
Chapter 3 

Quantization 

3.1 Introduction to quantization 

The previous chapter discussed coding and decoding for discrete sources. Discrete sources are 
a subject of interest in their own right (for text, computer files, etc.) and also serve as the 
inner layer for encoding analog source sequences and waveform sources (see Figure 3.1). This 
chapter treats coding and decoding for a sequence of analog values. Source coding for analog 
values is usually called quantization. Note that this is also the middle layer for waveform 
encoding/decoding. 
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Figure 3.1: Encoding and decoding of discrete sources, analog sequence sources, and 
waveform sources. Quantization, the topic of this chapter, is the middle layer and 
should be understood before trying to understand the outer layer, which deals with 
waveform sources. 

The input to the quantizer will be modeled as a sequence U1, U2, , of analog random variables · · ·  
(rv’s). The motivation for this is much the same as that for modeling the input to a discrete 
source encoder as a sequence of random symbols. That is, the design of a quantizer should be 
responsive to the set of possible inputs rather than being designed for only a single sequence of 
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64 CHAPTER 3. QUANTIZATION 

numerical inputs. Also, it is desirable to treat very rare inputs differently from very common 
inputs, and a probability density is an ideal approach for this. Initially, U1, U2, . . .  will be taken 
as independent identically distributed (iid) analog rv’s with some given probability density 
function (pdf) fU (u). 

A quantizer, by definition, maps the incoming sequence U1, U2, , into a sequence of discrete · · ·  
rv’s V1, V2, , where the objective is that V , for each m in the sequence, should represent U· · ·  m m 

with as little distortion as possible. Assuming that the discrete encoder/decoder at the inner 
layer of Figure 3.1 is uniquely decodable, the sequence V1, V2, will appear at the output of · · ·  
the discrete encoder and will be passed through the middle layer (denoted ‘table lookup’) to 
represent the input U1, U2, . The output side of the quantizer layer is called a ‘table lookup’ · · ·
because the alphabet for each discrete random variables Vm is a finite set of real numbers, and 
these are usually mapped into another set of symbols such as the integers 1 to M for an M 
symbol alphabet. Thus on the output side a look-up function is required to convert back to the 
numerical value Vm. 

As discussed in Section 2.1, the quantizer output Vm, if restricted to an alphabet of M possible 
values, cannot represent the analog input Um perfectly. Increasing M , i.e., quantizing more 
finely, typically reduces the distortion, but cannot eliminate it. 

When an analog rv U is quantized into a discrete rv V , the mean-squared distortion is defined 
to be E[(U−V )2]. Mean-squared distortion (often called mean-sqared error) is almost invari­
ably used in this text to measure distortion. When studying the conversion of waveforms into 
sequences in the next chapter, it will be seen that mean-squared distortion is a particularly 
convenient measure for converting the distortion for the sequence into the distortion for the 
waveform. 

There are some disadvantages to measuring distortion only in a mean-squared sense. For ex­
ample, efficient speech coders are based on models of human speech. They make use of the fact 
that human listeners are more sensitive to some kinds of reconstruction error than others, so as, 
for example, to permit larger errors when the signal is loud than when it is soft. Speech coding 
is a specialized topic which we do not have time to explore (see, for example, [10]. However, 
understanding compression relative to a mean-squared distortion measure will develop many of 
the underlying principles needed in such more specialized studies. 

In what follows, scalar quantization is considered first. Here each analog rv in the sequence is 
quantized independently of the other rv’s. Next vector quantization is considered. Here the 
analog sequence is first segmented into blocks of n rv’s each; then each n-tuple is quantized as 
a unit. 

Our initial approach to both scalar and vector quantization will be to minimize mean-squared 
distortion subject to a constraint on the size of the quantization alphabet. Later, we consider 
minimizing mean-squared distortion subject to a constraint on the entropy of the quantized 
output. This is the relevant approach to quantization if the quantized output sequence is to be 
source-encoded in an efficient manner, i.e., to reduce the number of encoded bits per quantized 
symbol to little more than the corresponding entropy. 
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3.2. SCALAR QUANTIZATION 65 

3.2 Scalar quantization 

A scalar quantizer partitions the set R of real numbers into M subsets R1, . . .  ,RM , called 
quantization regions. Assume that each quantization region is an interval; it will soon be seen 
why this assumption makes sense. Each region Rj is then represented by a representation point 
aj ∈ R. When the source produces a number u ∈ Rj , that number is quantized into the point 
aj . A scalar quantizer can be viewed as a function {v(u) :  R R} that maps analog real values 
u into discrete real values v(u) where v(u) =  aj for u ∈ Rj . 

→ 

An analog sequence u1, u2, . . .  of real-valued symbols is mapped by such a quantizer into the 
discrete sequence v(u1), v(u2) . . .  . Taking u1, u2 . . .  ,  as sample values of a random sequence 
U1, U2, . . .  ,  the map v(u) generates an rv Vk for each Uk; Vk takes the value aj if Uk ∈ Rj . Thus  
each quantized output Vk is a discrete rv with the alphabet {a1, . . .  , aM }. The discrete random 
sequence V1, V2, . . .  ,  is encoded into binary digits, transmitted, and then decoded back into the 
same discrete sequence. For now, assume that transmission is error-free. 

We first investigate how to choose the quantization regions R1, . . .  ,RM , and how to choose 
the corresponding representation points. Initially assume that the regions are intervals, ordered 
as in Figure 3.2, with R1 = (−∞, b1],R2 = (b1, b2], . . .  ,RM = (bM−1,∞). Thus an M -level 
quantizer is specified by M − 1 interval endpoints, b1, . . .  , bM−1, and M representation points, 
a1, . . .  , aM . 

b1 b2 b3 b4 b5 

� R1 R6 � 

a1 

R2 R3 R4 R5 

a2 a3 a4 a5 a6 

Figure 3.2: Quantization regions and representation points. 

For a given value of M , how can the regions and representation points be chosen to minimize 
mean-squared error? This question is explored in two ways: 

• Given a set of representation points {aj }, how should the intervals {Rj } be chosen? 

• Given a set of intervals {Rj }, how should the representation points {aj } be chosen? 

3.2.1 Choice of intervals for given representation points 

The choice of intervals for given representation points, {aj ; 1≤j≤M} is easy: given any u ∈ R, 
the squared error to aj is (u − aj )2 . This is minimized (over the fixed set of representation 
points {aj }) by representing u by the closest representation point aj . This means, for example, 
that if u is between aj and aj+1, then u is mapped into the closer of the two. Thus the 
boundary bj between Rj and Rj+1 must lie halfway between the representation points aj and 
aj+1, 1 ≤ j ≤ M − 1. That is, bj = aj +aj+1 . This specifies each quantization region, and also 2 
shows why each region should be an interval. Note that this minimization of mean-squared 
distortion does not depend on the probabilistic model for U1, U2, . . .  . 
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66 CHAPTER 3. QUANTIZATION 

3.2.2 Choice of representation points for given intervals 

For the second question, the probabilistic model for U1, U2, . . .  is important. For example, if 
it is known that each Uk is discrete and has only one sample value in each interval, then the 
representation points would be chosen as those sample value. Suppose now that the rv’s {Uk}
are iid analog rv’s with the pdf fU (u). For a given set of points {aj }, V (U) maps each sample 
value u ∈ Rj into aj . The mean-squared distortion (or mean-squared error MSE) is then � M � 

MSE = E[(U − V (U))2] =  
∞ 

fU (u)(u − v(u))2 du = 
� 

fU (u) (u − aj )
2 du. (3.1) 

−∞ j=1 Rj 

In order to minimize (3.1) over the set of aj , it is simply necessary to choose each aj to minimize 
the corresponding integral (remember that the regions are considered fixed here). Let fj (u) 
denote the conditional pdf of U given that {u ∈ Rj }; i.e., 

Qjfj (u) =  
fU (u) , if u ∈ Rj ; (3.2)

0, otherwise, 

where Qj = Pr{U ∈ Rj }. Then, for the interval Rj , 

fU (u) (u − aj )
2 du = Qj fj (u) (u − aj )

2 du. (3.3) 
Rj Rj 

Now (3.3) is minimized by choosing aj to be the mean of a random variable with the pdf fj (u). 
To see this, note that for any rv Y and real number a, 

(Y − a)2 = Y 2 − 2aY + a 2 , 

which is minimized over a when a = Y . 

