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A function {u(t) : R R} is measurable if → 
{t : u(t) < b} is measurable for each b ∈ R. 

The Lebesgue integral exists if the function is


measurable and if the limit in the figure exists.


3ε


2ε


−T/2 T/2 

Horizontal crosshatching is what is added when


ε ε/2. For u(t) ≥ 0, the integral must exist
→
(with perhaps an infinite value). 
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� � 

� � 

� � 

� 

L2 functions [−T/2, T/2] → C 
� 

� 
L1 functions [−T/2, T/2] → C � 

� 
Measurable functions [−T/2, T/2] → C � 

t−2/3 for 0 < t  ≤ T is L1 but not L2 

But for functions from R C, t−2/3 for t >  1 is→


L2 but not L1. No general rule for R → C. 
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Theorem: Let {u(t) : [−T/2, T/2] C} be an L2→
function. Then for each k ∈ Z, the Lebesgue 

integral 

1 � T/2 
ûk = u(t) e−2πikt/T dt 

T −T/2 

1exists and satisfies |ûk| ≤
thermore, 

|u(t)| dt < ∞. Fur-
T


� T/2

lim


k0→∞ −T/2


2
k0

u(t) − ûk e 2πikt/T
 dt = 0 
,

k=−k0


where the limit is monotonic in k0.


2πikt/T dt
u(t) = l.i.m. ûk e 
k 

The functions e2πikt/T are orthogonal.
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If an arbitrary L2 function u(t) is segmented 

into T spaced segments, the following expan­

sion follows: 

u(t) = l.i.m. 
� 

ûk,m e 2πikt/T rect(
T

t − m) 
m,k 

This called the T -spaced truncated sinusoid ex­

pansion. It expands a function into time/frequency 

slots, T in time, 1/T in frequency. 
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� 

� 

L2 functions and Fourier transforms 

� A 
v̂A(f ) =  u(t)e−2πift dt. 

−A 

Plancherel 1: There is an L2 function û(f ) (the 

Fourier transform of u(t)), which satisfies the 

energy equation and 

lim 
∞

|û(f) − v̂A(f)|2 dt = 0. 
A→∞ −∞ 

Although {v̂A(f )} is continuous for all A ∈ R, 

û(f) is not necessarily continuous. We denote 

this function û(f) as 

û(f) = l.i.m. 
∞ 

u(t)e 2πift dt. 
−∞ 

5




� 
� 

For the inverse transform, define � B 
uB(t) =  û(f)e 2πift df (1) 

−B 

This exists for all t ∈ R and is continuous. 

Plancherel 2: For any L2 function u(t), let û(f) 

be the FT of Plancherel 1. Then 

2lim 
∞ 

u(t) − wB(t)| dt = 0. (2) 
B→∞ −∞

|

2πift dfu(t) = l.i.m. 
∞ 

û(f)e 
−∞ 

All L2 functions have Fourier transforms in this 

sense. 
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The DTFT (Discrete-time Fourier transform) 

is the t f dual of the Fourier series. ↔

Theorem (DTFT) Assume {û(f ) : [−W, W ] C}
→
is L2 (and thus also L1). Then 

uk =
1 � W

û(f )e 2πikf/(2W ) df 
2W −W 

is a finite complex number for each k ∈ Z. Also


k0
2
� W


uk e
−2πikf/(2W )
lim


k0→∞ −W

û(f ) −
 df = 0,


k=−k0


f

uke−2πift/(2W )
û(f ) = l.i.m.
 rect 

2W
k
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� 

Sampling Theorem: Let {û(f) : [−W W  ] → C}
be L2 (and thus also L1). For inverse trans­

form, u(t), let T = 1/(2W ). Then u(t) is contin­

uous, L2, and bounded by u(t) ≤ 
� 
−
W
W |û(f)| df. 

Also, for all t ∈ R, 

∞ � 
t − kT 

� 
u(t) =  u(kT ) sinc .


