X n|Y n) ≥ nR − nC. (8.74) 

n

n n n | 
n n n=y

nFor each sample value y of Y , H(X Y n=yn) is an ordinary entropy. The received y
is decoded into some x̃ and the corresonding probability of error is Pr(X =� x̃ | Y n). 
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nAs in Exercise 2.20, the entropy H(X Y n=yn) can be upper bounded as the sum of two | 
nterms, first the binary entropy of whether or not X = x̃n, and second, the entropy of all M −1 

possible errors in the case X n = x̃n , i.e., 

H(X | Y n=y n) ≤ Hb(Pr(e|y n)) + Pr(e|y n) log(M − 1). 

nUpper bounding log(M − 1) by log M = nR and averaging over Y , 

H(X n|Y n) ≤ Hb(Pr(e)) + nR Pr(e). (8.75) 

Combining (8.74 and (8.75), 

Hb(Pr(e))
R − C ≤ 

n 
+ R Pr(e), 

and upper bounding 1/n by 1 yields (8.73). 

The above theorem is not entirely satisfactory, since it shows that block errors cannot be made 
negligible at rates above capacity, but does not rule out the possibility that each block error 
causes only one bit error, say, and thus the probability of bit error might go to 0 as n → ∞. As  
shown in Theorem 4.3.4 of [7], this cannot happen, but the proof doesn’t add much insight and 
will be omitted here. 

8.7.4 noisy-channel coding theorem, forward part 

There are two critical ideas in the forward part of the coding theorem. The first is to use the 
AEP on the joint ensemble X nY n . The second, however, is what shows the true genius of 
Shannon. His approach, rather than an effort to find and analyze good codes, was to simply 
choose each codeword of a code randomly, choosing each letter in each codeword to be iid with 
the capacity yielding input distribution. 

One would think initially that the codewords should be chosen to be maximally different in 
some sense, but Shannon’s intuition said that independence would be enough. Some initial 
sense of why this might be true comes from looking at the binary orthogonal codes. Here each 
codeword of length n differs from each other codeword in n/2 positions, which is equal to the 
average number of differences with random choice. Another initial intuition comes from the 
fact that mutual information between input and output n-tuples is maximized by iid inputs. 
Truly independent inputs do not allow for coding constraints, but choosing a limited number of 
codewords using an iid distribution is at least a plausible approach. In any case, the following 
theorem proves that this approach works. 

It clearly makes no sense for the encoder to choose codewords randomly if the decoder doesn’t 
know what those codewords are, so we visualize the designer of the modem as choosing these 
codewords and building them into both transmitter and receiver. Presumably the designer 
is smart enough to test her code before shipping a million copies around the world, but we 
won’t worry about that. We simply average the performance over all random choices. Thus 
the probability space consists of M independent iid codewords of block length n, followed by 
a randomly chosen message m, 0  ≤ m ≤ M − 1 that enters the encoder. The corresponding 

nsample value xm of the mth randomly chosen codeword is transmitted and combined with noise 
n nto yield a received sample sequence y . The decoder then compares y with the M possible 

n nrandomly chosen messages (the decoder knows x 0 , . . .  ,  xM−1, but doesn’t know m) and chooses 
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the most likely of them. It appears that a simple problem has been replaced with a complex 
problem, but since there is so much independence between all the random symbols, the new 
problem is surprisingly simple. 

These randomly chosen codewords and channel outputs are now analyzed with the help of the 
AEP. For this particular problem, however, it is simpler to use a slightly different form of AEP, 
called the strong AEP, than that of Chapter 2. The strong AEP was analyzed in Exercise 2.28 

nand is reviewed here. Let U = U1, . . .  , Un be an n-tuple of iid discrete random symbols with 
alphabet U and letter probabilities pj for each j ∈ U . Then for any ε >  0, the strongly typical 
set Sε(U n) of sample n-tuples is defined as 

Sε(U n) =  u n : pj (1 − ε) <
Nj (un) 

< pj (1 + ε); for all j ∈ U  , (8.76) 
n 

where Nj (un) is the number of appearances of letter j in the n-tuple un. The double inequality 
in (8.76) will be abbreviated as Nj (un) =  npj (1 ± ε), so (8.76) becomes 

Sε(U n) =  {u n : Nj (u n) =  npj (1 ± ε); for all j ∈ U}  (8.77) 

Thus the strongly typical set is the set of n-tuples for which each letter appears with ap­
proximately the right relative frequency. For any given ε, the law of large numbers says that 
limn→∞ Pr(Nj (U n) =  pj (1 ± ε)) = 1 for each j. Thus (see Exercise 2.28) 

lim Pr(U n ∈ Sε(U n)) = 1. (8.78) 
n→∞ 

Nj (uNext consider the probability of n-tuples in Sε(U n). Note that p
Un (un) =  

� 
j pj 

n). Taking 
the log of this, 

log p
Un (u n) =  −nH(U)(1 ± ε) for u n ∈ Sε(U n). (8.79) 

Thus the strongly typical set has the same basic properties as the typical set defined in Chapter 
2. Because of the requirement that each letter has a typical number of appearances, however, it 
has additional properties that are useful in the coding theorem below. 

Consider an n-tuple of channel input/output pairs, X nY n = (X1Y1), (X2Y2), . . .  , (XnYn) where 
successive pairs are iid. For each pair, XY , let X have the pmf {pi; i ∈ X}  which achieves 
capacity in (8.71). Let the pair XY  have the pmf {piPi,j ; i ∈ X , j  ∈ Y} where Pi,j is the channel 
transition probability from input i to output j. This is the joint pmf for the randomly chosen 
codeword that is transmitted and the corresponding received sequence. 

The strongly typical set Sε(X nY n) is then given by (8.77) as 

Sε(X nY n) =  {x n y n : Nij (x n y n) =  n piPi,j (1 ± ε); for all i ∈ X , j  ∈ Y}  (8.80) 

nwhere Nij (x yn) is the number of xy pairs in ((x1y1), (x2y2), . . .  , (xnyn)) for which x = i and 
n ny = j. The transmitted codeword X and the received n-tuple Y then satisfy 

lim Pr((X nY n) ∈ Sε(X nY n)) = 1. (8.81) 
n→∞ 

log p (x n y n) =  −nH(XY )(1 ± ε) for (x n y n) ∈ Sε(X nY n). (8.82)
XnY n 
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n n nThe nice feature about strong typicality is that if x y is in the set Sε(X nY n), then x must 
be in Sε(X n) and yn must be in Sε(Y n). To see this, assume that (xn , yn) ∈ Sε(X nY n). Then 

Ni(x n) =  Nij (x n y n) 
j 

∈ npiPij (1 ± ε) =  npi(1 ± ε) for all i 
j 

n nThus x ∈ Sε(X n). The same argument shows that y ∈ Sε(Y n). 

The noisy-channel coding theorem can now be stated and proved. 

Theorem 8.7.2. Consider a DMC with capacity C and let R be any fixed rate R < C. Then 
for any δ >  0, and all sufficiently large block lengths n, there exist block codes with M ≥ 2nR 

equiprobable codewords such that the ML error probability satisfies Pr(e) ≤ δ. 

Proof: As suggested above, we consider the error probability averaged over the random selection 
of codes defined above, where for given block length n and rate R, the number of codewords 
will be M = �2nR�. Since at least one code must be as good as the average, the theorem can be 
proved by showing that Pr(e) ≤ δ. 