This provides a set of conditions that the endpoints {bj } and the points {aj} must satisfy to 
achieve the MSE — namely, each bj must be the midpoint between aj and aj+1 and each aj 

must be the mean of an rv Uj with pdf fj (u). In other words, aj must be the conditional mean 
of U conditional on U ∈ Rj . 

These conditions are necessary to minimize the MSE for a given number M of representation 
points. They are not sufficient, as shown by an example at the end of this section. Nonetheless, 
these necessary conditions provide some insight into the minimization of the MSE. 

3.2.3 The Lloyd-Max algorithm 

The Lloyd-Max algorithm1 is an algorithm for finding the endpoints {bj } and the representation 
points {aj } to meet the above necessary conditions. The algorithm is almost obvious given the 
necessary conditions; the contribution of Lloyd and Max was to define the problem and develop 
the necessary conditions. The algorithm simply alternates between the optimizations of the 
previous subsections, namely optimizing the endpoints {bj } for a given set of {aj }, and then 
optimizing the points {aj } for the new endpoints. 

1This algorithm was developed independently by S. P. Lloyd in 1957 and J. Max in 1960. Lloyd’s work was 
done in the Bell Laboratories research department and became widely circulated, although unpublished until 1982 
[16]. Max’s work [18] was published in 1960. 

Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



� � � � 

3.2. SCALAR QUANTIZATION 67 

The Lloyd-Max algorithm is as follows. Assume that the number M of quantizer levels and the 
pdf fU (u) are given. 

1. Choose an arbitrary initial set of M representation points a1 < a2 < < aM .· · ·

2. For each j; 1  ≤ j ≤ M−1, set bj = 1(aj+1 + aj).2

3. For each j; 1  ≤ j ≤ M , set aj equal to the conditional mean of U given U ∈ (bj−1, bj ] (where 
b0 and bM are taken to be −∞ and +∞ respectively). 

4. Repeat steps (2) and (3) until further improvement in MSE is negligible; then stop. 

The MSE decreases (or remains the same) for each execution of step (2) and step (3). Since the 
MSE is nonnegative, it approaches some limit. Thus if the algorithm terminates when the MSE 
improvement is less than some given ε >  0, then the algorithm must terminate after a finite 
number of iterations. 

Example 3.2.1. This example shows that the algorithm might reach a local minimum of MSE 
instead of the global minimum. Consider a quantizer with M = 2 representation points, and an 
rv U whose pdf fU (u) has three peaks, as shown in Figure 3.3. 

fU (u) 

b1 

� R1 R2 � 

a1 a2 

Figure 3.3: Example of regions and representaion points that satisfy Lloyd-Max condi­
tions without minimizing mean-squared distortion. 

It can be seen that one region must cover two of the peaks, yielding quite a bit of distortion, 
while the other will represent the remaining peak, yielding little distortion. In the figure, the 
two rightmost peaks are both covered by R2, with the point a2 between them. Both the points 
and the regions satisfy the necessary conditions and cannot be locally improved. However, it 
can be seen in the figure that the rightmost peak is more probable than the other peaks. It 
follows that the MSE would be lower if R1 covered the two leftmost peaks. 

The Lloyd-Max algorithm is a type of hill-climbing algorithm; starting with an arbitrary set of 
values, these values are modified until reaching the top of a hill where no more local improvements 
are possible.2 A reasonable approach in this sort of situation is to try many randomly chosen 
starting points, perform the Lloyd-Max algorithm on each and then take the best solution. This 
is somewhat unsatisfying since there is no general technique for determining when the optimal 
solution has been found. 

2It would be better to call this a valley-descending algorithm, both because a minimum is desired and also 
because binoculars can not be used at the bottom of a valley to find a distant lower valley. 
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3.3 Vector quantization 

As with source coding of discrete sources, we next consider quantizing n source variables at a 
time. This is called vector quantization, since an n-tuple of rv’s may be regarded as a vector 
rv in an n-dimensional vector space. We will concentrate on the case n = 2 so that illustrative 
pictures can be drawn. 

One possible approach is to quantize each dimension independently with a scalar (one­
dimensional) quantizer. This results in a rectangular grid of quantization regions as shown 
below. The MSE per dimension is the same as for the scalar quantizer using the same number 
of bits per dimension. Thus the best 2D vector quantizer has an MSE per dimension at least as 
small as that of the best scalar quantizer. 

� � � � � � � � � � � � � � � � 
Figure 3.4: 2D rectangular quantizer. 

To search for the minimum-MSE 2D vector quantizer with a given number M of representation 
points, the same approach is used as with scalar quantization. 

Let (U, U ′) be the two rv’s being jointly quantized. Suppose a set of M 2D representation points 
{(aj , a

′ )}, 1 ≤ j ≤ M is chosen. For example, in the figure above, there are 16 representation j 
points, represented by small dots. Given a sample pair (u, u′) and given the M representation 
points, which representation point should be chosen for the given (u, u′)? Again, the answer is 
easy. Since mapping (u, u′) into (aj , a

′ ) generates a squared error equal to (u −aj )2 +(u′ −a′j )
2 ,j 

the point (aj , a
′
j ) which is closest to (u, u′) in Euclidean distance should be chosen. 

Consequently, the region Rj must be the set of points (u, u′) that are closer to (aj , a
′ ) than j 

to any other representation point. Thus the regions {Rj } are minimum-distance regions; these 
regions are called the Voronoi regions for the given representation points. The boundaries of 
the Voronoi regions are perpendicular bisectors between neighboring representation points. The 
minimum-distance regions are thus in general convex polygonal regions, as illustrated in the 
figure below. 

As in the scalar case, the MSE can be minimized for a given set of regions by choosing the 
representation points to be the conditional means within those regions. Then, given this new 
set of representation points, the MSE can be further reduced by using the Voronoi regions for 
the new points. This gives us a 2D version of the Lloyd-Max algorithm, which must converge 
to a local minimum of the MSE. This can be generalized straightforwardly to any dimension n. 

As already seen, the Lloyd-Max algorithm only finds local minima to the MSE for scalar quan­
tizers. For vector quantizers, the problem of local minima becomes even worse. For example, 
when U1, U2, are iid, it is easy to see that the rectangular quantizer in Figure 3.4 satisfies · · ·  
the Lloyd-Max conditions if the corresponding scalar quantizer does (see Exercise 3.10). It will 
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Figure 3.5: Voronoi regions for given set of representation points. 

soon be seen, however, that this is not necessarily the minimum MSE. 

Vector quantization was a popular research topic for many years. The problem is that quantizing 
complexity goes up exponentially with n, and the reduction in MSE with increasing n is quite 
modest, unless the samples are statistically highly dependent. 

3.4 Entropy-coded quantization 

We must now ask if minimizing the MSE for a given number M of representation points is the 
right problem. The minimum expected number of bits per symbol, Lmin, required to encode the 
quantizer output was shown in Chapter 2 to be governed by the entropy H[V ] of the quantizer 
output, not by the size M of the quantization alphabet. Therefore, anticipating efficient source 
coding of the quantized outputs, we should really try to minimize the MSE for a given entropy 
H[V ] rather than a given number of representation points. 

This approach is called entropy-coded quantization and is almost implicit in the layered approach 
to source coding represented in Figure 3.1. Discrete source coding close to the entropy bound 
is similarly often called entropy coding. Thus entropy-coded quantization refers to quantization 
techniques that are designed to be followed by entropy coding. 

