BINARY DETECTION
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A detector observes a sample value of a rv V
(or vector, or process) and guesses the value
of another rv, H with values {0,1} (binary de-

tection), {1,2,..., M} (general detection).

Synonyms:

ing, decoding.

hypothesis testing, decision mak-



Assume that the detector is designed on the
basis of a complete probability model.

That is, the joint probability distribution of H
and V are known.

T he objective is to maximize the probability of
guessing correctly (i.e., to minimize the prob-
ability of error).

Let H be the rv to be detected (guessed) and
V the rv to be observed.

The experiment is performed, V = v IS oOb-
served and H = m, is not observed; the detec-
tor chooses H(v) = j, and an error occurs if

m # j.



In principle, the problem is simple.

Given V = v, we calculate pH|V(m|v) for each
m, 1 <m< M.

This is the probability that m is correct condi-
tional on v. The MAP (maximum a posteriori
probability) rule is: choose H(v) to be that m
for which pH‘V(m|fU) IS maximized.

H(v) = arg mn%X[pHW(m | v)] (MAP rule),
The probability of being correct is pH|V(m|v)

for that m. Averaging over v, we get the over-
all probability of being correct.



BINARY DETECTION

H takes the values 0 or 1 with probabilities pg
and p;. We assume initially that only one bi-
nary digit is being sent rather than a sequence.

Assume initially that the demodulator converts
the received waveform into a sample value of
a rv V with a probability density.

Usually the conditional densities fV|H(’U lm), m €
{0,1} can be found from the channel charac-
teristics.

These are called likelihoods. The marginal
densiity of V is then

fv(v) — pofV|H(U |10) +p1fv‘H(’U 1)
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The MAP decision rule is

~

H=0
pof&ugcv|o) > plfVu{CU|1)

fv(v) <i fv(v)

H=1




For any binary detection problem where the
observation is a sample value v of a random
something with a probability density:

Calculate the likelihood ratio A(v) = jﬁg—}?g.
MAP: Compare A(v) with threshold n = p1/pg.-
If >, H = 0; otherwise H = 1.

MAP rule partitions V space into 2 regions.

Error occurs, for H = m, if v lands in the region
for m complement.

MAP rule minimizes error probability.



Example: 2PAM in Gaussian noise.

H=0 means +a enters modulator; H=1 means
—a enters modulator.

V=+xa+ 27, Z~ N(0,Ng/2) comes out of de-
modulator.

We only send one binary digit H; the detector
observes only V.
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For H =1, error occurs if Z > a+ N%—'a””.

The larger 2a/Ng, the less important 7 is.
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For communication, usually assume pg = p; SO
n=1.

a

\/ No /2

Pr{ie} = Pr{e| H=1} = Pr{e| H=0} = Q

The energy per bit is E, = a2, so

Pr{e} = Pr{e| H=1} = Pr{e| H=0} = Q <,/27E(;b>

This makes sense - only the ratio of £, to
Ngo can be relevant, since both can be scaled
together.
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Detection for binary non-antipodal signals:

Nomn
4q

—  H=0
H=1
fV|H(’U\1) fV|H(’U\O>

(Y

b b+b/ b
2 \Pr{H:O|H: 1}
This is the same as before if 2a = b — V.

View the center point ¢ = (b4 V')/2 as a pi-
lot tone or some other non-information baring
signal with +a added to it.

Pr(e) remains the same, but E, = a? + c°.
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REAL ANTIPODAL VECTORS IN WGN

H=0 — a=(aq1,...,a;) and H=1 — —d=(—aq,. ..

V=+a+ 27
where Z = (Z1,...,2), iid, Z; ~ N'(0, Ng/2).
] 1 —||7 — al|”
. 0) = ex .
T (710 = N2 p( No

|7 — @l|? + ||T+ @ _ 4V, a)
No No

LLR(F) =

The MAP decision compares this with Inn =

()

We call (v,a) a sufficient statistic (something

from which A(7¥) can be calculated.
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—||T = @||? + ||T+ @l _ 4(U, a)
No No

LLR(%) =

Since the scalar (v, d) is a sufficient statistic,
the problem is reduced to the scalar binary de-
tection problem.

The vector problem reduces to scalar 2PAM
by interpreting (v, a) as the observation, which
Is Z =+ ||d]|.

Each component of the received vector is weighted
by the corresponding signal component.
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The probability of error, with n =1, is

= ) ()
0
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Summary of binary detection with vector ob-
servation in iid Gaussian noise.:

First remove center point from signal and its
effect on observation.

Then signal is +G. and 7 = +a + Z.

Find (J,d) and compare with threshold (0O for
ML case).

This does not depend on the vector basis -
becomes trivial if ¢ normalized is a basis vector.

Received components orthogonal to signal are
irrelevant.
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This same argument is valid for waveforms if
we expand them in an orthonormal expansion.
Then the modulated signal is a vector and the
noise is a vector.

There is a funny mathematical issue:

R . 1 —l7 - al”
> 0) = lim ex

This doesn’t converge, but (v,d) converges.

In other words, the fact that the noise is irrel-
evant outside of the range of the signal makes
it unnecessary to be careful about modeling
the noise there.
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Consider binary PAM with pulse shape p(t) Sup-
pose only one signal sent, so u(t) = +ap(t).

As a vector, u = +ap. The receiver calculates
(U, ap).

This says that the MAP detector is a matched
filter followed by sampling and a one dimen-
sional threshold detector.

Using a square root of Nyquist pulse with a
matched filter avoids intersymbol interference
and minimizes error probability (for now in ab-
sence of other signals).
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Complex antipodal vectors in WGN.

i@ = (u1,...,u;) where for each j, u; € C. H=0 —
U

—

and H=1 — —u.

Let Z = (Z1,...,Z,) be a vector of k zero-
mean complex iid Gaussian rv’s with iid real
and imaginary parts, each N (0, Ng/2).

Under H=0, the observation V is given by V =
v+ Z; under H=1, V = —u + ~Z.

let ¢ be the 2k dimensional real vector with
components R(u;) and S(u;) for 1 < j < k.

Let Z' be the 2k dimensional real random vec-
tor with components R(Z;) and 3(Z;) for 1 <
J < k.
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Foy@10) = ——=pexp )
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Thus one

[R(v;)R(u;) + S(v;)S(uy) ]

Rvjul) = R((T,a)).

k

= 2.
j=1

k

= 2.
j=1

has to take the real part of (v, ).
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