The decoding rule to be used will be different than maximum likelihood, but since ML is opti­
mum, proving that Pr(e) ≤ δ for any decoding rule will prove the theorem. The rule to be used 
is strong typicality. That is, for given ε to be selected later, the decoder, given yn, determines 

nwhether there is an m̃ for which the pair (xmyn) lies in Sε(X nY n). If there is exactly one m̃ 
satisfying this test, that is the decoded message; that decoded message is in error, of course, if 
m̃ differs from the transmitted message m. If  no  m̃ or multiple m̃ satisfy the above test, the 
decoding is also counted as an error, so the actual decoded value in these cases is immaterial for 
the proof. The probability of error, given any transmitted message m, is then upper bounded 

n nby two terms, first, Pr(X nY ∈/ Sε(X nY n)) where X nY is the transmitted/received pair, 
nand second, the probability that some other codeword is jointly typical with Y . The other 

ncodewords are independent of Y and each is chosen with iid symbols using the same pmf as 
the transmitted codeword. Let X 

n be any one of these codewords. Using the union bound, 

Pr(e) ≤ Pr((X nY n) ∈/ Sε(X nY n)) + (M − 1) Pr((X 
n 
Y n) ∈ Sε(X nY n)) (8.83) 

For any large enough n, (8.81) shows that the first term is at most δ/2. Also M − 1 ≤ 2nR . 
Thus 

Pr(e) ≤ 
δ 

+ 2nR Pr((X 
n 
Y n) ∈ Sε(X nY n)) (8.84)

2 

To analyze the second term above, define F (yn) as the set of input sequences xn that are jointly 
n ntypical with the given yn. This set is empty if y ∈/ Sε(Y n). Note that for y ∈ Sε(Y n), 

p
Y n (y n) ≥ p

XnY n (x n y n) ≥ 2−nH(XY  )(1+ε) 

xn∈F (yn) xn∈F (yn) 

nwhere the final inequality comes from (8.82). Since p (yn) ≤ 2−nH(Y )(1−ε) for y ∈ Sε(Y n),
Y n 

nthe conclusion is that the number of n-tuples in F (yn) for any typical y satisfies 

|F (y n)| ≤ 2n[H(XY  )(1+ε)−H(Y )(1−ε)] (8.85) 

Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



8.7. THE NOISY-CHANNEL CODING THEOREM 287 

This means that the probability that 
n 
X 

n lies in F (y
n

n) is at most the size 
n 
|F (yn)| times the 

maximum probability of a typical X (recall that X is independent of Y but has the same 
marginal distribution as X n. Thus  

Pr((X 
n 
Y n) ∈ Sε(X nY n)) ≤ 2−n[H(X)(1−ε)+H(Y )(1−ε)−H(XY  )(1+ε)] 

= 2−n{C−ε[H(X)+H(Y )+H(XY  )]}, 

where we have used the fact that C = H(X) −H(X|Y ) =  H(X) +  H(Y ) −H(XY  ). Substituting 
this into (8.84), 

Pr(e) ≤ 
δ 

+ 2n[R−C+εα] 

2 
where α = H(X) +  H(Y ) +  H(XY  ). Finally, choosing ε = (C − R)/(2α), 

Pr(e) ≤
2 
δ 

+ 2−n(C−R)/2 ≤ δ 

for sufficiently large n. 

The above proof is essentially the original proof given by Shannon, with a little added explanation 
of details. It will be instructive to explain the essence of the proof without any of the epsilons or 
deltas. The transmitted and received n-tuple pair (X nY n) is typical with high probability and 

nthe typical pairs essentially have probability 2−nH(XY  ) (including both the random choice of X
nand the random noise). Each typical output y essentially has a marginal probability 2−nH(Y ). 

nFor each typical yn, there are essentially 2nH(X|Y ) input n-tuples that are jointly typical with y
(this is the nub of the proof). An error occurs if any of these are selected to be codewords (other 
than the actual transmitted codeword). Since there are about 2nH(X) typical input n-tuples 

naltogether, a fraction 2−nI(X;Y ) = 2−nC of them are jointly typical with the given received y . 

More recent proofs of the noisy-channel coding theorem also provide much better upper bounds 
on error probability. These bounds are exponentially decreasing with n with a rate of decrease 
that typically becomes vanishingly small as R C.→

8.7.5 The noisy-channel coding theorem for WGN 

The coding theorem for DMC’s can be easily extended to discrete-time channels with arbitrary 
real or complex input and output alphabets, but doing this with mathematical generality and 
precision is difficult with our present tools. 

This is done here for the discrete time Gaussian channel, which will make clear the conditions 
under which this generalization is easy. Let Xk and Yk be the input and output to the channel 
at time k, and assume that Yk = Xk + Zk where Zk ∼ N (0, N0/2) is independent of Xk and 
independent of the signal and noise at all other times. Assume the input is constrained in second 
moment to E[X2] ≤ E, so  E[Y 2] ≤ E + N0/2.k 

From Exercise 3.8, the differential entropy of Y is then upper bounded by 
1 

h(Y ) ≤ log(2πe(E + N0/2). (8.86)
2 

This is satisfied with equality if Y is N (0, E  + N0/2), and thus if X is N (0, E). For any given 
input x, h(Y |X = x) =  12 log(2πeN0/2), so averaging over the input space, 

1 
h(Y |X) =  

2 
log(2πeN0/2). (8.87) 
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By analogy with the DMC case, let the capacity C (in bits per channel use) be defined as the 
maximum of h(Y )−h(Y |X) subject to the second moment constraint E. Thus, combining (8.86) 
and (8.87), 

1 2E 
C = log 1 +  (8.88)

2 N0 

Theorem 8.7.2 applies quite simply to this case. For any given rate R in bits per channel use 
such that R < C, one can quantize the channel input and output space finely enough so that the 
corresponding discrete capacity is arbitrarily close to C and in particular larger than R. Then 
Theorem 8.7.2 applies, so rates arbitrarily close to C can be transmitted with arbitrarily high 
reliability. The converse to the coding theorem can also be extended. 

For a discrete time WGN channel using 2W degrees of freedom per second and a power constraint 
P , the second moment constraint on each degree of freedom13 becomes E = P/(2W ) and the 
capacity Ct in bits per second becomes Shannon’s famous formula 

P 
Ct = W log 1 +  . (8.89)

WN0 

This is then the capacity of a WGN channel with input power constrained to P and degrees of 
freedom per second constrained to 2W . 

With some careful interpretation, this is also the capacity of a continuous-time channel con­
strained in bandwidth to W and in power to P . The problem here is that if the input is strictly 
constrained in bandwidth, no information at all can be transmitted. That is, if a single bit is 
introduced into the channel at time 0, the difference in the waveform generated by symbol 1 and 
that generated by symbol 0 must be 0 before time 0, and thus, by the Paley-Wiener theorem, 
cannot be nonzero and strictly bandlimited. From an engineering perspective, this doesn’t seem 
to make sense, but the waveforms used in all engineering systems have negligible but non-zero 
energy outside the nominal bandwidth. 