The entropy H[V ] of the quantizer output is determined only by the probabilities of the quantiza­
tion regions. Therefore, given a set of regions, choosing the representation points as conditional 
means minimizes their distortion without changing the entropy. However, given a set of rep­
resentation points, the optimal regions are not necessarily Voronoi regions (e.g., in a scalar 
quantizer, the point separating two adjacent regions is not necessarily equidistant from the two 
represention points.) 

For example, for a scalar quantizer with a constraint H[V ] ≤ 1 and a Gaussian pdf for U , a2 
reasonable choice is three regions, the center one having high probability 1 − 2p and the outer 
ones having small, equal probability p, such that H[V ] =  12 . 

Even for scalar quantizers, minimizing MSE subject to an entropy constraint is a rather messy 
problem. Considerable insight into the problem can be obtained by looking at the case where 
the target entropy is large— i.e., when a large number of points can be used to achieve small 
MSE. Fortunately this is the case of greatest practical interest. 

Example 3.4.1. For the following simple example, consider the minimum-MSE quantizer using 
a constraint on the number of representation points M compared to that using a constraint on 
the entropy H[V ]. 
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fU (u)f1 
L1

� � 
L2

� � 
f2 

∆1 ∆2 
a1 a9 a10 a16 

Figure 3.6: Comparison of constraint on M to constraint on H[U ]. 

The example shows a piecewise constant pdf fU (u) that takes on only two positive values, say 
fU (u) =  f1 over an interval of size L1, and fU (u) =  f2 over a second interval of size L2. Assume 
that fU (u) = 0 elsewhere. Because of the wide separation between the two intervals, they can 
be quantized separately without providing any representation point in the region between the 
intervals. Let M1 and M2 be the number of representation points in each interval. In the figure, 
M1 = 9 and M2 = 7. Let ∆1 = L1/M1 and ∆2 = L2/M2 be the lengths of the quantization 
regions in the two ranges (by symmetry, each quantization region in a given interval should have 
the same length). The representation points are at the center of each quantization interval. 
The MSE, conditional on being in a quantization region of length ∆i, is the MSE of a uniform 
distribution over an interval of length ∆i, which is easily computed to be ∆2 

i /12. The probability 
of being in a given quantization region of size ∆i is fi∆i, so the overall MSE is given by 

∆2 ∆2 1 1
MSE = M1

1 f1∆1 + M2
2 f2∆2 = ∆2

1f1L1 + ∆2
2f2L2. (3.4)

12 12 12 12

This can be minimized over ∆1 and ∆2 subject to the constraint that M = M1 + M2 = 
L1/∆1 + L2/∆2. Ignoring the constraint that M1 and M2 are integers (which makes sense 
for M large), Exercise 3.4 shows that the minimum MSE occurs when ∆i is chosen inversely 
proportional to the cube root of fi. In other words, 

∆1 
� 

f2 
�1/3 

= . (3.5)
∆2 f1 

This says that the size of a quantization region decreases with increasing probability density. 
This is reasonable, putting the greatest effort where there is the most probability. What is 
perhaps surprising is that this effect is so small, proportional only to a cube root. 

Perhaps even more surprisingly, if the MSE is minimized subject to a constraint on entropy for 
this example, then Exercise 3.4 shows that, in the limit of high rate, the quantization intervals 
all have the same length! A scalar quantizer in which all intervals have the same length is called 
a uniform scalar quantizer. The following sections will show that uniform scalar quantizers have 
remarkable properties for high-rate quantization. 

3.5 High-rate entropy-coded quantization 

This section focuses on high-rate quantizers where the quantization regions can be made suffi­
ciently small so that the probability density is approximately constant within each region. It will 
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be shown that under these conditions the combination of a uniform scalar quantizer followed by

discrete entropy coding is nearly optimum (in terms of mean-squared distortion) within the class

of scalar quantizers. This means that a uniform quantizer can be used as a universal quantizer

with very little loss of optimality. The probability distribution of the rv’s to be quantized can

be explointed at the level of discrete source coding. Note however that this essential optimality

of uniform quantizers relies heavily on the assumption that mean-squared distortion is an ap­

propriate distortion measure. With voice coding, for example, a given distortion at low signal

levels is for more harmful than the same distortion at high signal levels.


In the following sections, it is assumed that the source output is a sequence U1, U2, . . .  ,  of iid

real analog-valued rv’s, each with a probability density fU (u). It is further assumed that the

probability density function (pdf) fU (u) is smooth enough and the quantization fine enough

that fU (u) is almost constant over each quantization region.


The analogue of the entropy H[X] of a discrete rv is the differential entropy h[U ] of an analog

rv. After defining h[U ],the properties of H[U ] and h[U ] will be compared.


The performance of a uniform scalar quantizer followed by entropy coding will then be analyzed.

It will be seen that there is a tradeoff between the rate of the quantizer and the mean-squared

error (MSE) between source and quantized output. It is also shown that the uniform quantizer

is essentially optimum among scalar quantizers at high rate.


The performance of uniform vector quantizers followed by entropy coding will then be analyzed

and similar tradeoffs will be found. A major result is that vector quantizers can achieve a gain

over scalar quantizers (i.e., a reduction of MSE for given quantizer rate), but that the reduction

in MSE is at most a factor of πe/6 = 1.42.


The changes in MSE for different quantization methods, and similarly, changes in power levels on

channels, are invariably calculated by communication engineers in decibels (dB). The number of

decibels corresponding to a reduction of α in the mean squared error is defined to be 10 log10 α.

The use of a logarithmic measure allows the various components of mean squared error or power

gain to be added rather than multiplied.


The use of decibels rather than some other logarithmic measure such as natural logs or logs to

the base 2 is partly motivated by the ease of doing rough mental calculations. A factor of 2 is

10 log10 2 = 3.010 dB, approximated as 3 dB. Thus 4 = 22 is 6 dB and 8 is 9 dB. Since 10
· · ·  
is 10 dB, we also see that 5 is 10/2 or 7 dB. We can just as easily see that 20 is 13 dB and so

forth. The limiting factor of 1.42 in MSE above is then a reduction of 1.53 dB.


As in the discrete case, generalizations to analog sources with memory are possible, but not

discussed here.


3.6 Differential entropy 

The differential entropy h[U ] of an analog random variable (rv) U is analogous to the entropy 
H[X] of a discrete random symbol X. It has many similarities, but also some important differ­
ences. 

Definition The differential entropy of an analog real rv U with pdf fU (u) is  

h[U ] =  
∞ 

−fU (u) log fU (u) du. 
−∞ 
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The integral may be restricted to the region where fU (u) > 0, since 0 log 0 is interpreted as 0.

Assume that fU (u) is smooth and that the integral exists with a finite value. Exercise 3.7 gives

an example where h(U) is infinite.


As before, the logarithms are base 2 and the units of h[U ] are bits per source symbol.


Like H[X], the differential entropy h[U ] is the expected value of the rv − log fU (U). The log of

the joint density of several independent rv’s is the sum of the logs of the individual pdf’s, and

this can be used to derive an AEP similar to the discrete case.


Unlike H[X], the differential entropy h[U ] can be negative and depends on the scaling of the

outcomes. This can be seen from the following two examples.


Example 3.6.1 (Uniform distributions). Let fU (u) be a uniform distribution over an inter­

val [a, a + ∆] of length ∆; i.e., fU (u) = 1/∆ for u ∈ [a, a + ∆], and fU (u) = 0 elsewhere. Then

− log fU (u) = log ∆ where fU (u) > 0 and


h[U ] =  E[− log fU (U)] = log ∆. 

