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A detector observes a sample value of a rv V 
(or vector, or process) and guesses the value 
of another rv, H with values {0,1} (binary de­
tection), {1,2, . . .  , M} (general detection). 

Synonyms: hypothesis testing, decision mak­
ing, decoding. 
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Assume that the detector is designed on the 

basis of a complete probability model. 

That is, the joint probability distribution of H 
and V are known. 

The objective is to maximize the probability of 

guessing correctly (i.e., to minimize the prob­

ability of error). 

Let H be the rv to be detected (guessed) and 

V the rv to be observed. 

The experiment is performed, V = v is ob­

served and H = m, is not observed; the detec­

tor chooses � v) = j, and an error occurs if H(

m = j. 
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In principle, the problem is simple. 

Given V = v, we calculate p
H|V (m | v) for each 

m, 1 ≤ m ≤ M. 

This is the probability that m is correct condi­

tional on v. The MAP (maximum a posteriori 

probability) rule is: choose �H(v) to be that m 

for which pH|V (m | v) is maximized. 

H(v) = argmax[p (m v)] (MAP rule),

m H|V | 

The probability of being correct is pH|V (m | v) 
for that m. Averaging over v, we get the over­

all probability of being correct. 
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BINARY DETECTION


H takes the values 0 or 1 with probabilities p0 
and p1. We assume initially that only one bi­
nary digit is being sent rather than a sequence. 

Assume initially that the demodulator converts 
the received waveform into a sample value of 
a rv  V with a probability density. 

Usually the conditional densities f
V |H(v | m), m ∈ 

{0,1} can be found from the channel charac­
teristics. 

These are called likelihoods. The marginal 
densiity of V is then 

fV (v) =  p0fV |H(v | 0) + p1fV |H(v | 1) 
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p
H|V(j | v) =  

pjfV

fV 

|H 

(

(

v

v 

) 

| j) 
. 

The MAP decision rule is 

H�=0 
p0fV |H (v | 0) ≥ p1fV |H (v | 1) 

. 
fV (v) < fV (v) 

H�=1 

H�=0 

Λ(v) =  
f

V |H (v | 0) ≥ p1 = η. 
f (v | 1) < 

V |H
H�=1 

p0 
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For any binary detection problem where the 

observation is a sample value v of a random 

something with a probability density: 

Calculate the likelihood ratio Λ(v) =  f(v|0) 
f(v|1). 

MAP: Compare Λ(v) with threshold η = p1/p0. 

If ≥, H = 0; otherwise �� H = 1. 

MAP rule partitions V space into 2 regions. 

Error occurs, for H = m, if  v lands in the region 

for m complement.


MAP rule minimizes error probability.
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Example: 2PAM in Gaussian noise. 

H=0 means +a enters modulator; H=1 means 
−a enters modulator. 

V = ±a + Z, Z ∼ N (0, N0/2) comes out of de­
modulator. 

We only send one binary digit H; the detector 
observes only V . 

1 a)2 
f

V | (v |0) = √
πN0

exp 
−(v

N

−
0 

H 

f (v |1) = 
1 

exp 
−(v+a)2 

V |H √
πN0 N0 

−(v−a)2 + (v+a)2 4av 
Λ(v) = exp = exp . 

N0 N0 
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� � H�=0 

4av


N0 < p0 
H�=1 

� � H�=0 

≥ p1 = η.exp


4av


H�=1 

≥
<N0 

�=0H

N0 ln(η) 

LLR(v) = 


≥
<


ln(η).


v
 .

4a


H�=1
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N0 ln η

4a


�������� ��� ���� �� v 

fV |H(v|0)fV |H(v|1) 

�H = 0|H = 1} 

�H=0
��H=1

� 

−a 0 ��� a 
Pr{

For H = 1, error occurs if Z ≥ a + N0 ln η .4a 

The larger 2a/N0, the less important η is.  
a N0/2 ln η

 
Pr{e | H=1} = Q
 +


N0/2 2a


2
∞ 1 
exp 

−z

Q(x) = 
 dz.
√

2π
 2
x
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For communication, usually assume p0 = p1 so 

η = 1.  
Pr{e} = Pr{e | H=1} = Pr{e | H=0} = Q 

The energy per bit is Eb = a2, so  


 a
� 
2N /0





2EbPr{e} = Pr{e | H=1} = Pr{e | H=0} = Q 
N0 

This makes sense - only the ratio of Eb to 

N0 can be relevant, since both can be scaled 

together. 
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Detection for binary non-antipodal signals:

N0 ln η 

4a 

�������� ��� ���� �� v 

fV |H(v|0)fV |H(v|1) 

�H = 0

�H=0
��H=1

� 

b′ b+b′ ��� b 
2 � 

Pr{ |H = 1}


This is the same as before if 2a = b − b′. 

