
6.450 Principles of Digital Communications Wednesday November 8, 2006 
MIT, Fall 2006 

Solutions to Quiz 2


Notations: we will use 〈·, ·〉 ≡ 〈·, ·〉L2 
and || · || ≡ || · ||L2

.


Problem 1


(a) True:

Let w = u − v, which is continuous, and let us assume that there exists t0 s.t. w(t0) 6= 0 
(say w(t0) > 0 w.l.o.g). Then by continuity, there exists δ > 0 such that for any t ∈ (t0 − 
δ, t0 +δ), we have w(t) ∈ (w(t0)−w(t0)/2, w(t0)+w(t0)/2). Thus µ{t : 6 0} ≥ δ > 0w(t) = 

� +∞
(and 

−∞ 
|w(t)|dt ≥ δw(t0)/2 > 0), contradicting the fact that u and v are L2 equivalent.


(b) False:

The sampling theorem also requires that u is continuous, in order to to have a complete

representation of u in terms of its samples. If one does not start with a continuous function,

but simply an L2 function whose Fourier transform is band limited, the samples might not

have anymore meaning. As soon as the functions possesses first order discontinuities (not

only isolated points, but jumps), the meaning of samples is lost, as the sinc expansion is

a continuous function. If the function has only isolated discontinuous points (i.e. there

exist a continuous function which equals the initial one a.e.), and if one samples only

at continuity points, we can still get an L2 equivalent representation. But as soon as a

sample is taken at a discontinuity point, then again we loose track of the function. For

example, consider the function X0, which is 1 at zero, and 0 everywhere else, it is clearly

L2 and has a band limited Fourier transform (zero function). Then, the only non-zero

sample is u(0) = 1, and if we tried to reconstruct the function with the sampling theorem,

we would get a sinc.


(c) False:

If û is band limited to fc, then in fact v̂(f) = 2û(f) for all |f | ≤ fc, otherwise v̂ can be 
anything. 

(d) False: 
We have 

〈x1 + y1, x2 + y2〉 = 〈x1, y2〉 + 〈y1, x2〉, 

which does not not have to be zero (e.g. it is 2 if x1(t) = y2(t) = rect(t) = x2(t − 1) = 
y1(t − 1)), unless we require that 〈x1, y2〉 = −〈y1, x2〉. 
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Problem 2: 

(a) Plugging ũ(0) = 0, we get |u(t)−ũ(t)| = sinc( 
T
t ), for any t, and using Parseval identity, 

||sinc( 
T
t )||2 = ||T rect(fT )||2 = T . One can equivalently use the sampling theorem energy 

equation, i.e. ||u − ũ||2 = T (u(0) − ũ(0))2 = T . 

(b) We now want to find arg minũ0 
E|u(0)− ũ(0)|2 , where u(0) ∼ Pu0

. This problem was 
a central one in quantization and to see why ū0 ≡ EPu0 

u(0) is the minimizer, one can 
notice that 

E|u(0) − ũ(0)|2 = E|u(0) − ū0 + ū0 − ũ(0)|2 = E|u(0) − ū0|
2 + |ū0 − ũ(0)|2 . 

(c) Using Parseval, we have 

� +∞ 1 
sinc(t)sinc(t − )dt = 〈sinc, τ1/2 ◦ sinc〉 = 〈rect(f), rect(f)e −2πif/2〉 

2−∞ 
� 1/2 2 

= e −πifdf = . (1) 
π−1/2 

More directly as sinc is symmetric and rect = rect2, we have sinc(t) ⋆ sinc(−t) = sinc(t), 
and we get the answer sinc(1/2) = 

π
2 . 

Note: The function t 7→ sinc(t/T ) is continuous and band-limited to [−1/2T, 1/2T ]. 
Thus from the sampling theorem, we can express it in terms of it samples at times kT 
and the sinc(t/T − k) basis (k ∈ Z). But instead of that, we would like to express it in 
terms of its samples at time kT + T/2 using the translated functions sinc(t/T − k− 1/2). 
To make sure that this is possible, note that u 7→ sinc(u/T + 1/2) is also continuous and 
band-limited to [−1/2T, 1/2T ], from the sampling theorem, 

sinc(u/T + 1/2) = sinc(k + 1/2)sinc(t/u − k), ∀u, 
k 

and using the change of variable t/T = u/T + 1/2, we get 

sinc(t/T ) = sinc(k + 1/2)sinc(t/T − k − 1/2), ∀t. (2) 
k 

Thus {sinc(t/T − k − 1/2)}k are in fact a spanning set of functions, and having previous 
1 

change of variable in mind, they are of course orthogonal (with norm T 2 ). Therefore by 
orthogonality 

� +∞ 1 2T 
sinc(t/T )sinc(t/T − )dt = T sinc(1/2) = ,

2 π−∞ 

recovering (1) for T = 1.