Example 3.6.2 (Gaussian distribution). Let fU (u) be a Gaussian distribution with mean 
m and variance σ2; i.e., 

fU (u) =  

� 
1 

2πσ2 
exp 

� 
− 

(u − m)2 

2σ2 

� 
. 

Then − log fU (u) =  1 log 2πσ2 + (log e)(u − m)2/(2σ2). Since E[(U − m)2] =  σ2 ,2 

1 1 1 
h[U ] =  E[− log fU (U)] = log(2πσ2) +  log e = log(2πeσ2).

2 2 2 

It can be seen from these expressions that by making ∆ or σ2 arbitrarily small, the differen­
tial entropy can be made arbitrarily negative, while by making ∆ or σ2 arbitrarily large, the 
differential entropy can be made arbitrarily positive. 

If the rv U is rescaled to αU for some scale factor α >  0, then the differential entropy is increased 
by log α, both in these examples and in general. In other words, h[U ] is not invariant to scaling. 
Note, however, that differential entropy is invariant to translation of the pdf, i.e., an rv and its 
fluctuation around the mean have the same differential entropy. 

One of the important properties of entropy is that it does not depend on the labeling of the 
elements of the alphabet, i.e., it is invariant to invertible transformations. Differential entropy 
is very different in this respect, and, as just illustrated, it is modified by even such a trivial 
transformation as a change of scale. The reason for this is that the probability density is a 
probability per unit length, and therefore depends on the measure of length. In fact, as seen 
more clearly later, this fits in very well with the fact that source coding for analog sources also 
depends on an error term per unit length. 

Definition The differential entropy of an n-tuple of rv’s U n = (U1, , Un) with joint pdf · · ·  
fU n (un) is  

h[U n] =  E[− log fU n (U n)]. 

Like entropy, differential entropy has the property that if U and V are independent rv’s, then 
the entropy of the joint variable UV  with pdf fUV  (u, v) =  fU (u)fV (v) is  h[UV  ] =  h[U ] +  h[V ]. 
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Again, this follows from the fact that the log of the joint probability density of independent rv’s 
is additive, i.e., − log fUV  (u, v) =  − log fU (u) − log fV (v).


Thus the differential entropy of a vector rv U n , corresponding to a string of n iid rv’s

U1, U2, . . .  , Un, each with the density fU (u), is h[U n] =  nh[U ].


3.7 Performance of uniform high-rate scalar quantizers 

This section analyzes the performance of uniform scalar quantizers in the limit of high rate. 
Appendix A continues the analysis for the nonuniform case and shows that uniform quantizers 
are effectively optimal in the high-rate limit. 

For a uniform scalar quantizer, every quantization interval Rj has the same length |Rj | = ∆.  
In other words, R (or the portion of R over which fU (u) > 0), is partitioned into equal intervals, 
each of length ∆. 

� ∆ � 

�· · ·  �� R−1 �� R0 �� R1 �� R2 �� R3 �� R4 �� 
�· · ·  

· · ·  a−1 a0 a1 a2 a3 a4 · · ·  

Figure 3.7: Uniform scalar quantizer. 

Assume there are enough quantization regions to cover the region where fU (u) > 0. For the 
Gaussian distribution, for example, this requires an infinite number of representation points, 
−∞ < j <  ∞. Thus, in this example the quantized discrete rv V has a countably infinite 
alphabet. Obviously, practical quantizers limit the number of points to a finite region R such 
that fU (u) du ≈ 1. R
Assume that ∆ is small enough that the pdf fU (u) is approximately constant over any one 
quantization interval. More precisely, define f(u) (see Figure 3.8) as the average value of fU (u) 
over the quantization interval containing u, 

fU (u)du 
f(u) =  Rj 

∆ 
for u ∈ Rj . (3.6) 

From (3.6) it is seen that ∆f(u) = Pr(Rj) for all integer j and all u ∈ Rj . 

fU (u)f(u) 

Figure 3.8: Average density over each Rj . 

The high-rate assumption is that fU (u) ≈ f(u) for all u ∈ R. This means that fU (u) ≈ Pr(Rj)/∆ 
for u ∈ Rj . It also means that the conditional pdf fU |Rj 

(u) of  U conditional on u ∈ Rj is 
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approximated by	 � 
(u) ≈ 

1/∆, u ∈ Rj ;fU |Rj 0,  u /∈ Rj . 

Consequently the conditional mean aj is approximately in the center of the interval Rj , and the 
mean-squared error is approximately given by �	∆/2 1 ∆2 

MSE ≈ 
−∆/2 ∆

u 2du = 
12	

(3.7) 

for each quantization interval Rj . Consequently this is also the overall MSE. 

Next consider the entropy of the quantizer output V . The probability pj that V = aj is given 
by both 

pj = fU (u) du and, for all u ∈ Rj , pj = f(u)∆. (3.8) 
Rj 

Therefore the entropy of the discrete rv V is � � 
H[V ] =  

= 

= 

j 

−pj log pj = 
j Rj 

−fU (u) log[f(u)∆] du � ∞ 

−∞ 
−fU (u) log[f(u)∆] du � ∞ 

−∞ 
−fU (u) log[f(u)] du − log ∆, 

(3.9) 

(3.10) 

where the sum of disjoint integrals were combined into a single integral. 

Finally, using the high-rate approximation3 fU (u) ≈ f(u), this becomes 

H[V ] ≈ 
∞ 

−fU (u) log[fU (u)∆] du 
−∞ 

= h[U ] − log ∆.	 (3.11) 

Since the sequence U1, U2, . . .  of inputs to the quantizer is memoryless (iid), the quantizer output 
sequence V1, V2, . . .  is an iid sequence of discrete random symbols representing quantization 
points— i.e., a discrete memoryless source. A uniquely-decodable source code can therefore 
be used to encode this output sequence into a bit sequence at an average rate of L ≈ H[V ] ≈
h[U ]− log ∆ bits/symbol. At the receiver, the mean-squared quantization error in reconstructing 
the original sequence is approximately MSE ≈ ∆2/12. 

The important conclusions from this analysis are illustrated in Figure 3.9 and are summarized 
as follows: 

•	 Under the high-rate assumption, the rate L for a uniform quantizer followed by discrete 
entropy coding depends only on the differential entropy h[U ] of the source and the spacing 
∆ of the quantizer. It does not depend on any other feature of the source pdf fU (u), nor on 
any other feature of the quantizer, such as the number M of points, so long as the quantizer 
intervals cover fU (u) sufficiently completely and finely. 

3Exercise 3.6 provides some insight into the nature of the approximation here. In particular, the difference 
between h[U ] − log ∆ and H[V ] is  fU (u) log[f(u)/fU (u)] du. This quantity is always nonpositive and goes to 
zero with ∆ as ∆2. Similarly, the approximation error on MSE goes to 0 as ∆4 . 
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• The rate L ≈ H[V ] and the MSE are parametrically related by ∆, i.e., 

∆2 

L ≈ h(U) − log ∆; MSE ≈ . (3.12)
12 

Note that each reduction in ∆ by a factor of 2 will reduce the MSE by a factor of 4 
and increase the required transmission rate L ≈ H[V ] by 1 bit/symbol. Communication 
engineers express this by saying that each additional bit per symbol decreases the mean-
squared distortion4 by 6 dB. Figure 3.9 sketches MSE as a function of L. 

MSE 

MSE ≈ 22h[U ]−2L 

12 

L ≈ H[V ] 

Figure 3.9: MSE as a function of L for a scalar quantizer with the high-rate approxi­
mation. Note that changing the source entropy h(U) simply shifts the figure right or 
left. Note also that log MSE is linear, with a slope of -2, as a function of L. 

Conventional b-bit analog-to-digital (A/D) converters are uniform scalar 2b-level quantizers that 
cover a certain range R with a quantizer spacing ∆ = 2−b|R|. The input samples must be scaled 
so that the probability that u /∈ R  (the “overflow probability”) is small. For a fixed scaling of 
the input, the tradeoff is again that increasing b by 1 bit reduces the MSE by a factor of 4. 

