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Review of zero-mean jointly Gaussian r�v’s:


A random vector Z� = (Z1, . . .  , zk)
T of linearly 

independent rv’s is jointly Gauss iff 

1. Z� = AN� for normal r�v N� , 

2. f�
Z�
(�z) =  

(2π)k/2 
√1

det(K
Z�
)| 

exp −1
2�zTK

Z
−
�
1�z . 

∏k 1 z,� 2 
3. f�

Z�
(�z) =  j=1 √2πλj 

exp 
−|〈

2
�
λ
q

j

j〉| for {�qj} 

orthonormal, {λj} positive. 

4. All linear combinations of Z� are Gaussian.
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∑ 

Z(t) is a Gaussian process if Z(t1), . . .  , Z(tk) is 

jointly Gauss for all k and {ti}. 

A general way to generate a Gaussian pro­

cess is to start with a sequence of bounded 

orthonormal functions, φ1(t), φ2(t), . . .  and a 

sequence Z1, Z2, . . .  of independent Grv’s such 

that 
∑ 

j E[|Zj|2 < ∞. 

Then Z(t) =  j Zjφj(t) is a Gaussian random 

process. Also the sample functions of Z(t) are 

L2 with probability 1. 

Assume sample functions are L2 from now on. 
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∫ 

∫ 

∑ 

A linear functional is a rv given by 

V = Z(t)g(t) dt.


This means that for all ω∈Ω, 

V (ω) = 〈Z(t, ω), g(t)〉 = 
∞ 

Z(t, ω)g(t) dt. ∑ −∞ 

If Z(t) =  j Zjφj(t), then 

V = Zj〈φj, g〉
j 

We won’t worry about the details of conver­

gence here, but V turns out to be Gaussian 

with finite variance. 
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∑ 

∫ 

∫ ∫  

Let Z(t) =  j Zjφj(t) be a zero-mean Gaussian 

process where Z1, Z2, . . .  are independent Gauss 

and φ1, φ2, . . . , are orthonormal. 

Let g1(T ), . . .  , gk(t) be L2 functions. Then the 

linear functionals 

V� = Z(t)g�(t) dt 

are zero-mean jointly Gaussian. 

Proof: All linear combinations are Gaussian. 

The covariance matrix of V� has elements 

E[ViV�] =  gi(t)KZ�
(t, τ)g�(τ) dt dτ 

where K�(t, τ) =  
∑ 

j E[|Zj|2]φj(t)φj(τ).Z
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∫ 

LINEAR FILTERING OF PROCESSES


Z(t) � h(t) � V (τ) 

V (τ, ω) =  
∞ 

Z(t, ω)h(τ − t) dt 
−∞ 

= 
∑ 

Zj(ω) 
∫ ∞ 

φj(t)h(τ − t) dt. 
j −∞ 

For each τ , this is sample value of a linear 
functional. For any τ1, . . .  , τk, V (τ1), . . .  , V (τk) 
are jointly Gaussian. 

If {Z(t)} is a Gaussian process, {V (t)} is also.


This is an alternate way to generate Gaussian 
processes. 
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[∫ ∫ ] 
∫ ∫  

The covariance function of a filtered process 

follows in the same way as the covariance ma­

trix for linear functionals. 

K
V�
(r, s) =  E[V (r)V (s)] 

= E Z(t)h(r−t) dt Z(τ )h(s−τ ) dτ 

= h(r−t)K�(t, τ )h(s−τ ) dt dτ 
Z

This looks like the matrix equations we had 

before. 
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STATIONARY RANDOM PROCESSES: 

{Z(t); t ∈ R} is stationary if Z(t1), . . .  , Z(tk) and 

Z(t1+τ), . . .  , Z(tk+τ) have same distribution for 

all τ , all k, and all t1, . . .  , tk. 

Stationary implies that E[Z(t)] = c for all t and 

E[Z(t1)Z(t2)] = E[Z(t1 − t2)Z(0)] 

for all t1, t2. That is, E[Z(t)] = c for all t and 

K�(t1, t2) =  K�(t1−t2,0) = ˜ (t1−t2).K�Z Z Z

Note that ˜ (t) is real and symmetric. K
Z�

Assme zero-mean from now on. 
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A process is wide sense stationary (WSS) if 

E[Z(t)] = E[Z(0)] and K�(t1, t2) =  K�(t1 − t2, 0)
Z Z

for all t, t1, t2. Define 

˜ (t) =  K�(t, 0)K
Z� Z

for WSS processes. 

This is symmetric and is maximized at t = 0. 