T
k=−∞ 

The sampling theorem holds only for the in­

verse transform of û(f), not for the L2 equiv­

alent functions whose transform is û(f). 
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� �	 � � 

�	 � � 

� � 

� � 

�

� 

�� 

T/F dual 
�

û(f) =  
� 

k uke−2πik2
f
W rect 

� 
2
f
W 

� 
uk = 2

1 
W 

� 
−
W
W û(f )e 2πik2

f
W df 

Fourier DTFT 
series 

Fourier u(t) =  
�∞ ûk e2πikt/T rect(T

t ) 
� 

transform k=−∞ 

ˆ = 1 � 
−
T/
T/
2
2 u(t)e−2πikt/T dt 

� 

uk T 
Sampling 

u(t) = 	 ∞ 2Wuk sinc(2Wt  − k)k=−∞ 

uk = 2
1 
W u(2

k
W ) 
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� � 

� � 

Breaking û(f) into frequency segments, we get


the T-spaced sinc-weighted sinusoid expansion,


u(t) = l.i.m. 
� 

vm(kT ) sinc 
T

t − k e 2πimt/T . 
m,k 

Both this and the T-spaced truncated sinusoid 

expansion 

u(t) = l.i.m. 
� 

ûk,m e 2πikt/T rect 
T

t − m 
m,k 

break the function into increments of time du­

ration T and frequency duration 1/T . 

For time interval [−T0/2, T0/2] and frequency 

interval [−W0, W0, we get 2T0W0 complex de­

grees of freedom. 
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� 
� 

�� �

�������������� 

� 
� 

�û(f) 

����������������������������� 

� 
� 

� 
� 0 

3−1 
2T 

1 
2T2T 

����̂s�(�f�)�
−1 ����� 

1 
2T 

�����������
2T 

0 �
� 

Theorem: Let û(f) be L2, and satisfy 

lim û(f)|f |1+ε = 0  for ε >  0. 
|f |→∞ 

Then û(f) is L1, and the inverse transform u(t) 
is continuous and bounded. For T >  0, the 
sampling approx. s(t) =  

� 
k u(kT ) sinc(T

t + k) is 
bounded and continuous. ŝ(f) satisfies � m 

ŝ(f) = l.i.m. û(f + ) rect[fT ]. 
Tm 
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� 
L2 is an inner product space with the inner 

product 

u,�
∞ 

u(t)v∗(t)dt,〈� v〉 = 
−∞ 

Because 〈� u〉 = 0
 for � = 0
 , we must define u, � u 

equality as L2 equivalence. 

The vectors in this space are equivalence classes.


Alternatively, view a vector as a set of coeffi­

cients in an orthogonal expansion. 
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�u = (u1, u2)�v ��

�����

�����

�

��

�����

��

�

������������������ � 

� u � �
��v
� 
⊥�

u2 

� �v
� |�u 

�0 u1 

Theorem: (1D Projection) Let �v and �u = 0


be arbitrary vectors in a real or complex inner 

product space. Then there is a unique scalar 

α for which 〈�v − α�u, �u〉 = 0. That α is given by 

α = 〈�v, �u〉/‖�u‖2 . 

�v =
〈�v, �u〉 

�u = 〈�v, 
�u �u 

u|� ‖�u‖2 ‖�u‖
〉 
‖�u‖ 
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� 

Projection theorem: Assume that {φ1, . . .  , φn}
is an orthonormal basis for an n-dimensional 
subspace S ⊂ V. For each �v ∈ V, there is a 
unique �v|S ∈ S  such that 〈�v − �v|S,�s〉 = 0  for all 
�s ∈ S. Furthermore, � 

�v|S = 
j 
〈�v, φj〉φj. 

0 ≤ ‖�v|S‖2 ≤ ‖�v‖2 (Norm bounds) 

n

0 ≤ |〈�v, φj〉|2 ≤ ‖�v‖2 (Bessel’s inequality).

j=1


‖�v − �v|S‖ ≤ ‖�v − �s‖ for any �s ∈ S  (LS property). 

14




� 

For L2, the projection theorem can be ex­

tended to a countably infinite dimension. 

Given any orthogonal set of functions θi, we  

can generate orthonormal functions as φi = 

θi/‖θi‖. 