Thus, to use (8.89) for a bandlimited input, it is necessary to start with the constraint that for 
any given η > 0, at least a fraction (1 − η) of the energy must lie within a bandwidth W . Then 
reliable communication is possible at all rates Rt in bits per second less than Ct as given in (8.89). 
Since this is true for all η > 0, no matter how small, it makes sense to call this the capacity of 
the bandlimited WGN channel. This is not an issue in the design of a communication system, 
since filters must be used and it is widely recognized that they can’t be entirely bandlimited. 

8.8 Convolutional codes 

The theory of coding, and particularly of coding theorems, concentrate on block codes, but 
convolutional codes are also widely used and have essentially no block structure. These codes 
can be used whether bandwidth is highly constrained or not. We give an example below where 
there are two output bits for each input bit. Such a code is said to have rate 1/2 (in input bits 
per channel bit). More generally, such codes produce an m-tuple of output bits for each b-tuple 
of input bits for arbitrary integers 0 < b < m. These codes are said to have rate b/m. 

13We were careless in not specifying whether the constraint must be satisfied for each degree of freedom or 
overall as a time-average. It is not hard to show, however, that the mutual information is maximized when the 
same energy is used in each degree of freedom. 

Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



8.8. CONVOLUTIONAL CODES 289 

A convolutional code looks very much like a discrete filter. Instead of having a single input and 
output stream, however, we have b input streams and m output streams. For the example given 
here, the number of input streams is b = 1 and the number of output streams is m = 2,  thus  
producing two output bits per input bit. There is another difference between a convolutional 
code and a discrete filter; the inputs and outputs for a convolutional code are binary and the 
addition is modulo 2. Consider the example below in Figure 8.8. 

Information bits 
Dk 

� Dk−1 

� 

� Dk−2 

� 

�� 

�� 

� 

� � � 

� 

Uk,1 

Uk,2 

� 

Figure 8.8: Example of a convolutional code 

For the example above, the equations for the outputs are 

Uk,1 = Dk ⊕ Dk−1 ⊕ Dk−2 

Uk,2 = Dk ⊕ Dk−2. 

Thus each of the two output streams are linear modulo two convolutions of the input stream. 
This encoded pair of binary streams can now be mapped into a pair of signal streams such 
as antipodal signals ±a. This pair of signal streams can then be interleaved and modulated 
by a single stream of Nyquist pulses at twice the rate. This baseband waveform can then be 
modulated to passband and transmitted. 

The structure of this code can be most easily visualized by a “trellis” diagram as illustrated in 
Figure 8.9. 
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Figure 8.9: Trellis Diagram; each transition is labeled with the input and corresponding output 

To understand this trellis diagram, note from Figure 8.8 that the encoder is characterized at 
any epoch k by the previous binary digits, Dk−1 and Dk−2. Thus the encoder has four possible 
states, corresponding to the four possible values of the pair Dk−1, Dk−2. Given any of these 
four states, the encoder output and the next state depend only on the current binary input. 
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Figure 8.9 shows these four states arranged vertically and shows time horizontally. We assume 
the encoder starts at epoch 0 with D−1 = D−2 = 0.  

In the convolutional code of the above example, the output at epoch k depends on the current 
input and the previous two inputs. In this case, the constraint length of the code is 2. In general 
the output could depend on the input and the previous n inputs, and the constraint length is 
then defined to be n. If the constraint length is n (and a single binary digit enters the encoder 
at each epoch k), then there are 2n possible states, and the trellis diagram contains 2n nodes at 
each time instant rather than 4. 

As we have described convolutional codes above, the encoding starts at time 1 and then continues 
forever. In practice, because of packetization of data and various other reasons, the encoding 
usually comes to an end after some large number, say k0, of binary digits have been encoded. 
After Dk0 enters the encoder, two final 0’s enter the encoder, at epochs (k0+1) and (k0+2), and 
4 final encoded digits come out of the encoder. This restores the state of the encoder to state 0, 
which, as we see later, is very useful for decoding. For the more general case with a constraint 
length of n, we need n final zeros to restore the encoder to state 0. Altogether, k0 inputs lead to 
2(k0 + n) outputs, for a code rate of k0/[2(k0 + n)]. Since k0 is usually large relative to n, this 
is still referred to as a rate 1/2 code. Figure 8.10 below shows the part of the trellis diagram 
corresponding to this termination. 

k0−1 k0 k0+1 k0+2 
0 00 0 00 0 00 0 0000
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1 11 1 11→ →
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�������
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→ → → →... 

...
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11→ → → →

1 00→
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1 00→
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��
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��
��

��
��

� 

�1→01 �1→01 
0 01 0 01 0 01→

��� →
�� 

→

01


11

1 10 1 10→ →

Figure 8.10: Trellis Termination 

8.8.1 Decoding of convolutional codes 

Decoding a convolutional code is essentially the same as using detection theory to choose between 
each pair of codewords, and then choosing the best overall (the same as done for the orthogonal 
code). There is one slight conceptual difference in that, in principle, the encoding continues 
forever. When the code is terminated, however, this problem does not exist, and in principle 
one takes the maximum likelihood choice of all the (finite length) possible codewords. 

As usual, assume that the incoming binary digits are iid and equiprobable. This is reasonable 
if the incoming bit stream has been source encoded. This means that the codewords out to any 
given length are equally likely, which then justifies maximum likelihood (ML) decoding. 

ML detection is also used so that codes for error correction can be designed independently of the 
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source data to be transmitted. For all the codes under discussion, the error probability using 
ML decoding is independent of the transmitted codeword. Thus ML decoding is robust in the 
sense that the error probability is independent of the probability distribution of the incoming 
bits. 

Another issue, given iid inputs, is determining what is meant by probability of error. In all of 
the examples above, given a received sequence of symbols, we have attempted to choose the 
codeword that minimizes the probability of error for the entire codeword. An alternative would 
have been to minimize the probability of error individually for each binary information digit. It 
turns out to be easier to minimize the sequence error probability than the bit error probability. 
This in fact is what happens when we use ML detection between codewords, as suggested above. 

In decoding for error correction, the objective is almost invariably to minimize the sequence 
probability of error. Along with the convenience suggested above, a major reason is that a 
binary input is usually a source coded version of some other source sequence or waveform, and 
thus a single output error is often as serious as multiple errors within a codeword. ML detection 
on sequences is assumed in what follows. 

8.8.2 The Viterbi algorithm 

The Viterbi algorithm is an algorithm for performing ML detection for convolutional codes. 
Assume for the time being that the code is terminated as in Figure 8.10. It will soon be seen 
that whether or not the code is terminated is irrelevant. The algorithm will now be explained 
for the example above and for the assumption of WGN; the extension to arbitrary convolutional 
codes will be obvious except for the notational complexity of the general case. For any given 
input d1, . . .  , dk0 , let the encoded sequence be u1,1, u1,2, u2,1, u2,2 . . .  , uk0+2,2 and let the channel 
output, after modulation, addition of WGN, and demodulation, be v1,1, v1,2, v2,1, v2,2 . . .  , vk0+2,2. 

There are 2k0 possible codewords, corresponding to the 2k0 possible binary k0-tuples d1, . . .  , dk0 , 
so an unimaginative approach to decoding would be to compare the likelihood for each of these 
codewords. For large k0, even with today’s technology, such an approach would be prohibitive. 
It turns out, however, that by using the trellis structure of Figure 8.9, this decoding effort can 
be greatly simplified. 