Conventional A/D converters are not usually directly followed by entropy coding. The more 
conventional approach is to use A/D conversion to produce a very high rate digital signal that 
can be further processed by digital signal processing (DSP). This digital signal is then later 
compressed using algorithms specialized to the particular application (voice, images, etc.). In 
other words, the clean layers of Figure 3.1 oversimplify what is done in practice. On the other 
hand, it is often best to view compression in terms of the Figure 3.1 layers, and then use DSP 
as a way of implementing the resulting algorithms. 

The relation H[V ] ≈ h[u] − log ∆ provides an elegant interpretation of differential entropy. 
It is obvious that there must be some kind of tradeoff between MSE and the entropy of the 
representation, and the differential entropy specifies this tradeoff in a very simple way for high 
rate uniform scalar quantizers. H[V ] is the entropy of a finely quantized version of U , and the 
additional term log ∆ relates to the “uncertainty” within an individual quantized interval. It 
shows explicitly how the scale used to measure U affects h[U ]. 

Appendix A considers nonuniform scalar quantizers under the high rate assumption and shows 
that nothing is gained in the high-rate limit by the use of nonuniformity. 

4A quantity x expressed in dB is given by 10 log10 x. This very useful and common logarithmic measure is 
discussed in detail in Chapter 6. 
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3.8 High-rate two-dimensional quantizers 

The performance of uniform two-dimensional (2D) quantizers are now analyzed in the limit of 
high rate. Appendix B considers the nonuniform case and shows that uniform quantizers are 
again effectively optimal in the high-rate limit. 

A 2D quantizer operates on 2 source samples u = (u1, u2) at a time; i.e., the source alphabet 
is U = R2. Assuming iid source symbols, the joint pdf is then fU (u) =  fU (u1)fU (u2), and the 
joint differential entropy is h[U ] = 2h[U ]. 

Like a uniform scalar quantizer, a uniform 2D quantizer is based on a fundamental quantization 
region R (“quantization cell”) whose translates tile5 the 2D plane. In the one-dimensional case, 
there is really only one sensible choice for R, namely an interval of length ∆, but in higher 
dimensions there are many possible choices. For two dimensions, the most important choices 
are squares and hexagons, but in higher dimensions, many more choices are available. 

Notice that if a region R tiles R2, then any scaled version αR of R will also tile R2, and so will 
any rotation or translation of R. 

Consider the performance of a uniform 2D quantizer with a basic cell R which is centered at the 
origin 0 . The set of cells, which are assumed to tile the region, are denoted by6 {Rj ; j ∈ Z+}
where Rj = aj + R and a j is the center of the cell Rj . Let A(R) =  du be the area of the R
basic cell. The average pdf in a cell Rj is given by Pr(Rj )/A(Rj ). As before, define f(u) to be  
the average pdf over the region Rj containing u . The high-rate assumption is again made, i.e., 
assume that the region R is small enough that fU (u) ≈ f(u) for all u . 

The assumption fU (u) ≈ f(u) implies that the conditional pdf, conditional on u ∈ Rj is 
approximated by 

(u) ≈ 
1/A(R), u ∈ Rj ; (3.13)fU |Rj 0, u /∈ Rj . 

The conditional mean is approximately equal to the center a j of the region Rj . The mean-
squared error per dimension for the basic quantization cell R centered on 0 is then approximately 
equal to 

MSE ≈ 
1
2 

‖u‖2 

A(
1 
R) 

du . (3.14) 
R 

The right side of (3.14) is the MSE for the quantization area R using a pdf equal to a constant; it 
will be denoted MSEc. The quantity ‖u‖ is the length of the vector u1, u2, so that ‖u‖2 = u1

2+u2
2 . 

Thus MSEc can be rewritten as 

1 1
MSE ≈ MSEc = 2 R 

(u1
2 + u 2) 

A(R) 
du1du2. (3.15)2

MSEc is measured in units of squared length, just like A(R). Thus the ratio G(R) = MSEc/A(R) 
is a dimensionless quantity called the normalized second moment. With a little effort, it can 

5A region of the 2D plane is said to tile the plane if the region, plus translates and rotations of the region, 
fill the plane without overlap. For example the square and the hexagon tile the plane. Also, rectangles tile the 
plane, and equilateral triangles with rotations tile the plane. 

6Z+ denotes the set of positive integers, so {Rj ; j ∈ Z+ } denotes the set of regions in the tiling, numbered in 
some arbitrary way of no particular interest here. 
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be seen that G(R) is invariant to scaling, translation and rotation. G(R) does depend on the 
shape of the region R, and, as seen below, it is G(R) that determines how well a given shape 
performs as a quantization region. By expressing 

MSEc = G(R)A(R), 

it is seen that the MSE is the product of a shape term and an area term, and these can be 
chosen independently. 

As examples, G(R) is given below for some common shapes. 

Square: For a square ∆ on a side, A(R) = ∆2. Breaking (3.15) into two terms, we see that • 
each is identical to the scalar case and MSEc = ∆2/12. Thus G(Square) = 1/12. 

•	 Hexagon: View the hexagon as the union of 6 equilateral triangles ∆ on a side. Then 
A(R) = 3

√
3∆2/2 and MSEc = 5∆2/24. Thus G(hexagon) = 5/(36

√
3). 

Circle: For a circle of radius r, A(R) =  πr2 and MSEc = r2/4 so  G(circle) = 1/(4π).• 

The circle is not an allowable quantization region, since it does not tile the plane. On the other 
hand, for a given area, this is the shape that minimizes MSEc. To see this, note that for any 
other shape, differential areas further from the origin can be moved closer to the origin with a 
reduction in MSEc. That is, the circle is the 2D shape that minimizes G(R). This also suggests 
why G(Hexagon) < G(Square), since the hexagon is more concentrated around the origin than 
the square. 

Using the high rate approximation for any given tiling, each quantization cell Rj has the same 
shape and area and has a conditional pdf which is approximately uniform. Thus MSEc approx­
imates the MSE for each quantization region and thus approximates the overall MSE. 

Next consider the entropy of the quantizer output. The probability that U falls in the region 
Rj is 

pj = fU (u) du and, for all u ∈ Rj , pj = f(u)A(R). 
Rj 

The output of the quantizer is the discrete random symbol V with the pmf pj for each symbol 
j. As before, the entropy of V is given by 

H[V ] =  pj log pj− 
j 

= − fU (u) log[f(u)A(R)] du 
j Rj 

= − fU (u) [log f(u) + log A(R)] du 

≈ −  fU (u) [log fU (u)] du + log A(R)] 

= 2h[U ] − log A(R), 

where the high rate approximation fU (u) ≈ f̄(u) was used. Note that, since U = U1U2 for iid 
variables U1 and U2, the differential entropy of U is 2h[U ]. 
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Again, an efficient uniquely-decodable source code can be used to encode the quantizer output 
sequence into a bit sequence at an average rate per source symbol of 

L ≈ 
H[V ] ≈ h[U ] − 

1 
log A(R) bits/symbol.	 (3.16)

2 2 

At the receiver, the mean-squared quantization error in reconstructing the original sequence will 
be approximately equal to the MSE given in (3.14).


We have the following important conclusions for a uniform 2D quantizer under the high-rate

approximation:


•	 Under the high-rate assumption, the rate L depends only on the differential entropy h[U ] of  
the source and the area A(R) of the basic quantization cell R. It does not depend on any 
other feature of the source pdf fU (u), and does not depend on the shape of the quantizer 
region, i.e., it does not depend on the normalized second moment G(R). 

•	 There is a tradeoff between the rate L and MSE that is governed by the area A(R). From 
(3.16), an increase of 1 bit/symbol in rate corresponds to a decrease in A(R) by a factor of 
4. From (3.14), this decreases the MSE by a factor of 4, i.e., by 6 dB. 

