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REVIEW OF NYQUIST CRITERION 

Consider the modulated waveform u(t) =  k ukp(t− 

kT ). The receiver filters u(t) with q(t) to re­

ceive r(t) =  k ukg(t − kT ) where g = p ∗ q. 

The composite filter g is ideal Nyquist if g(kT ) =  

1 for k = 0  and 0 for k ∈ Z = 0� . 

The T -spaced samples of r then reproduce {uk}
without intersymbol interference. 

Nyquist criterion: g(t) is ideal Nyquist iff 

ĝ(f + m/T ) rect(fT  ) =  T rect(fT  )

m 
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Nyquist band (nominal band) is W = 1/(2T ). 

Actual baseband limit B should be close to W ; 

assume B <  2W . 

T 

ĝ(−W−∆)
����

�[ĝ(f)] 

f 

����

T − ĝ(W−∆) 

0 W B 

Tradeoff: want ̂g(f) ≈ rect(f/(2W )) but smooth.


Choose ĝ(f) real and symmetric; then g(t) is 

also real and symmetric. 

2




Nyquist criterion for g(t) real and symmetric is 

then a band-edge symmetry requirement. 

ĝ(f) 

T 
����

T − ĝ(W −∆) 

f 
0 W 

ĝ(W +∆)
���� 

B 
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� � 

�{ĝ(f)} must satisfy the band edge symmetry 

condition to meet the Nyquist criterion. 

Choosing �{ĝ(f )} = 0� simply increases the en­

ergy outside of the Nyquist band with little 

effect on delay. 

Thus we restrict ĝ(f ) to be real (as in the 

raised cosine pulses used in practice). 

Because of noise, we choose |p̂(f )| = |q̂(f)|. 

Since ĝ(f ) = p̂(f )q̂(f), this requires q̂(f) = p̂∗(f) 

and thus q(t) = p∗(−t). This means that 

g(t) =  p(τ )q(t − τ ) dτ = p(τ )p∗(τ − t) dτ 
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For ĝ(f) real and satisfying Nyquist criterion,


1 for k = 0  
g(kT ) =  p(τ)p∗(τ − kT ) dτ = 

0 for k = 0  

This means that {p(t− kT ); k ∈ Z} is an orthog­

onal set of functions. 

These functions are usually real L2 functions, 

but might be complex. 

Since |p̂(f)|2 = ĝ(f), p(t) is often called square 

root of Nyquist. 

In vector terms, u(τ)q(kT − τ) dτ is the projec­

tion of u on p(t−kT ). q(t) is called the matched 

filter to p(t). 

5




Frequency Translation (PAM and QAM)


� 
Baseband 

modulation 
� 

Convert to 

passband 

Signal 
sequence 

Baseband 
waveform 

Passband 
waveform 

� 

Channel 

� 
Filter and 
sample 

� 
Convert to 

baseband 
� 
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PAM: u(t) real


x(t) =  u(t)[e 2πifct + e−2πifct] = 2u(t) cos(2πfct), 

x̂(f) =  û(f − fc) + û(f + fc). 

� û(f)1 �
� 

T � 

Bu f 

−fc fc 
� x̂(f) � � x̂(f)1 � 1 � 

T � T � 

0 f fc−Bu fc+Bu 

The bandwidth B is 2Bu. The bandwidth is 

always the range of positive frequencies used. 
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QAM: u(t) complex


QAM solves the frequency waste problem of 

DSB AM by using a complex baseband wave­

form u(t). 

x(t) =  u(t)e 2πifct + u∗(t)e−2πifct . 

x(t) = 2�{u(t)e 2πifct}
= 2�{u(t)} cos(2πfct) − 2�{u(t)} sin(2πfct) . 

It sends one baseband waveform on cos carrier, 

another on sine carrier. 
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Conceptually, QAM shifts complex u(t) up by 

fc. Then complex conjugate added to form 

real x(t). 

