Summary of binary detection with vector ob-
servation in iid Gaussian noise.:

First remove center point from signal and its
effect on observation.

Then signal is +G. and 7 = +a + Z.

Find (J,d) and compare with threshold (0O for
ML case).

This does not depend on the vector basis -
becomes trivial if ¢ normalized is a basis vector.

Received components orthogonal to signal are
irrelevant.



QAM DETECTION

Input |signal Baseband Baseband —| z(t)
encoder| a€.A |modulator v (t) |passband
WGN
s>
Output Detector. Baseband Passband | |
v |Demodulatorv(t) | — baseband| y(t)

We have seen how to design a MAP or ML
detector from observing v. We dgeneralize to
an arbitrary complex signal set A

We also question what the entire receiver should
do from observation of y(¢) or v(t).



The baseband waveform is u(t) = ap(t) where
a = aq + ia> With a1 = R{a}, ar = {a}.

The passband transmitted waveform is
z(t) = a1 W1(t) 4+ axWa(t).

W () = R{2p(t)e2™ ), wo(t) = S{2p(t)e2™ et}

These two waveforms are orthogonal (in real
vector space), each with energy 2. For p(t)
real, they are just p(¢) modulated by cosine
and sine.

The received waveform is

Y(t) = (a1+21)W1(t) + (ax+2Z2)Wo(t) + Z'(t)

where Z/(t) is real passband WGN in other de-
grees of freedom.



Y (t) = (a1+21)WV1(t) + (ax+2Z2)Wa(t) + Z'(t)
Since WV, and WV, are orthogonal and equal en-
ergy, Z1 and Z, are iid Gaussian.

After translation of passband signal and noise
to baseband,

V(t) = [a1+2Z1 + i(ap+2Z2)]p(t) + Z" (1)

Z'" (t) is the noise orthogonal (in complex vec-
tor space) to p(t).

First consider detection in real vector space.
Here (a1, ay) represents the hypothesis and 7, 7>
are iid Gaussian, N (0, Ng/2).



V(t) = la1+21 + i(ax+22)]p(t) + 2" (2)
Let Y1 =a1 4+ Z1, Yo =ar» + 2>.
Note that [V (t)p*(r —t) dt is the output from a

complex matched filter. Sampling thisat =20
yields (Y7 + iY5).

The components in an expansion 73, Z4,..., in
an orthonormal expansion of Z" (t) are also ob-
servable, although we will not need them.



Z3,%4,..., are real Gaussian rv’s and can also
be viewed as passband rv’s. Assume a finite
number of these variables. For any two hy-
potheses, ¢ and d/, the likelihoods are

2
, 1 —(yj —a;)? | & -z
- = eX
TrnWla) = Toye &P Z No +jZ:3 N
1 —(yj—ay)? 2k —z2
! J J J
- = ———¢X E
2yja '—2y' - 2y; (a )
LLR(7) = E: 7% “:E: A
J J

As usual, ML decoding is minimum distance
decoding.




We can rewrite the likelihood as

ff/"H(gl CL) — f(y1y2|a’)f(z3az4a .o 7)

So long as 73, 7Z,,... are independent of Yq,Y5
and H, they cancel out in the LLR.

This is why it makes sense to use the WGN
model - all we need in detection is the inde-
pendence from the relevant rv’s.

In other words, (Y71,Y>) is a sufficient statistic
and Z3,Z,,..., are irrelevant (so long as they
are independent of Y7,Y5, H).

This i1s true for all pairwise comparisons be-
tween input signals.



Now view this detection problem in terms of

complex rv’s. Let a =a —d'.
S g\aj Yo
LLR()) = Y N L=y 25

j=1
2R{yR{a} + I{y}S{a}
No
2R{ya’} _ 2R{(y, @)}
No No
In real vector space, we project y onto a.

In complex space, 2-vectors become scalars,
inner product needs real part to be taken.

The real part is a ‘“further projection” of a
complex number to a real number.



Now let’s look at the general case in WGN.
Must consider problem of real signals and noise
for arbitrary modulation.

The signal set A = {ay,...,a,}, is a set of k-
tuples.

am = (am,1,-- > am i) -

am IS then modulated to

k
bn(t) = D am 0 (¢)
j=1
where {¢$1(t),... ,¢,(t)} is a set of k£ orthonormal

waveforms.

Successive signals are independent and mapped
arbitrarily, using orthogonal spaces.



Let X(t) € {b1(2),... by (¥)}. Then

k

X(t)= > X;¢;(t)
J=1

where, under hypothesis m,

ijam’j forl1 <3<k

Let ¢;41(t), pp42(t)... be an additional set of
orthonormal functions such that the entire set
{¢j(t);7 > 1} spans the space of real £, wave-
forms.

Y(t) = Z Yigi(t) = Z(X +Z)¢;(t) + 2 Zid;(t).

J= J= j=k+1
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/ k 14
Y(t)= ) Yip;(t) = > (X;+Z))o;t)+ > Zj¢;().

j=1 j=1 j=k+1

Assume Z = {Zi,...,Z} are iid Gauss. Z' =
{Zy11,...,} is independent of Z and of a.

¢ 7109, Z\m) = fz(F — am) f7(Z).

fZ"(g_C_’:m)
A=l T
’ fZ(y T am’)
The MAP detector depends only on Y. The

other signals and other noise variables are ir-
relevant.
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This says that detection problems reduce to
finite dimensional vector problems; that is, sig-
nal space and observation space are for all
practical purposes finite dimensional.

The assumption of independent noise and in-
dependent other signals is essential here.

With dependence, error probability is lowered;
what you don’t know can’t hurt you.
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Detection for Orthogonal Signal Sets

We are looking at an alphabet of size m, map-
ping letter j into VE®;(t) where {¢;(t)} is an
orthonormal set.

WGN of spectral density Ny/2 is added to the
transmitted waveform.

The receiver gets
Y(t) =) Yjo;(t) = > (X;+ Z;)9;(t)
J J
Only {Y7,...,Yn} is relevant.

Under hypothesis k, Y, =VE+ Z; and Y, = Z;
for j = k.
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Use ML detection. Choose k for which (y, Z.)
IS smallest.

m

(T3 ° =D yF + (yp —np)* = Z vy + E — 2V Ey,
J7k j=1

ML: choose k£ for which y; is largest.

By symmetry, the probability of error is the
same for all hypotheses so we look at hypoth-
esis 1.

First scale outputs by /Ng/2, i.e., W; =Y},/2/Ng.

Under Hy, W1 ~ N(y/2E/Ng,1) and W; ~ (0,1)
for j = 1.

Pr(e) = /_O:O Sy (wi | 1) Pr ( J (W; > wy | 1)) dwy

J=2
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