Theorem: Let {φm, 1≤m<∞} be a set of or­

thonormal functions, and let �v be any L2 vec­

tor. Then there is a unique L2 vector �u such 

that �v − �u is orthogonal to each φn and 

n

lim v, φ m‖ = 0. 
n→∞‖�u − 

m=1

〈� m〉φ

This “explains” convergence of orthonormal 

expansions. 
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� 

Since ideal Nyquist is all about samples of g(t), 

we look at aliasing again. The baseband re­

construction s(t) from {g(kT )} is � t

s(t) =  g(kT )sinc(

T 
− k).


k 

g(t) is ideal Nyquist iff s(t) = sinc(t/T ) i.e., iff


ŝ(f) =  T rect(fT  )


From the aliasing theorem, � m 
ŝ(f) =  ĝ(f + ) rect(fT  ). 

Tm 

Thus g(t) is ideal Nyquist iff 

ĝ(f + m/T ) rect(fT  ) =  T rect(fT  ) 
m 
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� � 
� � 

Z� = (Z1, . . .  , Zk)
T is zero-mean jointly Gauss iff 

Z� = AN� for normal N� .• 

Z� = AY� for zero-mean jointly-Gauss Y� .
• 

All linear combinations of Z� are Gaussian. • 

Also linearly-independent iff 

� (�z) =  
(2π)k/2 

�1 exp 1 zTK−
�
1�z .• f

Z� det(K�)|
−2�

Z 
Z

� �k 1 z,� 2 
f
Z�
(�z) =  j=1 √2πλj 

exp 
−|〈

2
�
λ
q

j

j〉| for {�qj}•


orthonormal, {λj} positive.
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� 
Z(t) is a Gaussian process if Z(t1), . . .  , Z(tk) is 

jointly Gauss for all k and t1, . . .  , tk. 

Z(t) =  Zjφj(t) 
j 

where {Zj, j  ≥ 1} are stat. ind. Gauss and 

{φj(ty); j ≥ 1} are orthonormal forms a large 

enough class of Gaussian random processes for 

the problems of interest. 

If 
� 

j σj 
2 < ∞, the sample functions are L2. 
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�

� �  

If Z(t) is a ZM Gaussian process and g1(t), . . .  , gk(t) 

are L2, then linear functions Vj = Z(t)gj(t) dt 

are jointly Gaussian. 

Z(t) � h(t) � V (τ ) 

V (τ ) =  
∞ 

Z(t)h(τ − t) dt 
−∞ 

For each τ , this is a linear functional. V (t) is


a Gaussian process. It is stationary if Z(t) is.


K� (r, s) =  h(r−t)K�(t, τ )h(s−τ ) dt dτ 
V Z
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{Z(t); t ∈ R} is stationary if Z(t1), . . .  , Z(tk) and 

Z(t1+τ), . . .  , Z(tk+τ) have same distribution for 

all τ , all k, and all t1, . . .  , tk. 

Stationary implies that 

= ˜K�(t1, t2) =  K�(t1−t2,0) K�(t1−t2). (3)
Z Z Z

A process is WSS if (3) holds. For Gaussian 

process, (3) implies stationarity. 

K̃�(t) is real and symmetric; Fourier transform 
Z

S
Z�
(f) is real and symmetric.. 
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An important example is the sampling expan­

sion, 

V (t) =  
� 

Vk sinc( 
t − kT 

)
T

k 

Example 1: Let the Vk be iid binary antipodal. 

Then v(t) is WSS, but not stationary. 

Example 2: Let the Vk be iid zero-mean Gauss. 

then V (t) is WSS and stationary (and zero-

mean Gaussian). 
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� 
� 

For Z(t) WSS and g1(t), . . .  , gk(t) L2, 

Vj = Z(t)gj(t) dt. 

∞ 
gi( K� t − τ )gj(E[ViVj] =  t)˜ ( τ ) dt dτ 

Z�t−∞ 

= ĝi(f )S�(f )ĝj
∗(f ) df

Z

If ĝi(f) and ĝj(f) do not overlap in frequency, 

then E[ViVj] = 0. For i = j and gi orthonormal, 

and S
Z�
(f ) constant over ĝi(f) = 0
 , 

E[|Vi|2] = S
Z�
(f ) 

This means that S(f) is the noise power per 

degree of freedom at frequency f. 
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� 

LINEAR FILTERING OF PROCESSES


{Z(t); t ∈�} 
 � h(t) � {V (τ ); τ ∈�} 


V (τ ) =  
∞ 

Z(t)h(τ − t) dt. 
−∞ 

S� (f ) =  S�(f) |ĥ(f )|2 
V Z

We can create a process of arbitrary spectral 

density in a band by filtering the IID sinc pro­

cess in that band. 
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White noise is noise that is stationary over a 

large enough frequency band to include all fre­

quency intervals of interest, i.e., S�(f) is con-
Z

stant in f over all frequencies of interest. 