The ratio G(Square)/G(Hexagon) is equal to 3
√

3/5 = 1.0392. This is called the quantizing• 
gain of the hexagon over the square. For a given A(R) (and thus a given L), the MSE for a 
hexagonal quantizer is smaller than that for a square quantizer (and thus also for a scalar 
quantizer) by a factor of 1.0392 (0.17 dB). This is a disappointingly small gain given the 
added complexity of 2D and hexagonal regions and suggests that uniform scalar quantizers 
are good choices at high rates. 

3.9 Summary of quantization 

Quantization is important both for digitizing a sequence of analog signals and as the middle 
layer in digitizing analog waveform sources. Uniform scalar quantization is the simplest and 
often most practical approach to quantization. Before reaching this conclusion, two approaches 
to optimal scalar quantizers were taken. The first attempted to minimize the expected distortion 
subject to a fixed number M of quantization regions, and the second attempted to minimize 
the expected distortion subject to a fixed entropy of the quantized output. Each approach was 
followed by the extension to vector quantization. 

In both approaches, and for both scalar and vector quantization, the emphasis was on minimizing 
mean square distortion or error (MSE), as opposed to some other distortion measure. As will 
be seen later, MSE is the natural distortion measure in going from waveforms to sequences of 
analog values. For specific sources, such as speech, however, MSE is not appropriate. For an 
introduction to quantization, however, focusing on MSE seems appropriate in building intuition; 
again, our approach is building understanding through the use of simple models. 

The first approach, minimizing MSE with a fixed number of regions, leads to the Lloyd-Max 
algorithm, which finds a local minimum of MSE. Unfortunately, the local minimum is not 
necessarily a global minimum, as seen by several examples. For vector quantization, the problem 
of local (but not global) minima arising from the Lloyd-Max algorithm appears to be the typical 
case. 
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The second approach, minimizing MSE with a constraint on the output entropy is also a diffi­
cult problem analytically. This is the appropriate approach in a two layer solution where the 
quantizer is followed by discrete encoding. On the other hand, the first approach is more appro­
priate when vector quantization is to be used but cannot be followed by fixed-to-variable-length 
discrete source coding. 

High-rate scalar quantization, where the quantization regions can be made sufficiently small so 
that the probability density in almost constant over each region, leads to a much simpler result 
when followed by entropy coding. In the limit of high rate, a uniform scalar quantizer minimizes 
MSE for a given entropy constraint. Moreover, the tradeoff between Minimum MSE and output 
entropy is the simple univeral curve of Figure 3.9. The source is completely characterized by 
its differential entropy in this tradeoff. The approximations in this result are analyzed in Exer­
cise 3.6. Two-dimensional vector quantization under the high-rate approximation with entropy 
coding leads to a similar result. Using a square quantization region to tile the plane, the trade-
off between MSE per symbol and entropy per symbol is the same as with scalar quantization. 
Using a hexagonal quantization region to tile the plane reduces the MSE by a factor of 1.0392, 
which seems hardly worth the trouble. It is possible that non-uniform two-dimensional quan­
tizers might achieve a smaller MSE than a hexagonal tiling, but this gain is still limited by the 
circular shaping gain, which is π/3 = 1.0472 (0.2 dB). Using non-uniform quantization regions 
at high rate leads to a lowerbound on MSE which is lower than that for the scalar uniform 
quantizer by a factor of 1.0472, which, even if achievable, is scarcely worth the trouble. 

The use of high-dimensional quantizers can achieve slightly higher gains over the uniform scalar 
quantizer, but the gain is still limited by a fundamental information-theoretic result to πe/6 =  
1.423 (1.53 dB). 

3A Appendix A: Nonuniform scalar quantizers 

This appendix shows that the approximate MSE for uniform high-rate scalar quantizers in Sec­
tion 3.7 provides an approximate lower bound on the MSE for any nonuniform scalar quantizer, 
again using the high-rate approximation that the pdf of U is constant within each quantiza­
tion region. This shows that in the high-rate region, there is little reason to further consider 
nonuniform scalar quantizers. 

Consider an arbitrary scalar quantizer for an rv U with a pdf fU (u). Let ∆j be the width of the 
jth quantization interval, i.e., ∆j = |Rj |. As before, let f(u) be the average pdf within each 
quantization interval, i.e., 

fU (u) du 
f(u) =  Rj 

∆j 
for u ∈ Rj . 

The high-rate approximation is that fU (u) is approximately constant over each quantization 
region. Equivalently, fU (u) ≈ f(u) for all u. Thus, if region Rj has width ∆j , the conditional 
mean aj of U over Rj is approximately the midpoint of the region, and the conditional mean-
squared error, MSEj , given U∈Rj , is approximately ∆2/12.j 

Let V be the quantizer output, i.e., the discrete rv such that V = aj whenever U ∈ Rj . The 
probability pj that V =aj is pj = fU (u) du Rj 
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The unconditional mean-squared error, i.e.. E[(U − V )2] is then given by 

� ∆2 � � ∆2 

MSE ≈ pj
j = fU (u) j 

du. (3.17)
12 12 

j j Rj 

This can be simplified by defining ∆(u) = ∆j for u ∈ Rj . Since each u is in Rj for some j, this 
defines ∆(u) for all u ∈ R. Substituting this in (3.17), �� 

∆(u)2 
MSE ≈ fU (u) 

12 
du (3.18) 

j Rj 

∞ ∆(u)2 
= fU (u) du . (3.19)

12−∞ 

Next consider the entropy of V . As in (3.8), the following relations are used for pj 

pj = fU (u) du and, for all u ∈ Rj , pj = f(u)∆(u). 
Rj 

H[V ] =  −pj log pj 

j 

= −fU (u) log[ f(u)∆(u)] du (3.20) 
j Rj 

= 
∞ 

−fU (u) log[f(u)∆(u)] du, (3.21) 
−∞ 

where the multiple integrals over disjoint regions have been combined into a single integral. The 
high-rate approximation fU (u) ≈ f(u) is next substituted into (3.21). 

H[V ] ≈ 
∞ 

−fU (u) log[fU (u)∆(u)] du 
−∞ � 

= h[U ] − 
∞ 

fU (u) log ∆(u) du. (3.22) 
−∞ 

Note the similarity of this to (3.11). 

The next step is to minimize the mean-squared error subject to a constraint on the entropy 
H[V ]. This is done approximately by minimizing the approximation to MSE in (3.22) subject 
to the approximation to H[V ] in (3.19). Exercise 3.6 provides some insight into the accuracy of 
these approximations and their effect on this minimization. 

Consider using a Lagrange multiplier to perform the minimization. Since MSE decreases as 
H[V ] increases, consider minimizing MSE + λH[V ]. As λ increases, MSE will increase and H[V ] 
decrease in the minimizing solution. 

In principle, the minimization should be constrained by the fact that ∆(u) is constrained to 
represent the interval sizes for a realizable set of quantization regions. The minimum of MSE + 
λH[V ] will be lower bounded by ignoring this constraint. The very nice thing that happens is that 
this unconstrained lower bound occurs where ∆(u) is constant. This corresponds to a uniform 
quantizer, which is clearly realizable. In other words, subject to the high-rate approximation, 
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the lower bound on MSE over all scalar quantizers is equal to the MSE for the uniform scalar 
quantizer. To see this, use (3.19) and (3.22), 

MSE + λH[V ] ≈ 
∞ 

fU (u) 
∆(u)2 

du + λh[U ] − λ 
∞ 

fU (u) log ∆(u) du
12−∞ � � −∞ � 

= λh[U ] +  
∞ 

fU (u) 
∆(u)2 − λ log ∆(u) du. (3.23)

12−∞ 

This is minimized over all choices of ∆(u) > 0 by simply minimizing the expression inside the 
braces for each real value of u. That is, for each u, differentiate the quantity inside the braces 
with respect to ∆(u), getting ∆(u)/6 − λ(log e)/∆(u). Setting the derivative equal to 0, it 
is seen that ∆(u) =  λ(log e)/6. By taking the second derivative, it can be seen that this 
solution actually minimizes the integrand for each u. The only important thing here is that the 
minimizing ∆(u) is independent of u. This means that the approximation of MSE is minimized, 
subject to a constraint on the approximation of H[V ], by the use of a uniform quantizer. 