A Gaussian process is stationary if it is WSS. 
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( ) ( ) 

( ) 

( ) 

An important example is V (t) =  
∑ 

k Vk sinc(
t−

T
kT ). 

If E[VkVi]=σ2δi,k, then 

K� (t, τ) =  σ2 ∑ 
sinc 

t − kT 
sinc 

τ − kT 
.

V T T
k 

Then {V (t); t ∈ R} is WSS with 

˜
t − τ 

K� (t − τ) =  σ2 sinc .
V T 

Proof: Expand baseband limited u(t) as 

u(t) =  
∑ 

u(kT )sinc 
t − kT 

T
k 
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( ) 

( ) ( ) ( ) 
( ) ( ) 

( ) ( ) 
( ) 

u(t) =  
∑ 

u(kT )sinc 
t − kT 

T
k 

For given τ , let u(t) = sinc(t−
T

τ ). Substituting, 

t−τ ∑ kT −τ t−kT 
sinc = sinc sinc 

T T T
k ∑ τ−kT t−kT 

= sinc sinc 
T T

k 

K� (t, τ) =  σ2 ∑ 
sinc 

t − kT 
sinc 

τ − kT 
V T T

k 

= σ2sinc 
t−τ 

T
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V (t) =  
∑ 

Vk sinc( 
t − kT 

)
T

k 

Example 1: Let the Vk be iid binary antipodal. 

Then v(t) is WSS, but not stationary. 

Example 2: Let the Vk be iid zero-mean Gauss. 

then V (t) is WSS and stationary (and zero-

mean Gaussian). 
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∫ 

The sample functions of a WSS non-zero pro­

cess are not L2. 

The covariance ˜ (t) is L2 in cases of physical K
V�

relevance. It has a Fourier transform called 

the spectral density. 

˜ (t)e−2πift dtS� (f) =  K�V V 

The spectral density is real and symmetric. 
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∫ 

[∫ ∫ ] 

∫ 

Consider a set of linear functions: 

Vj = Z(t)gj(t) dt. 

Then 

E[ViVj] =  E 
∞ 

Z(t)gi(t) dt 
∞ 

Z(τ )gj(τ ) dτ ∫ −∞∫ −∞ 

= 
∞ ∞ 

gi(t)E[Z(t)Z(τ )]gj(τ ) dt dτ ∫t=−∞ ∫τ =−∞ 

= 
∞ ∞ 

gi(t)K�(t, τ )gj(τ ) dt dτ 
t=−∞ τ =−∞ Z

If {Z(t); t ∈ R} is WSS, 

E[ViVj] =  
∞ 

gi(t)˜ (t − τ )gj(τ ) dt dτ K
Z�t−∞ 
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∫ 

∫ ∫ 

∫ 

E[ViVj] =  
∞ 

gi(t)˜ ( τ ) dt dτ K� t − τ )gj(Z∫t−∞ [ ] 
= 

∞ 
gi(t) ˜ (t) dtK

Z�
∗ �gj

t−∞ 

Let θ(t) = [˜ (t) ∗ �gj](t) be the convolution of K
Z�

˜ and �gj. Since θ(t) is real, θ(t) = θ∗(t). Using K
Z�


Parseval’s theorem for Fourier transforms,


E[ViVj] =  
∞ 

gi(t)θ
∗(t) dt = 

∞ 
ĝi(f)θ̂∗(f) df 

−∞ −∞ 

Since θ̂(f ) = S�(f)ĝ2(f),
Z

E[ViVj] =  ĝi(f )S�(f )ĝj
∗(f) df

Z
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∫ 
E[ViVj ] =  ĝi (f )S

Z�
(f )ĝj

∗(f ) df 

If ĝi (f ) and ĝj (f ) do not overlap in frequency, 

then E[ViVj ] = 0. 

This means that for a WSS process, no linear 

functional in one frequency band is correlated 

with any linear functional in another band. 

For a Gaussian stationary process, all linear 

functionals in one band are independent of all 

linear functionals in any other band. 

For Gaussian stationary processes, different fre­

quency bands contain independent noise. 
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∫ 
∫ Suppose V = g(t)Z(t) dt. Then 

E[|V |2] =  ĝ(f)S
Z�
(f)ĝ∗(f) df 

If ĝ(f) has unit energy and is so narrow band 

that S
Z�
(f) is constant over region where ĝ(f) 

is non-zero, then 

E[|V |2] =  S
Z�
(f) 

This means that S(f) is the noise power per 

degree of freedom at frequency f. 