Each input d1, . . .  , dk0 (i.e., each codeword) corresponds to a particular path through the trellis 
from epoch 1 to k0+2, and each path, at each epoch k, corresponds to a particular trellis state. 

Consider two paths d1, . . .  , dk0 and d′1, . . .  , d′k0 
through the trellis that pass through the same 

state at time k+ (i.e., at the time immediately after the input and state change at epoch 
k) and remain together thereafter. Thus dk+1, . . .  , dk0 = d′k+1, . . .  , d′k0 

. For example, from 
Figure 8.8, we see that (0, . . .  , 0) and 1, 0, . . .  , 0 are both in state 00 at 3+ and both remain 
in the same state thereafter. Since the two paths are in the same state at k+ and have the 
same inputs after this time, they both have the same encoder outputs after this time. Thus 
uk+1,i, . . .  , uk0+2,i = u′

k+1,i, . . .  , u′
k0+2,i for i = 1, 2. 

Since each channel output rv Vk,i is given by Vk,i = Uk,i + Zk,i and the Gaussian noise variables 
Zk,i are independent, this means that for any channel output v1,1, . . .  , vk0+2,2, 

f(v1,1, . . .  , vk0+2,2|d1, . . .  , dk0) = 
f(v1,1, . . .  , vk,2|d1, . . .  , dk0) . 

f(v1,1, . . .  , vk0+2,2|d′1, . . .  , d′k0
) f(v1,1, . . .  , vk,2|d′1, . . .  , d′k0

)

In plain English, this says that if two paths merge at time k+ and then stay together, the 
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likelihood ratio depends on only the first k output pairs. Thus if the right hand side exceeds 1, 
then d1, . . .  , dk0 is more likely than d′1, . . .  , d′k0 

. This conclusion holds no matter how the final 
inputs dk+1 . . .  , dk0 are chosen. 

We then see that when two paths merge at a node, no matter what the remainder of the path 
is, the most likely of the paths is the one that is most likely at the point of the merger. Thus, 
whenever two paths merge, the least likely of the paths can be eliminated at that point. Doing 
this elimination successively from the smallest k for which paths merge (3 for the example), 
there is only one survivor for each state at each epoch. 

To be specific, let h(d1, . . .  , dk) be the state at time k+ with input d1, . . .  , dk. For the example, 
h(d1, . . .  , dk) = (dk−1, dk). Let 

fmax(k, s) = max f(v1,1, . . .  , vk,2 d1, . . .  , dk). 
h(d1,... ,dk)=s 

|

These quantities can then be calculated iteratively for each state and each time k by the iteration 

fmax(k + 1, s) = max fmax(k, r) f(vk,1 u1(r s))f(vk,2 u2(r s)). (8.90) 
r:r→s 

· | → | →

where the maximization is over the set of states r that have a transition to state s in the trellis 
and u1(r s) and u2(r s) are the two outputs from the encoder corresponding to a transition → →
from r to s. 

This expression is simplified (for WGN) by taking the log, which is proportional to the negative 
squared distance between v and u . For the antipodal signal case in the example, this is further 
simplified by simply taking the dot product between v and u . Letting L(k, s) be this dot 
product, 

L(k + 1, s) = max L(k, r) +  vk,1u1(r s)) + vk,2u2(r s)). (8.91) 
r:r s 

→ →
→

What this means is that at each epoch (k+1), it is necessary to calculate the inner product in 
(8.91) for each link in the trellis going from k to k + 1. These must be maximized over r for 
each state s at epoch (k+1). The maximum must then be saved as L(k + 1, s) for each s. One 
must, of course, also save the paths taken in arriving at each merging point. 

Those familiar with dynamic programming will recognize this as an example of the dynamic

programming principle.


The entire computation for decoding a block of k0 information bits is proportional to 4(k0+2).

In the more general case where the constraint length of the convolutional coder is n rather than

2, there are 2n states and the computation is proportional to 2n(k0+n). The Viterbi algorithm is

usually used in cases where the constraint length is moderate, say 6 - 12, and in these situations,

the computation is quite moderate, expecially compared with 2k0 .


Usually one does not wait until the end of the block to start decoding. Usually when the above 
computation is done at epoch k, all the paths up to k′ have merged for k′ a few constraint lengths 
less than k. In this case, one can decode without any bound on k0, and the error probability is 
viewed in terms of “error events” rather than block error. 

8.9 Summary 

This chapter analyzed the last major segment of a general point-to-point communication system 
in the presence of noise, namely how to detect the input signals from the noisy version presented 
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at the output. Initially the emphasis was on detection alone, i.e., the assumption was that the 
rest of the system had been designed and the only question remaining was how to extract the 
signals. 

At a very general level, the problem of detection in this context is trivial. That is, under 
the assumption that the statistics of the input and the noise are known, the sensible problem is 
maximum a posteriori probability decoding: find the a posteriori probability of all the hypotheses 
and choose the largest. This is somewhat complicated by questions of whether to do sequence 
detection or bit detection, but these questions in a sense are details. 

At a more specific level, however, the detection problem led to many interesting insights and 
simplifications, particularly for WGN channels. A particularly important simplification is the 
principle of irrelevance, which says that components of the received waveform in degrees of 
freedom not occupied by the signal of interest (or statistically related signals) can be ignored 
in detection of those signals. Looked at in another way, this said that matched filters could be 
used to extract the degrees of freedom of interest. 

The last part of the chapter introduced coding and decoding. The focus changed here from 
decoding/detection to the question of how coding could change the input waveforms so as to 
make the decoding more effective. In other words, a MAP detector can be designed for any signal 
structure, but the real problem is to design both signal structure and detection for effective 
performance. 

At this point, the noisy-channel coding theorem came into the picture. If R < C, then the 
probability of error can be reduced arbitrarily by increasing block length (or constraint length 
in the case of convolutional codes). This means that there is no “optimal” solution to the 
joint problem of choosing signal structure and detection, but rather a trade-off between error 
probability, delay, and complexity. 

Thus the problem must involve not only overcoming the noise, but doing this with reasonable 
delay and complexity. The following chapter considers some of these problems in the context of 
wireless communication. 

8A Appendix: Neyman-Pearson threshold tests 

We have seen above that any binary MAP test can be formulated as a comparison of a likelihood 
ratio with a threshold. It turns out that many other detection rules can also be viewed as 
threshold tests on likelihood ratios. One of the most important binary detection problems 
for which a threshold test turns out to be essentially optimum is the Neyman-Pearson test. 
This is often used in those situations in which there is no sensible way to choose a priori 
probabilities. In the Neyman-Pearson test, an acceptable value α is established for Pr{e |U=1}, 
and, subject to the constraint, Pr{e |U=1} ≤ α, a Neyman-Pearson test is a test that minimizes 
Pr{e |U=0}. We shall show in what follows that such a test is essentially a threshold test. 
Before demonstrating this, we need some terminology and definitions. 