The next question is the meaning of minimizing an approximation to something subject to 
a constraint which itself is an approximation. From Exercise 3.6, it is seen that both the 
approximation to MSE and that to H[V ] are good approximations for small ∆, i.e., for high-
rate. For any given high-rate nonuniform quantizer then, consider plotting MSE and H[V ] on  
Figure 3.9. The corresponding approximate values of MSE and H[V ] are then close to the plotted 
value (with some small difference both in the ordinate and abscissa). These approximate values, 
however, lie above the approximate values plotted in Figure 3.9 for the scalar quantizer. Thus, 
in this sense, the performance curve of MSE versus H[V ] for the approximation to the scalar 
quantizer either lies below or close to the points for any nonuniform quantizer. 

In summary, it has been shown that for large H[V ] (i.e., high-rate quantization), a uniform 
scalar quantizer approximately minimizes MSE subject to the entropy constraint. There is 
little reason to use nonuniform scalar quantizers (except perhaps at low rate). Furthermore the 
MSE performance at high-rate can be easily approximated and depends only on h[U ] and the 
constraint on H[V ]. 

3B Appendix B: Nonuniform 2D quantizers 

For completeness, the performance of nonuniform 2D quantizers is now analyzed; the analysis 
is very similar to that of nonuniform scalar quantizers. Consider an arbitrary set of quantiza­
tion intervals {Rj }. Let A(Rj ) and MSEj be the area and mean-squared error per dimension 
respectively of Rj , i.e., 

A(Rj ) =  du ; MSEj = 
1
2 

‖u 
A

−
(R

a

j

j 

)
‖2 

du , 
Rj Rj 

where aj is the mean of Rj . For each region Rj and each u ∈ Rj , let f(u) = Pr(Rj )/A(Rj ) be  
the average pdf in Rj . Then 

pj = fU (u) du = f(u)A(Rj ). 
Rj 

The unconditioned mean-squared error is then 

MSE = pj MSEj . 
j 

Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



� 

� 
� 
� 

� 

� 

� � � 

82 CHAPTER 3. QUANTIZATION 

Let A(u) =  A(Rj ) and MSE(u) = MSEj for u ∈ Aj . Then, 

MSE = fU (u) MSE(u) du . (3.24) 

Similarly, 

H[V ] =  −pj log pj 

j 

= −fU (u) log[f(u)A(u)] du 

≈ −fU (u) log[fU (u)A(u)] du (3.25) 

= 2h[U ] − fU (u) log[A(u)] du . (3.26) 

A Lagrange multiplier can again be used to solve for the optimum quantization regions under 
the high-rate approximation. In particular, from (3.24) and (3.26), 

MSE + λH[V ] ≈ λ2h[U ] +  fU (u) {MSE(u) − λ log A(u)} du. (3.27) 
R2 

Since each quantization area can be different, the quantization regions need not have geometric 
shapes whose translates tile the plane. As pointed out earlier, however, the shape that minimizes 
MSEc for a given quantization area is a circle. Therefore the MSE can be lower bounded in the 
Lagrange multiplier by using this shape. Replacing MSE(u) by  A(u)/(4π) in (3.27), 

MSE + λH[V ] ≈ 2λh[U ] +  
R2 

fU (u) 
A

4
(
π 
u) − λ log A(u) du. (3.28) 

Optimizing for each u separately, A(u) = 4πλ log e. The optimum is achieved where the same 
size circle is used for each point u (independent of the probability density). This is unrealizable, 
but still provides a lower bound on the MSE for any given H[V ] in the high-rate region. The 
reduction in MSE over the square region is π/3 = 1.0472 (0.2 dB). It appears that the uniform 
quantizer with hexagonal shape is optimal, but this figure of π/3 provides a simple bound to 
the possible gain with 2D quantizers. Either way, the improvement by going to two dimensions 
is small. 

The same sort of analysis can be carried out for n dimensional quantizers. In place of using a 
circle as a lower bound, one now uses an n dimensional sphere. As n increases, the resulting 
lower bound to MSE approaches a gain of πe/6 = 1.4233 (1.53 dB) over the scalar quantizer. 
It is known from a fundamental result in information theory that this gain can be approached 
arbitrarily closely as n → ∞. 
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3.E Exercises 

3.1. Let U be an analog rv (rv) uniformly distributed between −1 and 1. 

(a) Find the three-bit (M = 8) quantizer that minimizes the mean-squared error. 

(b) Argue that your quantizer satisfies the necessary conditions for optimality. 

(c) Show that the quantizer is unique in the sense that no other 3-bit quantizer satisfies the 
necessary conditions for optimality. 

3.2. Consider a discrete-time, analog source with memory, i.e., U1, U2, . . .  are dependent rv’s. 
Assume that each Uk is uniformly distributed between 0 and 1 but that U2n = U2n−1 for 
each n ≥ 1. Assume that {U2n}∞ are independent.n=1 

(a) Find the one-bit (M = 2) scalar quantizer that minimizes the mean-squared error. 

(b) Find the mean-squared error for the quantizer that you have found in (a). 

(c) Find the one-bit-per-symbol (M = 4) two-dimensional vector quantizer that minimizes 
the MSE. 

(d) Plot the two-dimensional regions and representation points for both your scalar quantizer 
in part (a) and your vector quantizer in part (c). 

3.3. Consider a binary scalar quantizer that partitions the reals R into two subsets, (−∞, b] and 
(b,∞) and then represents (−∞, b] by  a1 ∈ R and (b,∞) by  a2 ∈ R. This quantizer is used 
on each letter Un of a sequence , U−1, U0, U1, of iid random variables, each having· · ·  · · ·  
the probability density f(u). Assume throughout this exercise that f(u) is symmetric, i.e., 
that f(u) =  f(−u) for all u ≥ 0. 

(a) Given the representation levels a1 and a2 > a1, how should b be chosen to minimize the 
mean square distortion in the quantization? Assume that f(u) > 0 for a1 ≤ u ≤ a2 and 
explain why this assumption is relevant. 

(b) Given b ≥ 0, find the values of a1 and a2 that minimize the mean square distortion. Give 
both answers in terms of the two functions Q(x) =  x 

∞ 
f(u) du and y(x) =  x 

∞ 
uf(u) du. 

(c) Show that for b = 0, the minimizing values of a1 and a2 satisfy a1 = −a2. 

(d) Show that the choice of b, a1, and a2 in part (c) satisfies the Lloyd-Max conditions for 
minimum mean square distortion. 

(e) Consider the particular symmetric density below 

-1 0 1 

�� �ε �� ε �� ε 

1 
3ε 

1 
3ε 

1 
3ε 

f(u) 

Find all sets of triples, {b, a1, a2} that satisfy the Lloyd-Max conditions and evaluate the 
MSE for each. You are welcome in your calculation to replace each region of non-zero 
probability density above with an impulse i.e., f(u) =  1 [δ(−1) + δ(0) + δ(1)], but you3
should use the figure above to resolve the ambiguity about regions that occurs when b is -1, 
0, or +1. 
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(f) Give the MSE for each of your solutions above (in the limit of ε 0). Which of your →
solutions minimizes the MSE? 