Think of shifting and conjugating separately.


u(t) = u(t)e 2πifct = x(t).⇒ ⇒


If Bu < fc, then u(t)e2πifct is strictly in the pos­

itive frequency range. It can be perfectly fil­

tered from u∗(t)e2πifct at the receiver. 

x(t) = u(t)e 2πifct = u(t)⇒ ⇒ 

This filter is called a Hilbert filter (non-L2, 

non-practical, but useful conceptually). 
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COMPLEX (QAM) SIGNAL SET 

R is input data rate in bits per second. 

Segment b bits at a time (M = 2b). 

Map M symbols (binary b-tuples) to signal set. 

Signal rate is Rs = R/b signals per second. 

T = 1/Rs is the signal interval. 

Signals {uk} are complex numbers (or real 2­

tuples).


Signal set is constellation of M complex
A 

numbers (or real 2-tuples) 
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� � 

� � � � 

� � � � 

A standard (
√

M ×
√

M)-QAM signal set is the

Cartesian product of two 

√
M-PAM sets; i.e.,


A = {(a′ + ia′′) | a′ ∈ A′, a′′ ∈ A′}, 
It is a square array of signal points located as 
below for M = 16. 

�� d �� 

The energy per 2D signal is 

d2[
√

M2 − 1] d2[M − 1]
Es = = . 

6 6 
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Choosing a good signal set is similar to choos­

ing a 2D set of representation points in quan­

tization. 

Here one essentially wants to choose M points 

all at distance at least d so as to minimize the 

energy of the signal set. 

This is even uglier than quantization. Try to


choose the optimal set of 8 signals with d = 1.


For the most part, standard signal sets are 

used. 
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� �� � �� � � 
� �� � �� � � � �� � � �� � 

2πifct e−2πifcte
� up(t)

2�{ } � 
x(t) Hilbert 

filter 

up(t)��u(t) �� � u(t) 

transmitter receiver 

Note that u(t) is complex, and viewed as vector 

in complex L2. 

x(t) is real and viewed as vector in real L2. 

Orthogonal expansions must be treated with 

great care. 

Above picture nice for analysis, but not usually 

so for implementation. 
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QAM IMPLEMENTATION (DSB-QC)


Assume p(t) is real
 � t �{u(t)} = 
k 

�{uk} p(
T 
−k), 

� t �{u(t)} = 
k 

�{uk} p(
T 
−k). 

With u′ = �{uk} and u′′ = k k �{uk},     � � 
x(t) = 2cos(2πfct)  uk

′ p(t−kT )−2 sin(2πfct)  uk
′′p(t−kT ) 

k k 
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cos 2πfct � 
k

a′kδ(t−kT ) � 

p(t) 

filter k a′kp(t−kT ) 
� 

� {ak
′ } 

�

� x(t) 

� 
k

a′′kδ(t−kT ) � 
filter 

p(t) 
�k a′′kp(t−kT )

− sin 2πfct� 

{a′′k} 
�

Demodulate by multiplying x(t) by both cosine


and sign. Then filter out components around


2fc.
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cos 2πfct

{u′

k} 
�� 

k 
u′

kδ(t−kT ) � 
filter 

p(t) 
�k u

′
kp(t−kT ) 

�� 

�� 

�
��
� 
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��x(t)
+

{u′′
k} 

�� 
k 

u′′
kδ(t−kT ) � 

filter 

p(t) 
�k u

′′
kp(t−kT ) 

�� 

�� 
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�

− sin 2πfct� 

� 
x(t) 

cos 2πfct

{u′

k}�T -spaced 
sampler 

�filter 
q(t) 

��� 

�� 

�
��
� 

� 
� 

{u′′
k}�T -spaced 

sampler 
�filter 

q(t) 
��� 

�� 

�
��
� 

�

− sin 2πfct 

� 
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The DSB-QC implementation of QAM requires 

real filters p and q whose convolution g must 

satisfy Nyquist criterion. 

A standard QAM signal set reduces the system 

to parallel PAM systems. 

