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� � � 

Simplest Example of channel encoding


A sequence of binary digits is mapped, one at 

a time, into a sequence of signals from the 

constellation {1,−1}. 

Usually the mapping is 0 1 and 1 → −1.→

The sequence of signals, u1, u2, . . .  ,  is mapped 

to the waveform k uksinc T
t − k . 

With no noise, no delay, and no attenuation, 

the received waveform is 
� 

k uksinc 
� 

T
t − k 

� 
. 

This is sampled and converted back to binary. 
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For now we focus on the baseband transmit­

ted waveform u(t) and the received baseband 

waveform v(t). 

The frequency translation from baseband to 

passband is undone at receiver. 

Assume u(t), the transmitted baseband wave­

form, equals the received waveform v(t). 

This ignores attenuation, delay, and noise. 

Ignoring attenuation means amplitude scaling 

at receiver. 

Attenuation is usually considered separately as 

part of the ‘link budget.’ 
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Assume u(t), the transmitted baseband wave­

form, equals the received baseband waveform 

v(t). 

This ignores attenuation, delay, and noise. 

This assumes time shifting at receiver. (Filters 

can be non-causal). 

The time shifting is called ‘timing recovery.’ 

It locks the receiver clock to the transmitter 

clock plus propagation delay. 

This means that filtering can be non-causal - it


can be incorporated into the timing recovery.
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Assume u(t), the transmitted baseband wave­

form, equals the received baseband waveform 

v(t). 

This ignores attenuation, delay, and noise. 

For now, we simply assume that noise can alter 

each received signal independently by at most 

a fixed amount. 

This requires a minimum separation, say d, be­

tween the possible signals in a constellation. 

We scale both received signal and noise so that 

u(t) plus noise is received. 
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� 

Pulse amplitude modulation (PAM) 

The signals in PAM are one dimensional, i.e., 
the constellation is a set of M = 2b real num­
bers, where there are b binary inputs per signal. 

It is modulated as u(t) =  k ukp(t−kT ), where 
p(t) is the basic pulse shape. 

A standard PAM signal set uses equi-spaced 
signals symmetric around 0. 

A = {−d(M − 1)/2, . . .  ,−d/2, d/2, . . .  , d(M − 1)/2}. 

α1 α2 α3 α4 α5 α6 α7 α8 

� d � 0 

8-PAM signal set 
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The signal energy, i.e., the mean square signal 

value assuming equiprobable signals, is 

d2(M2 − 1) d2(22b − 1)
Es = = . 

12 12 

This increases as d2 and as M2 . 

View noise as setting a minimum value for d.


Errors in reception are primarily due to noise 

exceeding d/2. 

For many channels, the noise is independent of 

the signal, which explains the standard equal 

spacing between signal constellation values. 
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� 

�

PAM Modulation


{u1, u2, . . .  } u(t) =  ukp(t − kT ).→ 
k 

Modulation defined by interval T and basic wave­
form (pulse) p(t). 

p(t) can be non-realizable (p(t) = 0  for t <  0),

and could be sinc(t/T ). 

This constrains waveform to baseband with 
limit 1/(2T ). 

sinc(t/T ) dies out impractically slowly with time;

it also requires infinite delay at the transmitter.


We need a compromise between time decay 
and bandwidth. 
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� 

We also would like to retrieve the coefficients 

uk perfectly from u(t) (assuming no noise). 

Assume that the receiver filters u(t) with an 

LTI filter with impulse response q(t). 

The filtered waveform r(t) =  u(τ)q(τ − t) dτ is 

then sampled r(0), r(T ), . . .  

The question is how to choose p(t) and q(t) so 

that r(kT ) =  uk. 

The question seems artificial (why choose a 

linear filter followed by sampling?) 

We find later, when noise is added, that this 

all makes sense as a layered solution. 
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� � 

� 

r(t) =  u(τ)q(τ − t) dτ = 
∞ � 

ukp(τ − kT )q(t − τ) dτ. 
k� −∞ 

= ukg(t − kT ) where g(t) = p(t) ∗ q(t). 
k 

Think of an impulse train k ukδ(t − kT ) passed 
through p(t) and then q(t). 

While ignoring noise, r(t) is determined by g(t); 
p(t) and q(t) are otherwise irrelevant. 

Definition: A waveform g(t) is ideal Nyquist 
with period T if g(kT ) = δ(k). 

If g(t) is ideal Nyquist, then r(kT ) = uk for all 
k ∈ Z. If  g(t) is not ideal Nyquist, then r(kT ) =�
uk for some k and choice of {uk}. 
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An ideal Nyquist g(t) implies no intersymbol 

interference at the above receiver. 

We will see that choosing g(t) to be ideal Nyquist 

fits in nicely when looking at the real problem, 

which is coping with both noise and intersym­

bol interference. 

g(t) = sinc(t/T ) is ideal Nyquist. but has too 

much delay. 