Define q0(η) to be Pr{e |U=0} for a threshold test with threshold η, 0  < η < ∞ and similarly 
define q1(η) as Pr{e |U=1}. Thus for 0 < η < ∞, 

q0(η) = Pr{Λ(V )<η |U=0}; q1(η) = Pr{Λ(V )≥η |U=1}. (8.92) 

Define q0(0) as limη 0 q0(η) and q1(0) as limη 0 q1(η). Clearly q0(0) = 0 and in typical situations → →
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q1(0) = 1. More generally, q1(0) = Pr{Λ(V )>0|U=1}. In other words, q1(0) is less than 1 if 
there is some set of observations that are impossible under U=0 but have positive probability 
under U=1. Similarly, define q0(∞) as limη→∞ q0(η) and q1(∞) as limη→∞ q1(η). We have 
q0(∞) = Pr{Λ(V ) < ∞} and q1(∞) = 0.  

Finally, for an arbitrary test A, threshold or not, denote Pr{e | U=0} as q0(A) and Pr{e | U=1}
as q1(A). 

Using (8.92), we can plot q0(η) and q1(η) as parametric functions of η; we call this the error 
curve. 3 Figure 8.11 illustrates this error curve for a typical detection problem such as (8.17) 
and (8.18) for antipodal binary signalling. We have already observed that, as the threshold η is 
increased, the set of v mapped into Ũ=0 decreases, thus increasing q0(η) and decreasing q1(η). 
Thus, as η increases from 0 to ∞, the curve in Figure 8.11 moves from the lower right to the 
upper left. 

1 

q0(η) +  ηq1(η) �
�
�
�
�
�
�

q0(∞) 

��� increasing η 

slope −η q0(η) 
q1(0) 

q1(η) 1 
Figure 8.11: The error curve; q1(η) and q0(η) as parametric functions of η 

Figure 8.11 also shows a straight line of slope −η through the point (q1(η), q0(η)) on the error 
curve. The following lemma shows why this line is important. 

Lemma 1: For each η, 0<η<∞, the line of slope −η through the point (q1(η), q0(η)) lies on or 
beneath all other points (q1(η′), q0(η′)) on the error curve, and also lies beneath (q1(A), q0(A)) 
for all tests A. 

Before proving this lemma, we give an example of the error curve for a discrete observation 
space. 

Example of Discrete Observations: Figure 8.12 shows the error curve for an example in 
which the hypotheses 0 and 1 are again mapped 0 → +a and 1 → −a. Assume that the 
observation V can take on only four discrete values +3,+1,−1,−3. The probabilities of each 
these values, conditional on U=0 and U=1, are given in the figure. As indicated there, the 
likelihood ratio Λ(v) then takes the values 4, 3/2, 2/3, and 1/4, corresponding respectively to 
v = 3, 1,−1, and −3. 

A threshold test at η decides Ũ = 0 if and only if Λ(V ) ≥ η. Thus, for example, for any η ≤ 1/4, 
all possible values of v are mapped into Ũ = 0. In this range, q1(η) = 1 since U = 1 always 
causes an error. Also q0(η) = 0 since U = 0 never causes an error. In the range 1/4 < η  ≤ 2/3, 
since Λ(−3) = 1/4, the value -3 is mapped into Ũ = 1 and all other values into Ũ = 0. In this 
range, q1(η) = 0.6 since, when U = 1, an error occurs unless V = −3. 

3In the radar field, one often plots 1 − q0(η) as a function of q1(η). This is called the receiver operating 
characteristic (ROC). If one flips the error curve vertically around the point 1/2, the ROC results. 
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In the same way, all threshold tests with 2/3 < η  ≤ 3/2 give rise to the decision rule that maps 
-1 and -3 into Ũ = 1 and 1 and 3 into Ũ = 0. In this range q1(η) =  q0(η) = 0.3. As shown, there 
is another decision rule for 3/2 < η  ≤ 4 and a final decision rule for η >  4. 

1 �Ũ = 1 for all v 

q0(η)

v P (v|0) P (v|1) Λ(v) 0.6
 �Ũ = 1 for v = 1,−1,−3 
3 0.4 0.1 4 
1 0.3 0.2 3/2

-1 0.2 0.3 2/3 0.3
 �Ũ = 1 for v = −1,−3 
-3 0.1 0.4 1/4 

���������� 
0.1 �Ũ = 1 for v = −3�Ũ = 0 for all v 

0.1 0.3 0.6 1 
q1(η) 

Figure 8.12: The error curve for a discrete observation space. There are only five points 
making up the ‘curve,’ one corresponding to each of the five distinct threshold rules. For 
example, the threshold rule Ũ = 1 only for v = −3, yields (q1(η), q0(η)) = (0.6, 0.1) for all 
η in the range 1/4 to 2/3. A straight line of slope −η through that point is also shown for 
η = 1/2. The lemma asserts that this line lies on or beneath each point of the error curve and 
each point (q1(A), q0(A) for any other test. Note that as η increases or decreases, this line will 
rotate around the point (0.6, 0.1) until η becomes larger than 2/3 or smaller than 1/4, and 
then starts to rotate around the next point in the error curve. 

The point of this example is that a finite observation space leads to an error curve that is simply 
a finite set of points. It is also possible for a continuously varying set of outputs to give rise 
to such an error curve when there are only finitely many possible likelihood ratios. The figure 
illustrates what the lemma means for error curves consisting only of a finite set of points. 

Proof of lemma: Consider the line of slope −η through the point (q1(η), q0(η)). From plane 
geometry, as illustrated in Figure 8.11, we see that the vertical axis intercept of this line is 
q0(η)+ηq1(η). To interpret this line, define p0 and p1 as a priori probabilities such that η = p1/p0. 
The overall error probability for the corresponding MAP test is then 

q(η) =  p0q0(η) +  p1q1(η) 
= p0 [q0(η) +  ηq1(η)]; η = p1/p0. (8.93) 

Similarly, the overall error probability for an arbitrary test A with the same a priori probabilities 
is 

q(A) =  p0 [q0(A) +  ηq1(A)]. (8.94) 

From Theorem 8.1.1, q(η) ≤ q(A), so, from (8.93) and (8.94), 

q0(η) +  η q1(η) ≤ q0(A) +  η q1(A). (8.95) 

We have seen that the left side of (8.95) is the vertical axis intercept of the line of slope −η 
through (q1(η), q0(η)). Similarly, the right side is the vertical axis intercept of the line of slope 
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−η through (q1(A), q0(A)). This says that the point (q1(A), q0(A)) lies on or above the line of 
slope −η through (q1(η), q0(η)). This applies to every test A, which includes every threshold 
test. 

The lemma shows that if the error curve gives q0(η) as a differentiable function of q1(η) (as in 
the case of Figure 8.11), then the line of slope −η through (q1(η), q0(η)) is a tangent, at point 
(q1(η), q0(η)), to the error curve. Thus in what follows we denote this line as the η-tangent to 
the error curve. Note that the error curve of Figure 8.12 is not really a curve at all, but the 
η-tangent, as defined above and illustrated in the figure for η = 2/3, still lies on or beneath all 
points of the error curve and all achievable points (q1(A), q0(A)), as proven above. 

Since, for each test A, the point (q1(A), q0(A)) lies on or above each η-tangent, it also lies on or 
above the supremum of these η-tangents over 0 < η <  ∞. It also follows, then, that for each 
η′, 0  < η′ < ∞, (q1(η′), q0(η′)) lies on or above this supremum. Since (q1(η′), q0(η′)) also lies on 
the η′-tangent, it lies on or beneath the supremum, and thus must lie on the supremum. We 
conclude that each point of the error curve lies on the supremum of the η-tangents. 