An arbitrary signal set can be used by combin­

ing the real and imaginary outputs. 

Signal and noise around 2fc must be filtered 

out before making baseband signal digital. 
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QAM, with sample spacing T , has baseband 

bandwidth 2
1 
T and passband bandwidth T 

1 

2 real degrees of freedom each T (each 1/W ). 

Over interval T0 there are 2T0/T = 2T0W real 

degrees of freedom. 

With PAM there are 2T0W0 real degrees of 

freedom in baseband bandwidth W0. 

Break large baseband bandwidth W0 into m 

passbands of width W = W0/m. 

With QAM in each, m times 2T0W , i.e., 2T0W0, 

real degrees of freedom overall. 
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QAM PHASE AND CARRIER RECOVERY


Let φ be the phase error at receiver, i.e., pos­
itive frequency waveform is up(t) = u(t)e2πifct . 

Receiver maps to baseband with e−2πifct+iφ . 

Baseband received waveform is u(t)eiφ . 

��� � �	
r(kT ) = eiφ(kT )u(kT ) 

� 
��
� �	 Data point is rotated 

counter clockwise by φ. 

� ���� 
φ can be corrected. 
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� � �� � � �� � � 
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� � �
� �

Phase error moves

Large points more.
� 

��
� � 

� ����	 Noise error moves 
all points the same 

Phase error changes slowly; its measurement


is averaged and corrected over many intervals.


The noise is almost independent over time. It 

is detected as if phase error absent. 

A phase error of π/2 can never be corrected by 

this method. 
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One approach to the uncorrectibility of large 

phase errors is to use differential phase trans­

mission. 

For 4-QAM, view as phase modulation. Let 

the signal map into phase changes instead of 

phase. 

That is, 00 same signal as before; 01 add
→ →
90o to phase ; etc. 

For 16-QAM, differential phase can be used 

on quadrants. 

Phase tracking can also sometimes be used to 

track frequency. 
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RANDOM PROCESSES


Sor far we have avoided random processes by 
looking only at random choices of signals and 
noise coefficients. 

We converted the source waveform to a se­
quence, and said that only the probabilistic 
description of the sequence is relevant. 

We related mean square error on the waveform 
to mean square error on the sequence, but 
usually just assumed the sequence to be iid. 

Since sample sequences determine sample wave­
forms, there is merit to describing the sequence 
probabilistically. 
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ADDITIVE NOISE


Let x(t) be the transmitted passband signal 

and y(t) = x(t)+ n(t) be the received passband 

signal. 

We view n(t) as a sample function of a random 

process N(t). 

We assume that a probabilistic description of 

N(t) is known but that the sample function n(t) 

is unknown. 

x(t) is known at the transmitter, but unknown 

at the receiver. From receiver point of view 

x(t) is a sample function of a random process 

X(t). 
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In terms of random processes, Y (t) = X(t) +  

Z(t). 

This implicitly assumes that the channel atten­


uation and delay are known and compensated.


It implicitly also means that Z(t) is indepen­

dent of X(t). 

These are standing assumptions until we start 

to study wireless systems. 
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A random process {Z(t)} is a collection of rv’s, 

one for each t ∈ R. 

For each epoch t ∈ R, the rv Z(t) is a function 

Z(t, ω) mapping sample points ω ∈ Ω to real 

numbers. 

For each ω∈Ω, {Z(t, ω} is sample function {z(t)}. 

A random process is defined by a rule estab­

lishing a joint density fZ(t1),... ,Z(tk)
(z1, . . .  , zk) for 

all k, t1, . . .  , tk and z1, . . .  , zk. 

Our favorite way to do this is Z(t) =  Ziφi(t). 

Joint densities on Z1, Z2, . . .  define {Z(t)}. 
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� � 

� � 

GAUSSIAN VARIABLES 

Normalized Gaussian rv has density 

fN (n) =  √1

2π 
exp 

−
2 

n2 
. 