Stationary Gaussian noise is independent be­


tween frequencies, and for narrow bandwidths,


independent between orthonormal functionals.
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∫ 

∫ [∫ ] 

LINEAR FILTERING OF PROCESSES


{Z(t); t ∈�} 
 � h(t) � {V (τ ); τ ∈�} 


V (τ ) =  
∞ 

Z(t)h(τ − t) dt. 
−∞ 

For each τ , V (τ ) is a linear functional. If Z(t) 

is stationary, then 

˜ (t−τ ) =  h(t−τ −µ−φ)˜ (φ) dφ h∗(−µ) dµK
V�

K
Z�

= (�h(t) ∗ ˜ h∗(−t)K) ∗ �


S� (f) =  S�(f) |ĥ(f)|2

V Z
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White noise is noise that is stationary over a 

large enough frequency band to include all fre­

quency intervals of interest, i.e., S�(f) is con-
Z

stant in f over all frequencies of interest. 

Within that frequency interval, S�(f) can be 
Z

taken for many purposes as N0/2 and ˜ (t) =K
Z�

N
2
0δ(t). 

It is important to always be aware that this 

doesn’t apply for frequencies outside the band 

of interest and doesn’t make physical sense 

over all frequencies. 

If the process is also Gaussian, it is called white 

Gaussian noise (WGN). 
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Definition: A zero-mean random process is ef­

fectively stationary (effectively WSS) within 

[−T0, T0] if the joint probability assignment (co­

variance matrix) for t1, . . .  , tk is the same as 

that for t1+τ, t2+τ, . . .  , tk+τ whenever t1, . . .  , tk 

and t1+τ, t2+τ, . . .  , tk+τ are all contained in the 

interval [−T0, T0]. 

A process is effectively WSS within [−T0, T0] if 

(t, τ) = ˜ (t − τ) for t, τ ∈ [−T0, T0].K
Z�

K
Z�

19




point where t − τ = −2T0T0 
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line where t − τ = −T0 
τ line where t − τ = 0  

line where t − τ = T0 

line where t − τ = 32T0−T0 
t T0−T0 

Note that ˜ (t − τ ) for t, τ ∈ [−T0, T0] is defined K
Z�

in the interval [−2T0, 2T0]. 
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DETECTION


{0,1} 
Input 

� Signal 
encoder 

� 

{±a} 
Baseband 
modulator 

� Baseband →
passband 

� ©+ 

Baseband 
Demodulator 

� Passband 
→ baseband{0,1} 

Output
� 

v Detector� � 

� WGN 

A detector observes a sample value of a rv V 
(or vector, or process) and guesses the value 
of another rv, H with values 0,1, . . .  , m−1. 

Synonyms: hypothesis testing, decision mak­
ing, decoding. 
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We assume that the detector uses a known 

probability model. 

We assume the detector is designed to maxi­

mize the probability of guessing correctly (i.e., 

to minimize the probability of error). 

Let H be the rv to be detected (guessed) and 

V the rv to be observed. 

The experiment is performed, V = v is ob­


served and H = j, is not observed; the detector


chooses Ĥ(v) =  i, and an error occurs if i = j.
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In principle, the problem is simple. 

Given V = v, we calculate p
H|V (j | v) for each j, 

0 ≤ j ≤ m − 1. 

This is the probability that j is the correctcon­

ditional on v. The MAP (maximum a posteri­

ori probability) rule is: choose Ĥ(v) to be that 

j for which pH|V (j | v) is maximized. 

Ĥ(v) = argmax [p (j | v)] (MAP rule), 
j H|V

The probability of being correct is pH|V (j | v) for 
that j. Averaging over v, we get the overall 

probability of being correct. 
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BINARY DETECTION


H takes the values 0 or 1 with probabilities p0 

and p1. We assume initially that only one bi­

nary digit is being sent rather than a sequence. 

Assume initially that the demodulator converts 

the received waveform into a sample value of 

a rv with a probability density. 

Usually the conditional densities f (v | j), j  ∈ 
{0,1} can be found. 

V |H

These are called likelihoods. The marginal 

densiity of V is then 

fV (v) =  p0fV |H(v | 0) + p1fV |H(v | 1) 
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p
H|V(j | v) =  

pjfV

fV 

|H 

(

(

v

v 

) 

| j) 
. 

The MAP decision rule is 

Ĥ=0 
p0fV |H (v | 0) ≥ p1fV |H (v | 1) 

. 
fV (v) < fV (v) 

Ĥ=1 

Ĥ=0 

Λ(v) =  
f

V |H (v | 0) ≥ p1 = η. 
f

V |H (v | 1) < p0 
Ĥ=1 
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