Although all points of the error curve lie on the supremum of the η-tangents, all points of the 
supremum are not necessarily points of the error curve, as seen from Figure 8.12. We shall 
see shortly, however, that all points on the supremum are achievable by a simple extension of 
threshold tests. Thus we call this supremum the extended error curve. 

For the example in Figure 8.11 the extended error curve is the same as the error curve itself. 
For the discrete example in Figure 8.12, the extended error curve is shown in Figure 8.13. 
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Figure 8.13: The extended error curve for the discrete observation example of Figure 8.12. 
From Lemma 1, for each slope −η, the η-tangent touches the error curve. Thus, the line 
joining two adjacent points on the error curve must be an η-tangent for its particular slope, 
and therefore must lie on the extended error curve. 

To understand the discrete case better, assume that the extended error function has a straight 
line portion of slope −η∗ and horizontal extent γ. This implies that the distribution function 
of Λ(V ) given U=1 has a discontinuity of magnitude γ at η∗. Thus there is a set V∗ of one 
or more v with Λ(v) =  η∗, Pr{V∗|U=1} = γ, and Pr{V∗|U=0} = η∗γ. For a MAP test with 
threshold η∗, the overall error probability is not effected by whether v ∈ V∗ is detected as Ũ=0 
or Ũ=1. Our convention is to detect v ∈ V∗ as Ũ=0, which corresponds to the lower right point 
on the straight line portion of the extended error curve. The opposite convention, detecting 
v ∈ V∗ as Ũ=1 reduces the error probability given U=1 by γ and increases the error probability 
given U=0 by η∗γ, i.e., it corresponds to the upper left point on the straight line portion of the 
extended error curve. 
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Note that when we were interested in MAP detection, it made no difference how v ∈ V∗ was 
detected for the threshold η∗. For the Neyman-Pearson test, however, it makes a great deal of 
difference since q0(η∗) and q1(η∗) are changed. In fact, any point on the straight line in question 
can be achieved by detecting v ∈ V∗ randomly. As the probabiliity of choosing Ũ=0 is increased 
from 0 to 1 (given v ∈ V∗), the point (q0(η), q1(η)) moves from the upper left to lower right end 
of the given line segment. In other words, the extended error curve is the curve relating q1 to 
q0 using a randomized threshold test. For a given η∗, of course, only those v ∈ V∗ are detected 
randomly. 

To summarize, the Neyman-Pearson test is a randomized threshold test. For a constraint α on 
Pr{e|U=1}, we choose the point α on the abscissa of the extended error curve and achieve the 
corresponding ordinate as the minimum Pr{e|U=1}. If that point on the extended error curve 
lies within a straight line segment of slope η∗, a randomized test is used for those observations 
with likelihood ratio η∗. 

Since the extended error curve is a supremum of straight lines, it is a convex function. Since 
these straight lines all have negative slope, it is a monotonic decreasing14 function. Thus, Figures 
8.11 and 8.13 represent the general behavior of extended error curves, with the slight possible 
exception mentioned above that the end points need not have one of the error probabilities equal 
to 1. 

The following theorem summarizes the results about Neyman-Pearson tests. 

Theorem 8A.1. The extended error curve is convex and strictly decreasing between 
(q1(∞), q0(∞)) and (q1(0), q0(0)). For a constraint α on Pr{e|U=1}, the minimum value of 
Pr{e|U=0} is given by the ordinate of the extended error curve corresponding to the abscissa α 
and is achieved by a randomized threshold test. 

There is one more interesting variation on the theme of threshold tests. If the a priori prob­
abilities are unknown, we might want to minimize the maximum probability of error. That 
is, we visualize choosing a test followed by nature choosing a priori probabilities to maximize 
the probability of error. Our objective is to minimize the probability of error under this worst 
case assumption. The resulting test is called a minmax test. It can be seen geometrically from 
Figures 8.11 or 8.13 that the minmax test is the randomized threshold test at the intersection 
of the extended error curve with a 45◦ line from the origin. 

If there is symmetry between U = 0 and U = 1 (as in the Gaussian case), then the extended 
error curve will be symmetric around the 45◦ degree line, and the threshold will be at η = 1 (i.e., 
the ML test is also the minmax test). This is an important result for Gaussian communication 
problems, since it says that ML detection, i.e., minimum distance detection is robust in the 
sense of not depending on the input probabilities. If we know the a priori probabilities, we can 
do better than the ML test, but we can do no worse. 

14To be more precise, it is strictly decreasing between the end points (q1(∞), q0(∞)) and (q1(0), q0(0)). 
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8.E Exercises 

8.1. (Binary minimum cost detection) (a) Consider a binary hypothesis testing problem with a 
priori probabilities p0, p1 and likelihoods f

V |U 
(v|i), i = 0, 1. Let Cij be the cost of deciding 

on hypothesis j when i is correct. Conditional on an observation V = v, find the expected 
cost (over U = 0, 1) of making the decision Ũ = j for j = 0, 1. Show that the decision of 
minimum expected cost is given by 

Ũmincost = arg minj C0jpU|V 
(0|v) +  C1j pU|V 

(1|v) 

(b) Show that the min cost decision above can be expressed as the following threshold test: 

V |UΛ(v) =  
f (v | 0) ≥Ũ=0 p1(C10 − C11) = η. 
f

V |U 
(v | 1) <Ũ=1 p0(C01 − C00) 

(c) Interpret the result above as saying that the only difference between a MAP test and 
a minimum cost test is an adjustment of the threshold to take account of the costs. i.e., 
a large cost of an error of one type is equivalent to having a large a priori probability for 
that hypothesis. 

8.2. Consider the following two equiprobable hypotheses: 

U = 0  :  V1 = a cos Θ + Z1, V2 = a sin Θ + Z2,


U = 1  :  V1 = −a cos Θ + Z1, V2 = −a sin Θ + Z2.


Z1 and Z2 are iid N (0, σ2), and Θ takes on the values {−π/4, 0, π/4} each with probability

1/3.

Find the ML decision rule when V1, V2 are observed.

Hint: Sketch the possible values of V1, V2 for Z = 0 given each hypothesis. Then, without

doing any calculations try to come up with a good intuitive decision rule. Then try to

verify that it is optimal.


8.3. Let

Vj = Sj Xj + Zj for 1 ≤ j ≤ 4


where {Xj ; 1  ≤ j ≤ 4} are iid N (0, 1) and {Zj ; 1  ≤ j ≤ 4} are iid N (0, σ2) and independent 
of {Xj ; 1  ≤ j ≤ 4}. {Vj ; 1  ≤ j ≤ 4} are observed at the output of a communication system 
and the input is a single binary random variable U which is independent of {Zj ; 1  ≤ j ≤ 4}
and {Xj ; 1  ≤ j ≤ 4}. Given that U = 0,  S1 = S2 = 1 and S3 = S4 = 0. Given U = 1,  
S1 = S2 = 0 and S3 = S4 = 1.  

(a) Find the log likelihood ratio 

LLR(v) = ln  
fV |U (v |0 

. 
fV |U (xn|1 

(b) Let Ea = |V1|2 + |V2|2 and Eb = |V3|2 + |V4|2 . Explain why {Ea, Eb} form a sufficient 
statistic for this problem and express the log likelihood ratio in terms of the sample values 
of {Ea, Eb}. 
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(c) Find the threshold for ML detection. 

