
6.450 Principles of Digital Communications Monday October 16, 2006 
MIT, Fall 2006 

Solutions to Quiz 1


Problem Q1.1 Consider a random symbol X with the symbol alphabet {1, 2, . . . , M} 
and a pmf {p1, p2, . . . , pM}. This problem concerns the relationship between the entropy 
H(X) and the probability p1 of the first symbol. Let Y be a random symbol that is 1 if 
X = 1 and 0 otherwise. For parts (a) through (d), consider M and p1 to be fixed. 

(a) Express H(Y ) in terms of the binary entropy function, Hb(α) = −α log(α) − 
(1−α) log(1−α).


Sol’n: Y is 1 or 0 with probabilities p1 and 1−p1 respectively, so H(Y ) = −p1 log(p1) −

(1 − p1) log(1 − p1). Thus H(Y ) = Hb(p1) = Hb(1 − p1).


(b) What is the conditional entropy H(X|Y =1)?


Sol’n: Given Y =1, X = 1 with probability 1, so H(X|Y = 1) = 0.


(c) Give a good upper bound to H(X|Y =0) and show how this bound can be met with

equality by appropriate choice of p2, . . . , pM . Use this to upper bound H(X|Y ). 

Sol’n: Given Y =0, X=1 has probability 0, so there are M − 1 elements with non­
zero probability. The maximum entropy for an alphabet of M−1 terms is log(M−1), so 
H(X|Y =0) ≤ log(M − 1). Finally, Pr(X=j|X �=1) = pj/(1− p1), so this upper bound on 
H(X|Y =0) is achieved when p2 = p3 = · · · = pM . Combining this with part (b), 

H(X|Y ) = p1H(X|Y =1) + (1−p1)H(Y |Y =0) ≤ (1−p1) log(M − 1). 

(d) Give a good upper bound for H(X) and show that how this bound can be met with 
equality by appropriate choice of p2, . . . , pM . 

Sol’n: Note that 

H(XY ) = H(Y ) + H(X|Y ) ≤ Hb(p1) + (1−p1) log(M−1) 

and this is met with equality for p2 = · · · , pM . There are now two equally good ap­
proaches. One is to note that H(XY ) = H(X) + H(Y |X). Since Y is uniquely specified 
by X, HH(Y |X) = 0, so 

H(X) = H(XY ) ≤ Hb(p1) + (1 − p1) log(M − 1) (1) 

which is met with equality when p2 = p3 = · · · = pM . The other approach is to observe 
that H(X) ≤ H(XY ), which leads again to the bound in (1), but a slightly more tedious 
demonstration that equality is met for p2 = · · · = pM . This is the Fano bound of 
information theory; it is useful when p1 is very close to 1 and plays a key role in the noisy 
channel coding theorem. 

(e) For the same value of M as before, let p1, . . . , pM be arbitrary and let pmax be 
max{p1, . . . , pM}. Is your upper bound in (d) still valid if you replace p1 by pmax? Explain. 

Sol’n: The same bound applies to each symbol, i.e., by replacing p1 by pj for any j, 1 ≤ 
j ≤ M . Thus it also applies to pmax. 
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Problem Q1.2: Consider a DMS with i.i.d. X1, X2, . . . ∈ X = {a, b, c, d, e}, with 
probability {0.35, 0.25, 0.2, 0.1, 0.1} respectively. 

(a) Compute Lmin, the expected codeword length of an optimal variable-length prefix free 
code for X . 

Sol’n: Applying Huffman algorithm, one gets the following respective codewords 
{000, 001, 01, 10, 11}, leading to an expected length of 2.2. 

(2) (3) 
(b) Let Lmin be the average codeword length, for an optimal code over X 2, and Lmin as 
that for X 3, and so on. 

1 (2) 
True or False: for a general DMS, Lmin ≥ 

2 Lmin, explain. 

Sol’n: True: one can define the encoding C2, which maps any (x1, x2) ∈ X 2 into the 
codeword C2(x1, x2) = C(x1)◦C(x2), where C is an optimal prefix free code over X , with 
codewords length L(·), and ◦ denotes the concatenation. Then C2 is clearly prefix free, 
and 

ELC2 = (L(xi) + L(xj))P{xi, xj} 
xi,xj ∈X 

= L(xi)P{xi} + L(xj)P{xj}. 
xi∈X xj ∈X 

Thus we get the following upper bound, 

L̄
(2) 

≤ 2¯
min Lmin. 

(3) (2) 
(c) Show that Lmin ≤ Lmin + Lmin. 

Sol’n: In a similar way as in (b), decomposing 

X 3 = X 2 ×X , 

and concatenating optimal prefix free codes for X 2 and X , one gets 

(3) (2) 
L̄min ≤ L̄min + L̄min. 
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Problem Q1.3: In this problem, we try to construct a code which reduces the data rate 
at a cost of some amount of distortion in its reconstruction. Consider a binary source 
X1, X2, . . . i.i.d. Bernoulli (1/2) distributed. Obviously, a lossless source code would need 
1 bit per source symbol to encode the source, allowing perfect reconstructions. 

