
Summary of binary detection with vector ob­

servation in iid Gaussian noise.: 

First remove center point from signal and its 

effect on observation. 

Then signal is ±�a. and �v = ±�a + Z� . 

Find 〈�v,�a〉 and compare with threshold (0 for 

ML case). 

This does not depend on the vector basis ­


becomes trivial if �a normalized is a basis vector.


Received components orthogonal to signal are 

irrelevant. 
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We have seen how to design a MAP or ML 

detector from observing v. We generalize to 

an arbitrary complex signal set A 

We also question what the entire receiver should 

do from observation of y(t) or v(t). 
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The baseband waveform is u(t) = ap(t) where 
a = a1 + ia2 with a1 = �{a}, a2 = �{a}. 

The passband transmitted waveform is 

x(t) = a1Ψ1(t) + a2Ψ2(t). 

Ψ1(t) = �{2p(t) 2πifct}; Ψ2(t) = �{2p(t) 2πifct}e e 

These two waveforms are orthogonal (in real 
vector space), each with energy 2. For p(t) 
real, they are just p(t) modulated by cosine 
and sine. 

The received waveform is 

Y (t) = (a1+Z1)Ψ1(t) + (a2+Z2)Ψ2(t) + Z′(t) 

where Z′(t) is real passband WGN in other de­
grees of freedom. 
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Y (t) = (a1+Z1)Ψ1(t) + (a2+Z2)Ψ2(t) + Z′(t) 

Since Ψ1 and Ψ2 are orthogonal and equal en­

ergy, Z1 and Z2 are iid Gaussian. 

After translation of passband signal and noise 

to baseband, 

V (t) = [a1+Z1 + i(a2+Z2)]p(t) + Z”(t) 

Z”(t) is the noise orthogonal (in complex vec­

tor space) to p(t). 

First consider detection in real vector space. 

Here (a1, a2) represents the hypothesis and Z1, Z2 

are iid Gaussian, N (0, N0/2). 

4




∫ 
V (t) = [a1+Z1 + i(a2+Z2)]p(t) + Z”(t) 

Let Y1 = a1 + Z1, Y2 = a2 + Z2. 

Note that V (t)p∗(τ − t) dt is the output from a 

complex matched filter. Sampling this at τ = 0  

yields (Y1 + iY2). 

The components in an expansion Z3, Z4, . . .  ,  in 

an orthonormal expansion of Z”(t) are also ob­

servable, although we will not need them. 

5




∑ 
∑ 

∑ 

Z3, Z4, . . .  ,  are real Gaussian rv’s and can also 

be viewed as passband rv’s. Assume a finite 

number of these variables. For any two hy­

potheses, a and a′, the likelihoods are 

2
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As usual, ML decoding is minimum distance 

decoding. 
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�

We can rewrite the likelihood as 

f
Y |H(�y | a) = f(y1y2|a)f(z3, z4, . . .  , ) 

So long as Z3, Z4, . . .  are independent of Y1, Y2 

and H, they cancel out in the LLR. 

This is why it makes sense to use the WGN 

model - all we need in detection is the inde­

pendence from the relevant rv’s. 

In other words, (Y1, Y2) is a sufficient statistic 

and Z3, Z4, . . .  ,  are irrelevant (so long as they 

are independent of Y1, Y2, H). 

This is true for all pairwise comparisons be­

tween input signals. 
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Now view this detection problem in terms of 

complex rv’s. Let α = a − a′. 

2 2

LLR(�y) =  
∑ 2yj(aj−aj

′ )
= 

∑ 2yjαj 

j=1 N0 j=1 N0 

=
2�{y}�{α} + �{y}�{α}

N0 
2�{yα∗} 2�{〈y, α〉}

= = 
N0 N0 

In real vector space, we project �y onto α� . 

In complex space, 2-vectors become scalars, 

inner product needs real part to be taken. 

The real part is a “further projection” of a 

complex number to a real number. 
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∑ 

Now let’s look at the general case in WGN. 
Must consider problem of real signals and noise 
for arbitrary modulation. 

The signal set A = {�a1, . . .  ,�aM}, is a set of k-
tuples. 

�am = (am,1, . . .  , am,k)
T . 

�am is then modulated to 

k

bm(t) =  am,jφj(t) 
j=1 

where {φ1(t), . . .  , φk(t)} is a set of k orthonormal 
waveforms. 

Successive signals are independent and mapped 
arbitrarily, using orthogonal spaces. 

9




∑ 

∑ ∑ ∑ 

Let X� (t) ∈ {�b1(t), . . .  ,  �bM(t)}. Then 

k

X(t) =  Xjφj(t) 
j=1 

where, under hypothesis m, 

Xj = am,j for 1 ≤ j ≤ k 

Let φk+1(t), φk+2(t) . . .  be an additional set of 

orthonormal functions such that the entire set 

{φj(t); j ≥ 1} spans the space of real L2 wave­

forms. 

� k �

Y (t) =  Yjφj(t) =  (Xj+Zj)φj(t) +  Zjφj(t). 
j=1 j=1 j=k+1 
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∑ ∑ ∑ � k �

Y (t) =  Yjφj(t) =  (Xj+Zj)φj(t) +  Zjφj(t). 
j=1 j=1 j=k+1 

Assume Z� = {Z1, . . .  , Zk} are iid Gauss. Z� ′ = 

{Zk+1, . . .  , } is independent of Z� and of �a. 

f� ′|H(� z |m) =  f�(� am)f� ′ z
Y ,Z�

y, �′
Z

y − �
Z

(�′). 

f�(y� − �am)
Λ = Z .m,m′ 

f�(�y − �am′)
Z

The MAP detector depends only on Y� . The 

other signals and other noise variables are ir­

relevant. 
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This says that detection problems reduce to 

finite dimensional vector problems; that is, sig­

nal space and observation space are for all 

practical purposes finite dimensional. 

The assumption of independent noise and in­

dependent other signals is essential here. 

With dependence, error probability is lowered; 

what you don’t know can’t hurt you. 
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∑ ∑ 




Detection for Orthogonal Signal Sets


We are looking at an alphabet of size m, map­

ping letter j into 
√

Eφj(t) where {φj(t)} is an 

orthonormal set. 

WGN of spectral density N0/2 is added to the 

transmitted waveform. 

The receiver gets 

Y (t) =  Yjφj(t) =  (Xj + Zj)φj(t) 
j j 

Only {Y1, . . .  , Ym} is relevant. 

Under hypothesis k, Yk =
√

E + Zj and Yj = Zj 

for j = k. 

13







√ √ 
√ 

Use ML detection. Choose k for which 〈� xk〉y, �
is smallest. 

m
2 2 2|〈�y, �xk〉| = 

∑ 
yj + (yk − nk)

2 = 
∑ 

y + E − 2
√

Eyky 
j=k j=1 

ML: choose k for which yk is largest. 

By symmetry, the probability of error is the 
same for all hypotheses so we look at hypoth­
esis 1. 

First scale outputs by N0/2, i.e., Wj = Yj 2/N0. 

Under H1, W1 ∼ N  ( 2E/N0, 1) and Wj ∼ (0, 1) 
for j = 1.
   ∫ m

Pr(e) =  
∞ 

fW1 H(w1 | 1)Pr  ⋃ 
(Wj ≥ w1 | 1) dw1 −∞ 

|
j=2 
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