(d) Find the probability of error. Hint: Review Exercise 6.1. Note: we will later see that 
this corresponds to binary detection in Rayleigh fading. 

8.4. Consider binary antipodal MAP detection for the real vector case.	 Modify the picture 
and argument in Figure 8.4 to verify the algebraic relation between the squared energy 
difference and the inner product in (8.21). 

8.5. Derive (8.35), i.e., that k,j yk,jbk,j = 12 y(t)b(t) dt. Explain the factor of 1/2. 

8.6. In this problem, you will derive the inequalities 

1 1	 1
1 − 

x x
√

2π
e−x2/2 ≤ Q(x) ≤ 

x
√

2π
e−x2/2; for x >  0, (8.96)

2 

where Q(x) = (2π)−1/2 ∞ exp(−z2/2) dz is the “tail” of the Normal distribution. The x 
purpose of this is to show that, when x is large, the right side of this inequality is a very 
tight upper bound on Q(x). 
(a) By using a simple change of variable, show that 

Q(x) =  √1
2π

e−x2/2

0 

∞ 

exp 
� 
−y 2/2 − xy 

� 
dy. 

(b) Show that 

1 − y 2/2 ≤ exp(−y 2/2) ≤ 1. 

(c) Use parts (a) and (b) to establish (8.96) 

8.7. (Other bounds on Q(x)) (a) Show that the following bound holds for any γ and η such 
that 0 ≤ γ and 0 ≤ ηw: 

Q(γ + η) ≤ Q(γ) exp[−ηγ − γ2/2] 

Hint: Start with Q(γ + η) =  γ+η exp[−x2/2] dx and use the change of variable y = x − η. 

(b) Use part (a) to show that for all η ≥ 0, 

1 
Q(η) ≤ exp[−η2/2]

2 

(c) Use (a) to show that for all 0 ≤ γ ≤ w, 

Q(w) Q(γ) 
exp[−w2/2] 

≤ 
exp[−γ2/2] 

Note: (8.96) shows that Q(w) goes to 0 with increasing w as a slowly varying coefficient 
time exp[−w2/2]. This demonstrates that the coefficient is decreasing for w ≥ 0. 
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8.8. (Orthogonal signal sets) An orthogonal signal set is a set A = {am, 0 ≤ m ≤ M − 1} of M 
orthogonal vectors in RM with equal energy E; i.e., 〈am,a j 〉 = Eδmj . 
(a) Compute the normalized rate ρ of A in bits per two dimensions. Compute the average 
energy Eb per information bit. 
(b) Compute the minimum squared distance d2 (A) between these signal points. Show min

that every signal has M−1 nearest neighbors. 
(c) Let the noise variance be N0/2 per dimension. Describe a ML detector on this set of 
M signals. Hint: Represent the signal set in an orthonormal expansion where each vector 
is collinear with one coordinate. Then visualize making binary decisions between each pair 
of possible signals. 

8.9. (Orthogonal signal sets; continuation of Exercise 8.8) Consider a set A = {am, 0 ≤ m ≤
M − 1} of M orthogonal vectors in RM with equal energy E. 
(a) Use the union bound to show that Pr{e}, using ML detection, is bounded by 

Pr{e} ≤ (M − 1)Q( E/N0). 

(b) Let M → ∞ with Eb = E/ log M held constant. Using the upper bound for Q(x) in  
Exercise 8.7b, show that if Eb/N0 > 2 ln 2 then limM→∞ Pr(e) = 0. How close is this to 
the ultimate Shannon limit on Eb/N0? What is the limit of the normalized rate ρ? 

8.10. (Lower bound to Pr(e) for orthogonal signals) (a) Recall the exact expression for error 
probability for orthogonal signals in WGN from (8.47), � � 

M

−1 
� 

Pr(e) =  
∞ 

fW0|A(w0|a0) Pr  
m=1 

(Wm ≥ w0|A = a0) dw0. 
−∞ 

Explain why the events Wm ≥ w0 for 1 ≤ m ≤ M − 1 are iid conditional on A = a0 and 
W0 = w0. 
(b) Demonstrate the following two relations for any w0, 

M

−1 

Pr (Wm ≥ w0|A = a0) = 1  − [1 − Q(w0)]M−1 

m=1 

≥ (M − 1)Q(w0) − 
[(M − 1)Q(w0)]2 

2 

(c) Define γ1 by (M − 1)Q(γ1) = 1. Demonstrate the following: 

M−1 � 
(M−1)Q(w0) 

Pr 


 

A = a0) 
for w0 > γ12(Wm ≥ w0| ≥ 1

2 for w0 ≤ γ1 m=1 

(d) Show that 

1
Pr(e) ≥ Q(α − γ1)2

(e) Show that limM→∞ γ1/γ = 1 where γ = 
√

2 ln  M . Use this to compare the lower bound 
in part (d) to the upper bounds for cases 1 and 2 in Subsection 8.5.3. In particular show 
that Pr(e) ≥ 1/4 for γ1 > α  (the case where capacity is exceeded). 
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(f) Derive a tighter lower bound on Pr(e) than part (d) for the case where γ1 ≤ α. Show 
that the ratio of the log of your lower bound and the log of the upper bound in Subsection 
8.5.3 approaches 1 as M → ∞. Note: this is much messier than the bounds above. 

8.11. Section 8.3.4 discusses detection for binary complex vectors in WGN by viewing complex n-
dimensional vectors as 2n-dimensional real vectors. Here you will treat the vectors directly 
as n-dimensional complex vectors. Let Z = (Z1, . . .  , Zn)T be a vector of complex iid 
Gaussian rv’s with iid real and imaginary parts, each N (0, N0/2). The input U is binary 
antipodal, taking on values a or −a , The observation V is U + Z , 
(a) The probability density of Z is given by 

n

fZ (z ) =  
1

exp 
� −|zj |2 = 

1 
exp 

−‖z‖2 

.
(πN0)n

j=1 
N0 (πN0)n N0 

Explain what this probability density represents (i.e., probability per unit what?). 
(b) Give expressions for f

V |U 
(v |a) and f

V |U 
(v | −  a). 

(c) Show that the log likelihood ratio for the observation v is given by 

LLR(v) =  
−‖v − a‖2 + ‖v + a‖2 

. 
N0 

(d) Explain why this implies that ML detection is minimum distance detection (defining 
the distance between two complex vectors as the norm of their difference). 

(e) Show that LLR(v) can also be written as 4�(〈v , a〉) .N0 

(f) The appearance of the real part, �(〈v , a〉), above is surprising. Point out why log 
likelihood ratios must be real. Also explain why replacing �(〈v , a〉) by  |〈v , a〉| in the 
above expression would give a non-sensical result in the ML test. 
(g) Does the set of points {v : LLR(v) = 0} form a complex vector space? 