A lossy source code is defined as follows. An encoder map takes a source string X1 
n , 

encodes into nR bits, and a decoder reconstructs the source as X̂1 
n . The goal is to 

guarantee that for any ǫ > 0, 

Pr 
1 
|X1 

n − X̂1 
n| > d + ǫ → 0 as n → ∞, (2) 

n 

where |X1 
n − X̂1 

n| is the number of places that X1 
n and X̂1 

n are different.


The parameter d, which indicates the fraction of symbols that are allowed to be wrong,

is often called a fidelity constraint. The lossless code we learned in class corresponds to

the case that d = 0.


(a) Find the minimum rate of the lossy source code for the binary source above at d = 1/2, 
i.e., the reconstruction can have half of its symbols wrong in the sense of (2). 

Sol’n: By encoding all possible sequences into the all zeros sequence (only one codeword 
for any n), one satisfies condition (2) with d = 1/2 (by the Law of Large Number). Thus 
the rate is zero. Note that one can do slightly better by encoding any sequences that have 
a majority of zeros into the all zeros sequence, and any sequences that have a majority of 
ones into the all ones sequence. That way the rate is still zero, and the error probability 
is exactly zero for any n. 

(b)To achieve d = 1/4, compare the following 2 approaches, both satisfying the fidelity 
constraint. Compute the average rate of the two codes. 

(b) 1) For a length 2n string, take the first n symbols and send uncoded, and ignore the 
rest. The decoder reconstruct the first n symbols, and simply lets X̂2n = 0. n+1 

Sol’n: For a length 2n string, all possible sequences occurring in the first n elements have 
to be “perfectly” encoded (meaning with d=0), and since the symbols are i.i.d. Bernoulli 
(1/2), we get for the average rate R = nH(1/2)/(2n) = 1/2. 

(b) 2) For a length 2n string, divide it into 2 letter segments, which takes value 00, 01,

10, or 11. Construct a new binary string of length n, Z1 

n . Set Zi = 1 if the ith segment

X2

2
i
i 
−1 = 11; and Zi = 0 otherwise. Now the encoder applies a lossless code on Z, and


transmits it. The decoder reconstructs Z, and for each Zi, it reconstructs the ith segment

of X̂. If Zi = 1, the reconstruction X̂2

2
i
i 
−1 = 11, otherwise X̂2

2
i
i 
−1 = 00.


Sol’n: We still have n over 2n i.i.d. symbols that have to be “perfectly” encoded, but

now with a Bernoulli (1/4) distribution (where 1/4 is the probability of having a one).

So the average rate becomes R = H(1/4)/2 = 0.406.


(c) (bonus) Do you think the better one of part (b) is optimal? If not, briefly explain

your idea to improve over that.


Sol’n: It is possible to improve the idea suggested in (b) 2), by dividing, for example, the
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strings into 3 letter segments. We then map any 3-sequences with a majority of 0’s to 0, 
and any 3-sequences with a majority of 1’s to 1. The 1/4 fidelity constraint is satisfied (in 
the average, one symbol over 4 is wrong), and for a string of length 3n, we have to encode 
a sequence of length n which has i.i.d. Bernoulli (1/2) distributed symbols, leading to an 
average rate R = nH(1/2)/(3n) = 1/3. 

However, one can do better. Consider Tn(B(1/2)), the type class of the Bernoulli (1/2) 
distribution. This set is of asymptotic size 2n (more precisely: log(|Tn(B(1/2))|)/n → 1). 
For any ǫ > 0, we now pick up K = 2n(1−H(1/4)+ǫ) sequences, Y1, . . . , YK , uniformly 
at random among the 2n possible sequences. Then, for a given sequence y, we only 
transmit the index of the Yi which has minimal Hamming distance, leading to a rate 
R = 1 − H(1/4) + ǫ. The closest Yi is then declared and we claim that this satisfies a 
fidelity constraint of 1/4. In fact, note that the volume of a Hamming ball of radius 1/4 
is asymptotically 2nH(1/4), therefore we have for any i 

2nH(1/4) 

P{d(y, Yi) ≤ 1/4} = ,
2n 

so that 

P{∃i s.t. d(y, Yi) ≤ 1/4} = 1 − P{∀i s.t. d(y, Yi) > 1/4} 

2nH(1/4) �2nR 

= 1 − 1 − 
2n 

≥ 1 − e −2n(H(1/4)−1+R) 
= 1 − e −nǫ , 

where last inequality uses (1−x)n ≤ e−xn . This shows that any rates less than 1−H(1/4) 
can be achieved, and it turns out that this bound is actually the best possible one (cf. 
the Rate Distortion Theorem). 
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