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Review of Doppler Spread


The response to exp[2πift] is ĥ(f, t) exp[2πift].


ĥ(f, t) =  βj exp[−2πifτj(t)] = exp[2πiDjt − 2πifτj
o] 

j j 

Define 
1 D = maxDj − minDj; Tcoh = 

2D
The fading at f is 

|ĥ(f, t)
|
=

j


exp[2πi(Dj − ∆)t − 2πifτj
o]
.


Let ∆ = (maxDj+minDj)/2. The fading is the 
magnitude of a waveform baseband limited to 
D/2. Tcoh is a gross estimate of the time over 
which the fading changes significantly. 
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Review of time Spread


ĥ(f, t) =  βj exp[−2πifτj(t)] 
j 

For any given t, define 

1 L = max τj(t) − min τj(t); Fcoh = 
2L

The fading at f is 

|ĥ(f, t)
| =

j


exp[2πi(τj(t) − τ
)f ]
 (ind. of τ
)


Let τ ′ = τmid = (max τj(t)+min τj(t))/2. The 
fading is the magnitude of a function of f with 
transform limited to L/2. Tcoh is a gross esti­
mate of the frequency over which the fading 
changes significantly. 
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Baseband system functions


The baseband response to a complex baseband 
input u(t) is � W/2 

v(t) =  û(f)ĥ(f+fc, t) e 2πi(f−∆)t df 
−W/2 

= 
� W/2 

û(f) ĝ(f, t) e 2πift df 
−W/2 

where ̂g(f, t) = ĥ(f+fc, t)e−2πi∆t is the baseband 
system function and ∆ = f̃c−fc is the frequency 
offset in demodulation. 

By the same relationship between frequency 
and time we used for bandpass, 

v(t) =  
∞ 

u(t−τ)g(τ, t) dτ 
−∞ 
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ĥ(f, t) =  βj exp{−2πifτj(t)}
j 

ĝ(f, t) =  βj exp{−2πi(f+fc)τj(t) − 2πi∆t}
j 

ĝ(f, t) =  γj(t) exp{−2πifτj(t)} where 
j 

γj(t) =  βj exp{−2πifcτj(t) − 2πi∆t} 

= βj exp{2πi[Dj − ∆]t − 2πifcτ
o � j 

g(τ, t) =  γj(t)δ(τ − τj(t)) 
j 

v(t) =  γj(t)u(t − τj(t))

j
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Flat fading


Flat fading is defined as fading where the band­

width W/2 of u(t) is much smaller than Fcoh. 

For |f | < W/2 << Fcoh, 

ĝ(f, t) =  γj(t) exp{−2πifτj(t)} ≈  ̂g(0, t) =  γj(t) 
j j 

� W/2 � 
v(t) =  û(f) ĝ(f, t) e 2πift df ≈ u(t) γj(t) −W/2 j 

Equivalently, u(t) is approximately constant over 

intervals much less than L. 

v(t) =  γj(t)u(t − τj(t)) = u(t) γj(t) 
j j 
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Discrete-time baseband model (T = 1/W ) 

u(t) =  u(nT )sinc(t/T − n)
�n


v(t) =  u(t − τ )g(τ, t) dτ 

= u(nT ) g(τ, t) sinc(t/T − τ/T  − n) dτ 
n 

v(mT ) =  u(mT − kT ) g(τ, mT ) sinc(k − τ/T  ) dτ 
k 

Letting un = u(nT ) and vn = v(nT ), 

vm = gk,m um−k; gk,m = g(τ, mT ) sinc(k − τ/T  ) dτ. 
k 

Since g(τ, t) =  j γj(t)δ(τ −τj(t)), � τj(mT ) 
gk,m = γj(mT ) sinc k − 

Tj 
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� vm 

� � 
gk,m = 

� 
γj(mT ) sinc k − 

τj(mT ) 

Tj 

Each gk,m gets contributions from each path, 

but the major contributions are from paths 

with τj(mT ) ≈ kT . 

For flat fading, only one tap, g0,m, is signifi­

cant. 
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Stochastic channel model


For many paths and a small number of taps 

(T ∼ L), many paths contribute to each chan­

nel filter tap. 