8.12. Let D be the function that maps vectors in Cn into vectors in R2n by the mapping 

a = (a1, a2, . . .  , an) → (�a1,�a2, . . .  ,�an,�a1,�a2, . . .  ,�an) =  D(a) 

n(a) Explain why a ∈ C and ia (i = 
√
−1)are contained in the one dimensional complex 

nsubspace of C spanned by a . 
(b) Show that D(a) and D(ia) are orthogonal vectors in R2n . 

a(c) For v ,a ∈ Cn, the projection of v on a is given by v |a = 〈‖
v
a
,a
‖
〉 
‖a‖ . Show that D(v |a) 

is the projection of D(v) onto the subspace of R2n spanned by D(a) and D(ia). 
a(d) Show that D(�[〈v ,a〉] ) is the further projection of D(v) onto  D(a).‖a‖ ‖a‖ 

8.13. Consider 4-QAM with the 4 signal points u = ±a±ia. Assume Gaussian noise with spectral 
density N0/2 per dimension. 
(a) Sketch the signal set and the ML decision regions for the received complex sample value 
y. Find the exact probability of error (in terms of the Q function) for this signal set using 
ML detection. 
(b) Consider 4-QAM as two 2-PAM systems in parallel. That is, a ML decision is made 
on �(u) from �(v) and a decision is made on �(u) from �(v). Find the error probability 
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(in terms of the Q function) for the ML decision on �(u) and similarly for the decision on 
�(u). 
(c) Explain the difference between what has been called an error in part (a) and what has 
been called an error in part (b). 
(d) Derive the QAM error probability directly from the PAM error probability. 

8.14. Consider two 4-QAM systems with the same 4-QAM constellation 

s0 = 1 +  i, s1 = −1 +  i, s2 = −1 − i, s3 = 1  − i. 

For each system, a pair of bits is mapped into a signal, but the two mappings are different: 

Mapping 1: 00 s0, 01 s1, 10 s2, 11 s3→ → → → 

Mapping 2: 00 s0, 01 s1, 11 s2, 10 s3→ → → → 

The bits are independent and 0’s and 1’s are equiprobable, so the constellation points are 
equally likely in both systems. Suppose the signals are decoded by the minimum distance 
decoding rule, and the signal is then mapped back into the two binary digits. Find the 
error probability (in terms of the Q function) for each bit in each of the two systems. 

8.15. Re-state Theorem 8.4.1 for the case of MAP detection. Assume that the inputs U1, . . .  , Un 

are independent and each have the a priori distribution p0, . . .  , pM−1. Hint: start with 
(8.41) and (8.42) which are still valid here. 

8.16. The following problem relates to a digital modulation scheme often referred to as minimum 
shift keying (MSK). Let 

2E cos(2πf0t) if 0  ≤ t ≤ T , 
s0(t) =  

0 
T

otherwise.


E 
T
2 cos(2πf1t) if 0  ≤ t ≤ T , 

s1(t) =  
0 otherwise.


a) Compute the energy of the signals s0(t), s1(t). You may assume that f0T � 1 and 
f1T � 1. 
(b) Find conditions on the frequencies f0, f1 and the duration T to ensure both that the 
signals s0(t) and s1(t) are orthogonal and that s0(0) = s0(T ) =  s1(0) = s1(T ). Why do 
you think a system with these parameters is called minimum shift keying? 
(c) Assume that the parameters are chosen as in (b). Suppose that, under U=0, the 
signal s0(t) is transmitted, and under U=1, the signal s1(t) is transmitted. Assume that 
the hypotheses are equally likely. Let the observed signal be equal to the sum of the 
transmitted signal and a White Gaussian process with spectral density N0/2. Find the 
optimal detector to minimize the probability of error. Draw a block diagram of a possible 
implementation. 
(d) Compute the probability of error of the detector you have found in part (c). 
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8.17. Consider binary communication to a receiver containing k0 antennas. The transmitted 
signal is ±a. Each antenna has its own demodulator, and the received signal after demod­
ulation at antenna k, 1 ≤ k ≤ k0, is given by 

Vk = Ugk + Zk, 

where U is +a for U=0 and −a for U=1. Also gk is the gain of antenna k and Zk ∼ N (0, σ2) 
is the noise at antenna k; everything is real and U, Z1, Z2, . . .  , Zk0 are independent. In 
vector notation, V = Ug + Z where V = (v1, . . .  , vk0)

T etc. 

(a) Suppose that the signal at each receiving antenna k is weighted by an arbitrary real 
number qk and the signals are combined as Y = Vkqk = 〈V , q〉. What is the maximum k 
likelihood (ML) detector for U given the observation Y ? 
(b) What is the probability of error Pr(e) for this detector? 

(c) Let β = 〈g ,q〉 . Express Pr(e) in a form where q does not appear except for its effect ‖g‖‖q‖
on β. 

(d) Give an intuitive explanation why changing q to cq for some nonzero scalar c does not 
change Pr(e). 
(e) Minimize Pr(e) over all choices of q (or β) above.  
(f) Is it possible to reduce Pr(e) further by doing ML detection on V1, . . .  , Vk0 rather than 
restricting ourselves to a linear combination of those variables? 

(g) Redo part (b) under the assumption that the noise variables have different variances, 
i.e., Zk ∼ N (0, σ2). As before, U, Z1, . . .  , Zk0 are independent. k

(h) Minimize Pr(e) in part (g) over all choices of q . 

8.18. (a) The Hadamard matrix H1 has the rows 00 and 01. Viewed as binary codewords this 
is rather foolish since the first binary digit is always 0 and thus carries no information at 
all. Map the symbols 0 and 1 into the signals a and −a respectively, a >  0 and plot these 
two signals on a two dimensional plane. Explain the purpose of the first bit in terms of 
generating orthogonal signals. 
(b) Assume that the mod-2 sum of each pair of rows of Hb is another row of Hb for any 
given integer b ≥ 1. Use this to prove the same result for Hb+1. Hint: Look separately at 
the mod-2 sum of two rows in the first half of the rows, two rows in the second half, and 
two rows in different halves. 

8.19. (RM codes) (a) Verify the following combinatorial identity for 0 < r < m: 

r � 
m 

� r−1 � 
m−1

� r � 
m−1

� 
= + . 

j j j
j=0 j=0 j=0 

Hint: Note that the first term above is the number of binary m tuples with r or fewer 1’s. 
Consider separately the number of these that end in 1 and end in 0. 

r m(b) Use induction on m to show that k(r,m) =  j=0 j . Be careful how you handle r = 0  
and r = m. 

8.20. (RM codes) This exercise first shows that RM(r,m) ⊂ RM(r+1, m) for 0 ≤ r < m. It then 
shows that dmin(r,m) = 2m−r . 
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(a) Show that if RM(r−1, m−1) ⊂ RM(r,m−1) for all r, 0  < r < m, then 

RM(r−1, m) ⊂ RM(r,m) for all r, 0 < r  ≤ m 

Note: Be careful about r = 1 and r = m. 
(b) Let x = (u ,u ⊕ v) where u ∈ RM(r,m−1) and v ∈ RM(r−1, m−1). Assume that 
dmin(r,m−1) ≤ 2m−1−r and dmin(r−1, m−1) ≤ 2m−r. Show that if x is nonzero, it has at 
least 2m−r 1’s. Hint 1: For a linear code, dmin is equal to the weight (number of ones) in 
the minimum-weight nonzero codeword. Hint 2: First consider the case v = 0, then the 
case u = 0. Finally use part (a) in considering the case u = 0, v = 0 under the subcases 
u = v and u = v . 
(c) Use induction on m to show that dmin = 2m−r for 0 ≤ r ≤ m. 
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