View the center point c = (b + b′)/2 as a pi­
lot tone or some other non-information baring 
signal with ±a added to it. 

Pr(e) remains the same, but Eb = a2 + c2 . 
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REAL ANTIPODAL VECTORS IN WGN 

H=0 �a=(a1, . . .  , ak) and H=1 → −�a=(−a1, . . .  ,−ak).→


V� = ±�a + Z�


where Z� = (Z1, . . .  , Zk), iid, Zj ∼ N  (0, N0/2). 

f
V� |H(�v | 0) = 

(πN

1

0)k/2
exp 

−‖�v
N

− 

0 

�a‖2 
. 

LLR(�v) =  
−‖�v − �a‖2 + ‖�v + �a‖2

=
4〈�v, �a〉 

N0 N0 

The MAP decision compares this with ln η = 
ln p1 . p0 

We call 〈�v,�a〉 a sufficient statistic (something 

from which Λ(�v) can be calculated. 
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LLR(�v) =  
−‖�v − �a‖2 + ‖�v + �a‖2

=
4〈�v, �a〉 

N0 N0 

Since the scalar 〈�v, �a〉 is a sufficient statistic, 

the problem is reduced to the scalar binary de­

tection problem. 

The vector problem reduces to scalar 2PAM 

by interpreting 〈�v, �a〉 as the observation, which 

is Z ± ‖�a‖. 

Each component of the received vector is weighted 

by the corresponding signal component. 
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� �v 
� d 

�� 
d̃′ �

�
�


d2 2 ˜−�a H = 1�� ������ 
������

H = 0 


d


�a
d̃ 


d2 − d̃ ′2
− d
 =


The probability of error, with η = 1, is 
 
� 

2N /0 

‖�a‖

 

2Eb = Q 
N0 


 
Pr{e} = Q
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Summary of binary detection with vector ob­

servation in iid Gaussian noise.: 

First remove center point from signal and its 

effect on observation. 

Then signal is ±�a. and �v = ±�a + Z� . 

Find 〈�v,�a〉 and compare with threshold (0 for 

ML case). 

This does not depend on the vector basis ­


becomes trivial if �a normalized is a basis vector.


Received components orthogonal to signal are 

irrelevant. 
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This same argument is valid for waveforms if 

we expand them in an orthonormal expansion. 

Then the modulated signal is a vector and the 

noise is a vector. 

There is a funny mathematical issue: 

f� (�y 0) = lim 
1 

exp 
−‖�y − �a‖2 

Y |H |
k→∞ [2π(N0/2)]k/2 N0 

This doesn’t converge, but 〈�v,�a〉 converges. 

In other words, the fact that the noise is irrel­

evant outside of the range of the signal makes 

it unnecessary to be careful about modeling 

the noise there. 
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Consider binary PAM with pulse shape p(t) Sup­

pose only one signal sent, so u(t) =  ±a p(t). 

As a vector, �u = ±a�p. The receiver calculates 

〈�v, a�p〉. 

This says that the MAP detector is a matched 

filter followed by sampling and a one dimen­

sional threshold detector. 

Using a square root of Nyquist pulse with a 

matched filter avoids intersymbol interference 

and minimizes error probability (for now in ab­

sence of other signals). 
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� �. 

Complex antipodal vectors in WGN. 

u = (u1, . . .  , uk) where for each j, uj ∈ C. H=0 → 
u and H=1 → −u

Let Z� = (Z1, . . .  , Zk) be a vector of k zero-
mean complex iid Gaussian rv’s with iid real 
and imaginary parts, each N (0, N0/2). 

Under H=0, the observation V� is given by V� = 
u + � � u + �� Z; under H=1, V = � Z.−

let �a be the 2k dimensional real vector with 
components �(uj) and �(uj) for 1 ≤ j ≤ k. 

Let Z� ′ be the 2k dimensional real random vec­
tor with components �(Zj) and �(Zj) for 1 ≤ 

.j ≤ k
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2k1 � −(yj − aj)
2 

f
Y� |H 

(�y | 0) = 
(πN0)k exp 

j=1 N0 

= 
1 

exp 
−‖�y − �a‖2 

. 
(πN0)k N0 

H̃=0 

y,� N0 ln(η)〈� a〉 ≥
‖�a‖ < 4‖�a‖

H̃=1 
. 
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k

y,� = [�(vj)�(uj) +  �(vj)�(uj) ]〈� a〉 
j=1 

k

= �(vjuj
∗) =  �(〈�v, �u〉). 

j=1 

Thus one has to take the real part of 〈�v, �u〉.
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