View gk,m as a sum of many unrelated paths. 

View gk,m as a sample value of a rv Gk,m with 

zero mean iid Gaussian real and imaginary parts, 

Gr, Gi 

(gr, gi) =
1 

exp 
−gr 

2 − gi 
2 

fGr,Gi 2πσ2 2σ2 
k k 

Gk,m has independent magnitude and phase. 
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Phase is uniform; magnitude has Rayleigh den­


sity 

f|Gk,m|(|g|) =  
|g|
σ2 exp 

� 
|g|2 
2σ2 

� 
k k 

This is quite a flaky modeling assumption since 

there are often not many paths. 

If we look at the ensemble of all uses of cellular 

systems (or some other kind of system), the 

model makes much more sense. 

Basically, this is just a simple model to help 

understand a complex situation. 
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Another common model is the Rician distri­

bution. There is one path with large known 

magnitude but random phase, plus other com­

plex Gaussian paths. 

The phase is uniformly distributed and inde­


pendent of the amplitude, which is quite messy.


If the large known path has both amplitude 

and phase known, the resulting amplitude dis­

tribution of fixed plus Gaussian terms is still 

Rician. 

The Rician model has the same problems as 

the Rayleigh model. 
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Tap gain correlation function 

How does Gk,m varies with k and m? 

Assume independence for k =� k′. 

These quantities refer to well separated paths. 

A high velocity path at range k could move to 
k′, but we ignore this.


Simplest statistical measure is tap gain corre­

lation,


R(k, n) =  E Gk,mG∗
k,m+n 

This is assumed to not depend on m (WSS). 
With joint Gaussian assumption on taps, have 
stationarity. 
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Flat Rayleigh fading


Assume a single tap model with G0,m = Gm. 

Assume Gm is circ. symmetric Gaussian with 

E[|Gm|2] = 1. 

The magnitude is Rayleigh with 

f|Gm|(|g|) = 2|g| exp{−|g|2} ; |g| ≥  0 

f(|g|) 

|g| 
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Vm = UmGm + Zm; � (Zm),	 (Zm) ∼ N  (0, WN0/2) 

Antipodal binary communication does not work 

here. It can be viewed as phase modulation 

(180o) and the phase of Vm is independent of 

Um. 

We could use binary modulation with Um = 0  

or a, but it is awkward and unsymmetric. 

Consider pulse position modulation over 2 sam­

ples. 

H = 0  (U0, U1) = (a,0)−→ 

H = 1  (U0, U1) = (0, a).−→ 

13 



This is equivalent to any binary scheme which 

uses 2 symmetric complex degrees of freedom, 

modulating by choice among degrees. 

H = 0  V0 = aG0 + Z0; V1 = Z1−→ 

H = 1  V0 = Z0; V1 = aG1 + Z1.−→ 

H = 0  −→ V0 ∼ N  c(0, a  2+WN0); V1 ∼ N  c(0, WN0) 

H = 1  −→ V0 ∼ N  c(0, WN0); V1 ∼ N  c(0, a  2+WN0). 

N c(0, σ2) means iid real, imaginary, each N (0, σ2/2). 
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H = 0  c(0, a  2+WN0); c(0, WN0)−→ V0 ∼ N V1 ∼ N
2H = 1  c(0, WN0); c(0, a  +WN0).−→ V0 ∼ N V1 ∼ N

2 2

f(v0, v1 H=0) = α exp 

|v0| v1|
| − 
2 + WN0 

− |
a WN0 

2 2

f(v0, v1 H=1) = α exp − |v0| |v1|
|

WN0 
− 

a2 + WN0 

� � � 
2 2 

� 
2 

LLR(v0, v1) = ln  
f(v0, v1|H0) = 

|v0| − |v1| a

f(v0, v1|H1) (a2 + WN0)(WN0) 

Given H = 0, |V0|2 is exponential, mean a2+WN0 
and |V1|2 is exponential, mean WN0. Error if 
the sample value for the first less than that of 
the second. 
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Let X0 = |V0|2 and X1 = |V1|2 . Given H0, X1 

is an exponential rv with mean WN0 and X0 is 

exponential with mean WN0 + a2 . 

