
Review: Theorem of irrelevance


Given the signal set {�a1, . . .  ,�aM}, we transmit 
X(t) =  

�
j
k 
=1 am,jφj(t) and receive Y (t) =  

�∞
j=1 Yjφj(t) 

where Yj = Xj + Zj for 1 ≤ j ≤ k and Yj = Zj for 
j > k. 

Assume {Zj; j ≤ k} are iid and N (0, N0/2). As­
sume {Zj : j > k} are arbitrary rv’s that are 
independent of {Xj, Zj; j ≤ k}. 

Then the MAP detector depends only on Y1, . . .  , Yj. 
The error probability depends only on {�a1, . . .  ,�aM}, 
and in fact, only on 〈�aj,�ak〉 for each j, k. 

Alll orthonormal expansions are the same; noise 
and signal outside of signal subspace can be 
ignored. 

1




Next let X(t) =  
� 

Xn(t) where Xn(t) =  
� (n)

φ
(n)(t)n j am,j j 

is the nth of a sequence of modulated wave­

forms and φ
(
j
n)(t) are orthonormal over j and 

n. 

If the choice of Xn(t) (over signals �am) is sta­

tistically independent from one n to another, 

then the optimal sequence detector is simply 

the optimal detector for one signal at a time. 

With statistical dependence between Xn(t), then 

the error probability for optimal sequence de­

tection is less than or equal to that for suc­

cessive independent detection. 

This is true both for single-signal error proba­

bility and block error probability. 
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If {φj(t); j ∈ Z} is an orthonormal complex set 
at baseband, then 

Ψj1(t) = �{2φj(t)
2πifct}; Ψj2(t) = �{2φj(t)

2πifct}e	 e 

u(t) = 	 ajφj(t) x(t) =  aj1Ψj1(t) + aj2Ψj2(t)→
j	 j 

→	 y(t) =  (aj1 + Zj1)Ψj1(t) + (aj2 + Zj2)Ψj2(t) 
j 

→	 v(t) =  (aj + Zj) ajφj(t)

j j


Here {Zj; j ∈ Z} is a sequence of iid circularly 
symmetric complex Gaussian rv’s. 

Under complex linear transformations, the re­
sulting noise rv’s are Gaussian circularly sym­
metric. 
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� Baseband x(t)Input 
� Signal Baseband 

passband 
→

encoder modulator u(t)a∈A 

� WGN 

Output Baseband � Passband �� Detector� 

Demodulator v(t) basebandv y(t)→ 

Equivalent system


Input 

Output 

� Signal 
encoder 

� 

a∈A u(t) 
Baseband 
modulator 

� 

� ©+ 

Baseband 
Demodulator 

� 

v(t) 
� 

v Detector� 

WGN; complex

circularly symm.
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A set of signals �a1, . . .  ,�aM are orthogonal if 

〈�ai,�aj〉 = Eδij for 1 ≤ i, j ≤ M. They span an 

M dimensional space and can be taken as ba­

sis vectors in RM . 

The mean of an orthogonal set is A� = (
√
M
E, . . .  ,  

√
M
E)T 

The set �sj = �aj − A� is a simplex code. This 

spans an M − 1 dimensional space. The energy 

is EM
M
−1 . 

The set ±�a1,±�a2, . . .  ,±�aM is a biorthogonal code. 
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Orthogonal Simplex Biorthogonal

0,1 

1,0 -0.7 0.7M = 2  

0,1,0 

0,0,1 ��

1,0,0 �M = 3  
��

�
� � � 

√
2/2 �

� 

�
� � 

Note that for M ≥ 3, the lines connecting clos­

est points are not orthogonal. 
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Orthogonal and simplex codes have the same 
error probability. The energy difference is 1− 1 . m 

Orthogonal and biorthogonal codes have the 
same energy but differ by about 2 in error prob­
ability. 

We find the ML error probability for orthogo­
nal codes. By symmetry, doesn’t depend on 
codeword (signal), so assume input 1. 

Normalize the output by Wj = Yj 2/N0. Thus 

the input is (α,0, . . .  ,0) where α = 2E/N0. 

Given this input, W1 ∼ N (α,1), Wj ∼ N (0,1) for 
j ≥ 2 and W1, . . .  , WM are independent. 

An error is made is Wj ≥ W1 for any 2 ≤ j ≤ M. 
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  � M

Pr(e) =  
∞ 

fW1
(w1)Pr   

 

{Wj ≥ w1} dw1 −∞ j=2

If w1 is very small, then lots of other signals 
look more likely; if large, then union bound is 
good. 

Let B1, B2, . . . Bn be independent equiprobable 
events of probability p. 

n

 np for np ≤ 1
Pr( Bj) = 1  − (1 − p)n ≤ 

1 for np > 1 
j=1 

n(n − 1) (np)2 2≥ np �− 
2 

p = np − 
2 

n

Pr( 


 

Bj) 
np/2 for np ≤ 1 ≥ ≥  
1/2 for np > 1 

j=1 
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  �


  M  (M − 1)Q(w1) for w1 ≥ γ
Pr 

j=2

(Wj ≥ w1 ≤ 
1 for w1 < γ  

� γ � 
Pr(e) ≤ fW1

(w1) dw1 + 
γ 

∞ 
fW1

(w1)(M−1)Q(w1) dw1 −∞ � � � 
M−1 −(w1−α)2 

= Q(α − γ) +  
γ 

∞
√

2π
Q(w1) exp 

2 

Expression on right looks Gaussian, mean α/2. 
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Bottom line: Choose γ = 
√

2 lnM Then
 
 −(α−γ)2


2
 for α/2 ≤ γ
exp

Pr(e) ≤


exp −
4 
α2

+ γ2
2 

for α/2 > γ 


Let logM = b and Eb = E/b. Then
 
 �� �2


Eb/N0 −
√

ln 2 for 4
E
N

b 
0 
≤ ln 2 < Eb
−b
exp
 N0
Pr(e) ≤



2
E
N

b 
0 
− ln 2 for ln 2 < Eb
exp −b
 4N0


This says we can get arbitrarily small error 

probability so long as Eb/N0 > ln 2. 