Arbitrary Grv Z is shift by Z, scale by σ2 

1 −(z−Z̄)2 
fZ (z) =  √

2πσ2 
exp 

(2σ2) 

We refer to Z as N (Z, σ2) 
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Gaussian rv’s are important for the following 

reasons: 

The central limit theorem. • 

•	 Extremal properties 

•	 Easy to manipulate analytically.


Common models for noise
• 
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� � 
� � 

Refer to a k-tuple of rv’s as N = {N1, . . .  , Nk}. 

The set of k-tuples of rv’s over a sample space 

is a vector space (but not the vector space R(k) 

of real k-tuples). 

Here we only want to use vector notation rather 

than any vector properties. 

If N1, . . .  , Nk are iid N (0,1), then joint density 

is 

1 2 2 2 
fN(n) =  

(2π)k/2 
exp 

−n1 − n2

2 

− · · · − nk 

= 
1 

exp 
−‖n‖2 

. 
(2π)k/2 2 

Note spherical symmetry.
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A k-tuple of rv’s is zero-mean jointly Gaus­
sian if, for real aij, and for iid N (0,1) rv’s 
{N1, . . .  , Nm}, 

m

Zi = aijNj 
j=1 

i.e., Z is zero-mean jointly Gauss if Z = AN. 

Jointly Gauss more than individually Gauss; 
must be linear combinations of iid Gauss. 

Jointly Gauss makes sense physically -

Rv’s modelled as Gauss arise from CLT.
• 

Rv’s modelled as Gauss are linear combi­• 
nations of same underlying small variables. 
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Think of z = An in terms of sample values and 
take m = k. 

Aei is mapped into ith column of A. 

Thus unit cube is mapped into parallelepiped 
whose edges are the columns of A. 

0δ 

δ 
n1 

n2 

z1 

z2 

����

����
�

� 
�

�
����

����
�

�
�

�
��������

Z1 = N1 + N2 and Z2 = N1 + 2N2
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The mapping n into z = An maps a unit cube 

into a parallelepiped. 

The volume of this parallelepiped is | detA|. 

The density of Z = AN at z = An is scaled 

down from fN by | detA|. 

If A is singular, i.e., detA = 0, then density of 

Z doesn’t exist. 
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� � 
� � 

We have seen that 

fN(n)
fZ(An) =  . 

| detA| 

Assume A non-singular. Then for all z, 

fN(A−1z)
fZ(z) =  . 

| detA| 

1 
fZ(z) =  exp 

−‖A−1z‖2 
(2π)k/2| det(A)| 2 

=
1 

| det(A)| 
exp −

2

1 
zT(A−1)TA−1z 

(2π)k/2
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� � 

For zero mean rv’s, covariance of Z1, Z2 is E[Z1Z2]. 

For k-tuple Z, covariance is matrix whose i, j 

element is E[ZiZj]. That is 

KZ = E[ZZT]. 

For Z = AN, this becomes 

KZ = E[ANNTAT] =  E[AAT] 

K−1 = E[(A−1)TA−1]Z 

� 1 1 TK−1fZ(z) =  exp z Z z

(2π)k/2 det(KZ)|

−
2
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For Z = Z1, Z2, let E[Z1
2] =  K11 = σ1

2, E[Z2
2] =  

K11 = σ2
2 . Let ρ be normalized covariance 

E[Z1Z2] k12ρ = = . 
σ1σ2 σ1σ2 

det(KZ) =  σ1
2σ2

2 − k2 σ1
2σ2

2(1 − ρ2).12 = 

For A to be non-singular, we need |ρ| < 1. We  

then have 

1 1/σ2 −ρ/(σ1σ2)KZ−1 == 
1 − ρ2 −ρ/(σ1

1 
σ2) 1/σ2

2 

 
− σ

z1
1

2 + 2ρσ
z1
1 σ

z2
2 
− σ

z2
2

2 
1
 
fZ(z) = 
 exp


2(1 − ρ2)
2πσ1σ2 1 − ρ2


Lesson: Even for k = 2, this is messy.
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