Error if X0 < X1. 

Let X̃ = X1 − X0. For X̃1 > 0, 

f(x̃|H0) =  
∞ 

f1[x1|H0] f0[(x1 − x̃)|H0] dx1 
x1=x̃ 

1 x̃
= exp .


a2 + 2WN0 
−

WN0 

WN0 1 
Pr(e|H0) =  

a2 + 2WN0
=

2 +  a2/(WN0) 
1 

= 
2 +  EbN0 
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We next look at non-coherent detection. We 
use the same model except to assume that 
| g0| = | g1| = g̃ is known. We calculate Pr(e) 
conditional on g̃. 

We find that knowing ̃g does not aid detection. 
We also see that the Rayleigh fading result 
occurs because of the fades rather than lack 
of knowledge about them. 

H = 0  −→ V0 = ag̃eiφ0 + Z0; V1 = Z1 

H = 1  −→ V0 = Z0; V1 = ag̃eiφ1 + Z1. 

The phases are independent of H, so  | V0| and 
| V1| are sufficient statistics. 

The ML decision is Ĥ = 0  if | V0| ≥ |  V1| . This 
decision does not depend on g̃. 
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Since the phase of g̃ and that of the noise are 

independent, we can choose rectangular coor­

dinates with real ̃g. The calculation is straight­

forward but lengthy. 

1 −a2g̃2 1 −EbPr(e) = exp = exp
2 2WN0 2 2N0 

If the phase is known at the detector, � � � � � 
a2g̃2 N0 −EbPr(e) =  Q 
WN0 

≤ 
2πEb 

exp 
2N0 

When the exponent is large, the db difference 

in Eb to get equality is small. 
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CHANNEL MEASUREMENT 

Channel measurement is not very useful at the 
receiver for single bit transmission in flat Rayleigh 
fading. 

It is useful for modifying transmitter rate and 
power. 

It is useful when diversity is available. 

It is useful if a multitap model for channel is

appropriate. This provides a type of diversity

(each tap fades approximately independently).


Diversity results differ greatly depending on 
whether receiver knows channel and transmit­
ter knows channel. 
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SIMPLE PROBING SIGNALS


Assume k0 channel taps, G0,m, . . .  , Gk0−1,m. 

input � um u m−1 · · ·  u m−k0+1 

� � � ���� �� � 
Gk0−1,mG1,m · · ·  

� 

G0,m 

� 

� ��� ��� 
��

� 
��

� 
����

� � � 

�� 

� Vm
′

V
m
′ = umG0,m + um−1G1,m + + um−k0+1Gk0−1,m· · ·

Send (a,0,0, . . .  ,0)


V′ = (aG0,0, aG1,1, . . .  , aGk0−1,k0−1,0,0, . . .  ,0)


Vm = Vm
′ + Zm. Estimate Gm,m as Vm/a. Esti­

mation error is Nc(0, WN0/a2). 
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Pseudonoise (PN) PROBING SIGNALS


A PN sequence is a binary sequence that ap­
pears to be iid. It is generated by a binary shift 
register with the mod-2 sum of given taps fed 
back to the input. With length k, it gener­
ates all 2k − 1 binary non-zero k-tuples and is 
periodic with length 2k − 1. 

1 
2Z a n 

V′
�

��VPN sequence 
� G ��� G+Ψu�0 a, 1 → −a→


u is  ≈ orthogonal to each shift of u so

n	 2�	

umu∗ a n ; k = 0  
= a 2nδkm+k ≈ 

0 ; k = 0  
m=1	

�

If u is matched filter to u, then u �	 ∗ u� = a2nδj. 

21




Binary feedback shift register


Periodic with period 15 = 24 − 1


� uj uj−1 uj−2 uj−3� � � 

� 
� 
�⊕�� 

�� 
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If u ∗ u� = a2nδj, then 

V′ ∗ u� = (u ∗ G) ∗ u� = (u ∗ u� ∗ G) = a 2 nG 

The PN property has the same effect as using 
a single input surrounded by zeros. 