3.4. In Section 3.4, we partly analyzed a minimum-MSE quantizer for a pdf in which fU (u) =  f1 

over an interval of size L1, fU (u) =  f2 over an interval of size L2 and fU (u) = 0 elsewhere. 
Let M be the total number of representation points to be used, with M1 in the first interval 
and M2 = M −M1 in the second. Assume (from symmetry) that the quantization intervals 
are of equal size ∆1 = L1/M1 in interval 1 and of equal size ∆2 = L2/M2 in interval 2. 
Assume that M is very large, so that we can approximately minimize the MSE over M1, M2 

without an integer constraint on M1, M2 (that is, assume that M1, M2 can be arbitrary real 
numbers). 

(a) Show that the MSE is minimized if ∆1f1
1/3 = ∆2f2

1/3 , i.e., the quantization interval 
sizes are inversely proportional to the cube root of the density. [Hint: Use a Lagrange 
multiplier to perform the minimization. That is, to minimize a function MSE(∆1,∆2) 
subject to a constraint M = f(∆1, ∆2), first minimize MSE(∆1, ∆2) +  λf(∆1,∆2) without 
the constraint, and, second, choose λ so that the solution meets the constraint.] 

(b) Show that the minimum MSE under the above assumption is given by � �3 
L1f1

1/3 + L2f2
1/3 

MSE = .
12M2 

(c) Assume that the Lloyd-Max algorithm is started with 0 < M1 < M  representation 
points in the first interval and M2 = M − M1 points in the second interval. Explain where 
the Lloyd-Max algorithm converges for this starting point. Assume from here on that the 
distance between the two intervals is very large. 

(d) Redo part (c) under the assumption that the Lloyd-Max algorithm is started with 
0 < M1 ≤ M − 2 representation points in the first interval, one point between the two 
intervals, and the remaining points in the second interval. 

(e) Express the exact minimum MSE as a minimum over M − 1 possibilities, with one term 
for each choice of 0 < M1 < M  (assume there are no representation points between the two 
intervals). 

(f) Now consider an arbitrary choice of ∆1 and ∆2 (with no constraint on M). Show that 
the entropy of the set of quantization points is 

H(V ) =  −f1L1 log(f1∆1) − f2L2 log(f2∆2). 

(g) Show that if we minimize the MSE subject to a constraint on this entropy (ignoring the 
integer constraint on quantization levels), then ∆1 = ∆2. 

3.5. Assume that a continuous valued rv Z has a probability density that is 0 except over the 
interval [−A, +A]. Show that the differential entropy h(Z) is upper bounded by 1+ log2 A. 

(b) Show that h(Z) = 1 + log2 A if and only if Z is uniformly distributed between −A and 
+A. 

3.6. Let fU (u) = 1/2 +  u for 0 < u ≤ 1 and fU (u) = 0 elsewhere. 

(a) For ∆ < 1, consider a quantization region R = (x, x + ∆] for 0 < x  ≤ 1 − ∆. Find the 
conditional mean of U conditional on U ∈ R. 
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(b) Find the conditional mean-squared error (MSE) of U conditional on U ∈ R. Show that, 
as ∆ goes to 0, the difference between the MSE and the approximation ∆2/12 goes to 0 as 
∆4 . 

(c) For any given ∆ such that 1/∆ =  M , M a positive integer, let {Rj = ((j−1)∆, j∆]} be 
the set of regions for a uniform scalar quantizer with M quantization intervals. Show that 
the difference between h[U ] − log ∆ and H[V ] as given (3.10) is � 1 

h[U ] − log ∆ − H[V ] =  fU (u) log[f(u)/fU (u)] du. 
0 

(d) Show that the difference in (3.6) is nonnegative. Hint: use the inequality ln x ≤ x − 1. 
Note that your argument does not depend on the particular choice of fU (u). 

(e) Show that the difference h[U ] − log ∆ − H[V ] goes to 0 as ∆2 as ∆ → 0. Hint: Use the 
approximation ln x ≈ (x−1)− (x−1)2/2, which is the second-order Taylor series expansion 
of ln x around x = 1.  

The major error in the high-rate approximation for small ∆ and smooth fU (u) is due to 
the slope of fU (u). Your results here show that this linear term is insignificant for both 
the approximation of MSE and for the approximation of H[V ]. More work is required to 
validate the approximation in regions where fU (u) goes to 0.  

3.7. (Example where h(U) is infinite.) Let fU (u) be given by 

fU (u) =  u(ln
1 
u)2 

for u ≥ e 

0 for u < e,  

(a) Show that fU (u) is non-negative and integrates to 1. 

(b) Show that h(U) is infinite. 

(c) Show that a uniform scalar quantizer for this source with any separation ∆ (0 < ∆ < ∞) 
has infinite entropy. Hint: Use the approach in Exercise 3.6, parts (c, d.) 

3.8. (Divergence and the extremal property of Gaussian entropy) The divergence between two 
probability densities f(x) and g(x) is defined by 

D(f‖g) =  
∞ 

f(x) ln  
f

g(
(
x

x

)
) 
dx 

−∞ 

(a) Show that D(f‖g) ≥ 0. Hint: use the inequality ln y ≤ y − 1 for y ≥ 0 on  −D(f‖g). 
You may assume that g(x) > 0 where f(x) > 0. 

(b) Let ∞ 
x2f(x) dx = σ2 and let g(x) =  φ(x) where φ(x) is the density of the rv N (0, σ2).−∞

Express D(f‖φ(x)) in terms of the differential entropy (in nats) of a rv with density f(x). 

(c) Use (a) and (b) to show that the Gaussian rv N (0, σ2) has the largest differential entropy 
of any rv with variance σ2 and that that differential entropy is 1

2 ln(2πeσ2). 

3.9. Consider a discrete source U with a finite alphabet of N real numbers, r1 < r2 < < rN· · ·  
with the pmf p1 > 0, . . .  , pN > 0. The set {r1, . . .  , rN } is to be quantized into a smaller set 
of M < N  representation points a1 < a2 < < aM .· · ·
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(a) Let R1,R2, . . .  ,RM be a given set of quantization intervals with R1 = (−∞, b1],R2 = 
(b1, b2], . . .  ,RM = (bM−1,∞). Assume that at least one source value ri is in Rj for each 
j, 1 ≤ j ≤ M and give a necessary condition on the representation points {aj } to achieve 
minimum MSE. 

(b) For a given set of representation points a1, . . .  , aM assume that no symbol ri lies exactly 
halfway between two neighboring ai, i.e., that ri =� aj +

2 
aj+1 for all i, j. For each ri, find 

the interval Rj (and more specifically the representation point aj ) that ri must be mapped 
into to minimize MSE. Note that it is not necessary to place the boundary bj between Rj 

and Rj+1 at bj = (aj + aj+1)/2 since there is no probability in the immediate vicinity of 
(aj + aj+1)/2. 

(c) For the given representation points, a1, . . .  , aM , now assume that ri = aj +
2 
aj+1 for some 

source symbol ri and some j. Show that the MSE is the same whether ri is mapped into 
aj or into aj+1. 

(d) For the assumption in part c), show that the set {aj } cannot possibly achieve minimum 
MSE. Hint: Look at the optimal choice of aj and aj+1 for each of the two cases of part c). 

3.10. Assume an iid discrete-time analog source U1, U2, and consider a scalar quantizer that · · ·  
satisfies the Lloyd-Max conditions. Show that the rectangular 2-dimensional quantizer based 
on this scalar quantizer also satisfies the Lloyd-Max conditions. 

3.11. (a) Consider a square two dimensional quantization region R defined by −∆
2 ≤ u1 ≤ ∆

2 and 
−∆ ≤ u2 ≤ ∆ . Find MSEc as defined in (3.15) and show that it’s proportional to ∆2 .2 2 

(b) Repeat part (a) with ∆ replaced by a∆. Show that MSEc/A(R) (where A(R) is now  
the area of the scaled region) is unchanged. 

(c) Explain why this invariance to scaling of MSEc/A(R) is valid for any two dimensional 
region. 
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