This different way of dealing with the problem will allow us to solve more easily the next

questions too, although we will keep comparing the two different ways.


(d) We want to minimize 
||sinc(t/T ) − ũ1sinc(t/T − 1/2)||2 . 
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A tedious way is to expand this as 

||sinc(t/T ) − ũ1sinc(t/T − 1/2)||2	 = ||sinc(t/T )||2 + ||ũ1sinc(t/T − 1/2)||2 

− 2〈sinc(t/T ), ũ1sinc(t/T − 1/2)〉 

and using (c), directly tackle the minimization of T + ũ2
1T − ũ14T/π. Since it is a convex 

function in ũ1, we get as a minimizer ũ1 
∗ = 

π
2 , and T (1 − 

π
4 
2 ) for the error energy. 

But what we are really doing here, is to project sinc(t/T ) onto the space {λu : λ ∈ R}, 
where u(t) = sinc(t/T −1/2), and we know that the projected vector will have minimal L2 

error (by orthogonality principle). The projected vector is then �sinc(t/T ),u(t)� u(t), meaning 
||u(t)||2 

∗ �sinc(t/T ),u(t)� 2that the optimal scaling is ũ1 = 
||u(t)||2 

= 
π
, which gives us again (by the pythagorean 

theorem) T (1 − 
π
4 
2 ) for the error energy. 

On the other hand, using our expansion from (2), we have 

||sinc(t/T ) − ũ1sinc(t/T − 1/2)||2	 = ||(sinc(1/2) − ũ1)sinc(t/T − 1/2) 

+ sinc(k + 1/2)sinc(t/T − k − 1/2)||2 

k �=0 

= |sinc(1/2) − ũ1|
2||sinc(t/T − 1/2)||2 

+ || sinc(k + 1/2)sinc(t/T − k − 1/2)||2 

k �=0 

where last equalities uses the orthogonality property. Therefore, we directly get ũ1 
∗ = 

sinc(1/2) = 
π 
2 

(e) We now have to minimize 

||sinc(t/T ) − ũ1sinc(t/T − 1/2) − ũ2sinc(t/T + 1/2)||2 , 

we can again use the projection theorem on the two dimensional space spanned by the 
orthogonal vectors {sinc(t/T − 1/2), sinc(t/T + 1/2)} getting 

1	 1 2∗	 ∗ ũ1 = 〈sinc(t/T ), sinc(t/T − 1/2)〉 = ũ2 = 〈sinc(t/T ), sinc(t/T + 1/2)〉 = . 
T	 T π 

Or, using (2), we get 

||sinc(t/T ) − ũ1sinc(t/T − 1/2) − ũ2sinc(t/T + 1/2)||2 

= ||(sinc(1/2) − ũ1)sinc(t/T − 1/2) 

+ (sinc(−1/2) − ũ2)sinc(t/T + 1/2) 

+ sinc(k + 1/2)sinc(t/T − k − 1/2)||2 ,	 (3) 
k∋{0,−1} 

which, by orthogonality principle, directly gives us 

2∗ ∗ ũ1 = ũ2 = sinc(1/2) = . 
π 
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(f) Looking at (3), it is clear why using only two sinc functions will not allow us to get a 
zero error energy, and that in fact, infinity of them will be required (all k’s in Z) to drive 
it to zero. 

(g) The choice of ũ1 
∗ is the same as in (c), because the error energy is still expressed as 

||u − ũ||2 = ||sinc(t/T ) − ũ1sinc(t/T − 1/2)||2 . 

(h) We now have 

||u − ũ||2 = ||sinc(t/T ) − ũ1sinc(t/T − 1/2) 

+ (u(kT ) − ũ(kT ))sinc(t/T − k)||2 . 
k �=0 

Replacing sinc(t/T − 1/2) by its sampling expansion 

sinc(t/T − 1/2) = sinc(k − 1/2)sinc(t/T − k), ∀t, 
k 

the error energy becomes 

||(1 − ũ1sinc(−1/2))sinc(t/T ) 

+ (u(kT ) − ũ(kT ) − ũ1sinc(k − 1/2))sinc(t/T − k)||2 

k �=0 

= T (1 − ũ1sinc(−1/2))2 + (u(kT ) − ũ(kT ) − ũ1sinc(k − 1/2))2 . 
k �=0 

Therefore, choosing 
1 π∗ ũ1 = = 

sinc(1/2) 2 

and 

ũ∗ (kT ) = u(kT ) − 
sinc(k − 1/2) 

= u(kT ) − 
(−1)k+1 

sinc(1/2) 2k − 1 

will drive the error energy to zero. 
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