1 
2Z a n 

V′ 
�

��V 
u � G u ��� G+Ψ 

The response at time m of ũ to Z is the sum 
of n iid rv’s each of variance a2N0W . 

The sum has variance a2nN0W . After scaling 
by 1/(a2n), E[|Ψ 2] = N0

2
W .k| a n 

The output is a ML estimate of G; MSE de­
creases with n 
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RAKE RECEIVER


The idea here is to measure the channel and 

make decisions at the same time. 

Assume a binary input, H=0 u0 and H=1→ →
1u

With a known channel g, the ML decision is 

based on pre-noise inputs u0 ∗ g and u1 ∗ g. 

Ĥ=0 

�(〈v, u0 ∗ g〉) ≥ �(〈v, u1 ∗ g〉). 
< 

Ĥ=1 

We can detect using filters matched to u0 ∗ g 

and u1 ∗ g 
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1 Z 

�u 0 � �g 

�u 1 � �g
u �

�

v � v �′ 
��� �

g Decision 

0 �
� �

���u

Note the similarity of this to the block diagram


for measuring the channel.


If the inputs are PN sequences (which are of­


ten used for spread spectrum systems), then


if the correct decision can be made, the out­


put of the corresponding arm contains a mea­


surement of g.


25




�� �

�� �

�� �

�� �
�

��

�
� ��

�
�

�
�

�
�

�
�� �

�
�

�
�

�� �

1 

g if  H = 1 


Z 

�u 0 � �g 

�u 1 �� 

� 

�g
u �

�

v′ �
� v �

g Decision 

0 �
� �

���u

g if  H = 0  

u1 and u0 are non-zero from time 1 to n. v′ is

non-zero from 1 to n+k0−1.


ũ1 and ũ0 are non-zero from −n to −1 (receiver

time).


If H = 1  or H = 0, then g plus noise appears

from time 0 to k0 − 1 where shown. Decision

is made at time 0, receiver time.
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Z 
u1�

�
v �� �

�

g �� 
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�

0�
� ���u �u 0 � 

� 

�g �
�

�
�

���

�u 1 � 

� 

�g �
�

�
�

���

Decision 

�Estimate g 

� 

� 

If Ĥ = 0, then a noisy version of g proba­

bly exists at the output of the matched filter 

u0 . That estimate of g is used to update the 

matched filters �g. 
If Tc is large enough, the decision updates can 

provide good estimates. 
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Suppose there is only one Rayleigh fading tap 

in the discrete-time model. 

Suppose the estimation works perfectly and g


is always known. Then the probability of error


is the coherent error probability Q( Eb/N0) for 

orthogonal signals and Eb = a2n|g|2/W . 

This is smaller than incoherent Pr(e) =  12 exp{−Eb/(2N0)}. 

Averaging over G, incoherent result is 1 
2+Eb/N0 

and coherent result is at most half of this. 

Measurement doesn’t help here. 
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Diversity 

Consider a two tap model. More generally con­
sider independent observations of the input. 

Input � {a, 0} Um Um−1 

� ���� ����

G0,m � ���� 
G1,m 

� � 

Zm � V � 
m
′

� + 

Consider the input H=0 a, 0, 0, 0 and H=1→ →
0, 0, a,  0. 

For H=0, V′ = aG0,0, aG1,1, 0, 0. For H=1, V′ = 
0, 0, aG0,2, aG1,3. 

� Vm 
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Assume each G is Nc(0,1) and each Z is Nc(0, σ2). 

Given H=0, V1 and V2 are Nc(0, a2 + σ2) and 

V2, V3 are Nc(0, σ2). 

Given H=1, V1 and V2 are Nc(0, σ2) and V2, V3 

are Nc(0, a2+σ2). 

Sufficient statistic is |Vj
2 for 1 ≤ j ≤ 4. Even 

2 2simpler, |V1|2 + V2| − |V3|
|

− |V4|2 is a sufficient 

statistic. 

4 + 3a2 
4 + 3Eb 

Pr(e) =  � σ�23 = � 2N0 �3 
2 +  

σ
a2
2 2 + 2

E
N

b 
0 

This goes down with (Eb/N0)
−2 as (Eb/N0) → ∞. 
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