This is Shannon’s capacity formula for unlim­

ited bandwidth WGN transmission. 
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Bi-Orthogonal code by Hadamard matrix


Map n bit blocks to 2n bit orthogonal sequences.


0000 0000 
0 0 0 0 0101 0101 

0 0 
0 1 0 1 0011 0011 

0110 0110 

0 1 0 

0 1 

0 1 

1 0 

1 0000 1111 
0101 1010 
0011 1100 
0110 1001 

b = 1  b = 2  b = 3  

Generate Hb+1 from Hb: put Hb at top left, top 
right, lower left, and put complement Hb at 
lower right. 

Each mod 2 row sum is a row - half ones.


Follow by antipodal modulation.
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Convolutional Encoding 

Input bits 
Dj 

� Dj−1 

�� 

� Dj−2 

�� 

� 

��
���

�� 

� 

�� �� 
�Uj,1 

R = 1/2, n  = 2  

�Uj,2 

=Uj,1 Dj ⊕ Dj−1 ⊕ Dj−2 

=Uj,2 Dj ⊕ Dj−2 

It needs n bits at end of block to return to 

state 0. 

Viterbi algorithm used for decoding; complex­

ity ∼2n . 
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Input bits 
Dj 

�� Dj−1 � Dj−2 

�� 

��� 
� 

1 2 3 � 0 00 �� 0 00 �� 0 00 

�Uj,1 

R = 1/2, n  = 2  

�Uj,2 

4 �� 0 00 �00 → → →
� 

→
1 11 1 11 1 11 � 1 11→ → →

�0
� 

11 
→

�������������

�������������

��������������

����������
0
��� 

11→ →

10 � � �
�

������� 
1 00� 1 00 

�������������

→

��

�������������� 

→
������������� 

�State �
� 0 10 

� 

� 
→

�
��

�
� 

0→10 

�������� 0 10 
� 

→
01 � 

���
���� 

�1 01 �1 01 �1 01 

11 

→
��� 0→01 

→
��� 0→01 

→
�� 

1 10 1 10→ →
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1 2 3 4 

00 ���������������

→ → → →
1→11 1→11 1→11 1→11 

0→10 0→10 0→10 

0→11 0→

1→00 1→
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0 00 �� 0 00 �� 0 00 �� 0 00 � 

11 

10 
00 

State 

01 � 

�1 01 �1 01 �1 01 

11 

→
��� 0→01 

→
��� 0→01 

→
�� 

1 10 1 10→ →

Viterbi decoding: At each epoch, decode con­

ditional on each possible assumed state. 

Maintain only the survivor at each state; each 

decoding step is a binary decision. 
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WIRELESS COMMUNICATION


Wireless: radiation between antennas.
• 

Much more difficult than wires. • 

•	 Permits motion and temporary locations. 

Avoids mazes of wires • 

NEW PROBLEMS: 

1. Channel changes with time 

2. Interference between channels 
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Started by Marconi in 1897; Many false starts 

We will concentrate on Cellular Networks 

This includes most features of other systems. 

Many mobiles, Few base stations. 

Mobile Base station MTSO Wired net­→ → → 

work Whatever→ 
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Hexagon Cells Real Cells 

Base Stations � 
MTSO 
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Cellular Network is Appendage to Wire Net­

work 

Major Problems: 

•	 Outgoing: Find Best Base station 

•	 Ingoing: Find Mobile 

•	 Multiple mobiles send to same base sta­

tion. This is called the reverse channel or 

a multiaccess channel 

•	 Base station sends to multiple mobiles. this 

is called the forward channel or a broadcast 

channel. 

18 



Wireless Systems are now digital (Binary In­


terface)


Source either analog or digital.


Cellular systems developed for voice


But major issues quite different for voice and


data
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OTHER WIRELESS SYSTEMS: 

Broadcast Systems 

Wireless LANs (often in home or office) 

Adhoc Networks 

Standardization is a major problem for all wire­

less systems 

Particularly a problem for cellular because of 

roaming. 

Will voice and data wireless networks merge 

into one, or will they evolve into separate net­

works? 
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Is there a large market for high speed mobile 

data? 

We study more technical issues in what fol­

lows. 



PHYSICAL MODELING 

Wireless uses bandwidths of KH to a few MH 

in bands of a few GH. 

Cellular ranges are small, a few KM or less 

Narrow band; WGN assumption good, but new 

problems are fading and interference. 

EM equations are too difficult to solve and 

constantly changing. 

Very different modeling questions arise in the 

placement of base stations from those in the 

design of mobiles and base stations. 

Look at idealized models for clues 
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� � 
Consider fixed antenna in free space: 

Response at x = (r, θ, ψ) to sinusoid at f: 

1 r 
E(f, t, x) =  

r 
� αs(x, f)) exp{2πif (t − 

c 
)} 

Note 1/r attenuation; think spheres 

Receiving antenna alters field; doesn’t depend 

on (r, θ, ψ). Define 

H(f) =  
α(θ, ψ, f ) exp{−2πifr/c} 

r 

Er(f, t, u) =  � [H(f) exp{2πift}] 

Linearity holds but not time invariance. 
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