Within that frequency interval, S�(f) can be 
Z

taken for many purposes as N0/2 and ˜ (t) =K
Z�

N
2
0δ(t). 

It is important to always be aware that this 

doesn’t apply for frequencies outside the band 

of interest and doesn’t make physical sense 

over all frequencies. 

If the process is also Gaussian, it is called white 

Gaussian noise (WGN). 
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Definition: A zero-mean random process is ef­

fectively stationary (effectively WSS) within 

[−T0, T0] if the joint probability assignment (co­

variance matrix) for t1, . . .  , tk is the same as 

that for t1+τ, t2+τ, . . .  , tk+τ whenever t1, . . .  , tk 

and t1+τ, t2+τ, . . .  , tk+τ are all contained in the 

interval [−T0, T0]. 

A process is effectively WSS within [−T0, T0] if 

(t, τ) = ˜ (t − τ) for t, τ ∈ [−T0, T0].K
Z�

K
Z�
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point where t − τ = −2T0T0 

�
� 

�
�

�
� 

�
� 

�
�

�
�

�
� 

�
� 

�
�

�
�

�
� 

�
�

�
� 

�
�

�
� 

�
�

�
�

�
�

�
� 

�
�

�
�

�
�

�
� 

line where t − τ = −T0 
τ line where t − τ = 0  

line where t − τ = T0 

line where t − τ = 32T0−T0 
t T0−T0 

Note that ˜ (t − τ ) for t, τ ∈ [−T0, T0] is defined K
Z�

in the interval [−2T0, 2T0]. 
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DETECTION


{0,1} 
Input 

� Signal 
encoder 

� 

{±a} 
Baseband 
modulator 

� Baseband →
passband 

� ©+ 

Baseband 
Demodulator 

� Passband 
→ baseband{0,1} 

Output
� 

v Detector� � 

� WGN 

A detector observes a sample value of a rv V 
(or vector, or process) and guesses the value 
of another rv, H with values 0,1, . . .  , m−1. 

Synonyms: hypothesis testing, decision mak­
ing, decoding. 
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We assume that the detector uses a known 

probability model. 

We assume the detector is designed to maxi­

mize the probability of guessing correctly (i.e., 

to minimize the probability of error). 

Let H be the rv to be detected (guessed) and 

V the rv to be observed. 

The experiment is performed, V = v is ob­


served and H = j, is not observed; the detector


chooses Ĥ(v) =  i, and an error occurs if i = j.
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In principle, the problem is simple. 

Given V = v, we calculate p
H|V (j | v) for each j, 

0 ≤ j ≤ m − 1. 

This is the probability that j is the correctcon­

ditional on v. The MAP (maximum a posteri­

ori probability) rule is: choose Ĥ(v) to be that 

j for which pH|V (j | v) is maximized. 

Ĥ(v) = argmax [p (j | v)] (MAP rule), 
j H|V

The probability of being correct is pH|V (j | v) for 
that j. Averaging over v, we get the overall 

probability of being correct. 
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BINARY DETECTION


H takes the values 0 or 1 with probabilities p0 

and p1. We assume initially that only one bi­

nary digit is being sent rather than a sequence. 

Assume initially that the demodulator converts 

the received waveform into a sample value of 

a rv with a probability density. 

Usually the conditional densities f (v | j), j  ∈ 
{0,1} can be found. 

V |H

These are called likelihoods. The marginal 

densiity of V is then 

fV (v) =  p0fV |H(v | 0) + p1fV |H(v | 1) 
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p
H|V(j | v) =  

pjfV

fV 

|H 

(

(

v

v 

) 

| j) 
. 

The MAP decision rule is 

Ĥ=0 
p0fV |H (v | 0) ≥ p1fV |H (v | 1) 

. 
fV (v) < fV (v) 

Ĥ=1 

Ĥ=0 

Λ(v) =  
f

V |H (v | 0) ≥ p1 = η. 
f

V |H (v | 1) < p0 
Ĥ=1 
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