If g(t) is to be strictly baseband limited to 

1/(2T ), sinc(t/T ) turns out to be the only solu­

tion. 

We look for compromise between bandwidth 

and delay. 
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� 

Since ideal Nyquist is all about samples of g(t), 

we look at aliasing again. The baseband re­

construction s(t) from {g(kT )} is � t

s(t) =  g(kT )sinc(

T 
− k).


k 

g(t) is ideal Nyquist iff s(t) = sinc(t/T ) i.e., iff


ŝ(f) =  T rect(fT  )


From the aliasing theorem, � m 
ŝ(f) =  ĝ(f + ) rect(fT  ). 

Tm 

Thus g(t) is ideal Nyquist iff 

ĝ(f + m/T ) rect(fT  ) =  T rect(fT  ) 
m 
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This says that out of band frequencies can help 

in avoiding intersymbol interference. 

We want to keep ̂g(f ) almost baseband limited 

to 1/(2T ), and thus assume actual bandwidth 

B less than 1/T . 

ĝ(f) 

T 
����

T − ĝ(W −∆) 

f 
0 W 

ĝ(W +∆)
���� 

B 

This is a band edge symmetry requirement.
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� � 

PAM filters in practice often have raised co­

sine transforms. The raised cosine frequency 

function, for any given rolloff α between 0 and 

1, is defined by  
 2T0 ≤ |f | ≤ 1−α 

α f | ≤
1+α 

T, 
 ;


f | − 
1−2T 
α
)
 1+α
2 πT


2α
(
|
ĝα(f) = 
 T
 ;
cos
 , 1
2
−
T ≤ | 
 2T

0,
 2T .|f | ≥

t cos(παt/T ) 
gα(t) = sinc( )


1 − 4α2t2/T 2
T
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� � 

�{ĝ(f)} must satisfy the band edge symmetry 

condition to meet the Nyquist criterion. 

Choosing 	{ĝ(f )} = 0� simply increases the en­

ergy outside of the Nyquist band with little 

effect on delay. 

Thus we restrict ĝ(f ) to be real (as in the 

raised cosine pulses used in practice). 

Because of noise, we choose |p̂(f )| = |q̂(f)|. 

Since ĝ(f ) = p̂(f )q̂(f), this requires q̂(f) = p̂∗(f) 

and thus q(t) = p∗(−t). This means that 

g(t) =  p(τ )q(t − τ ) dτ = p(τ )p∗(τ − t) dτ 
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� � 
�

� 

For g(t) ideal Nyquist,


1 for k = 0  
g(kT ) =  p(τ)p∗(τ − kT ) dτ = 

0 for k = 0  

This means that {p(t− kT ); k ∈ Z} is an orthog­

onal set of functions. 

These functions are all real L2 functions for 

PAM, but we allow the possibility of complex 

functions for later. 

Since |p̂(f)|2 = ĝ(f), p(t) is often called square 

root of Nyquist. 

In vector terms, u(τ)q(kT − τ) dτ is the projec­

tion of u on p(t−kT ). q(t) is called the matched 

filter to p(t). 
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� � � 
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� 

� � � 

x(t) =  u(t)[e 2πifct + e−2πifct] = 2u(t) cos(2πfct), 

x̂(f) =  û(f − fc) + û(f + fc). 

1 �
�
� û(f) 

T � 

Bu f 

−fc fc 
� x̂(f) � � x̂(f)1 � 1 � 

T � T � 

0 f fc−Bu fc+Bu 

The bandwidth B is 2Bu. The bandwidth is 

always the range of positive frequencies used. 
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When a baseband waveform limited to B is 

shifted up to passband, the passband wave­

form becomes limited to 2B. 

For u(t) real, û(f); f ≥ 0 specifies u(t).


Then x̂(f); fc ≤ f ≤ fc + WB specifies u(t).


If fc − Bu ≤ f ≤ fc filtered out of x(t), result is


single sideband (same for lower sideband).


Without filter, it is double sideband PAM.


SSB rare for data. DSB PAM common where


frequency utilization is no problem.
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QUADRATURE AMP. MOD. (QAM) 

QAM solves the frequency waste problem of 

DSB AM by using a complex baseband wave­

form u(t). 

x(t) =  u(t)e 2πifct + u∗(t)e−2πifct . 

DSB PAM is special case where u(t) is real. 

x(t) = 2�{u(t)e 2πifct}
= 2�{u(t)} cos(2πfct) − 2	{u(t)} sin(2πfct) . 

It sends one baseband waveform on cos carrier, 

another on sine carrier. 
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Conceptually, QAM shifts complex u(t) up by 

fc. Then complex conjugate added to form 

real x(t). 

We think of the shifting and conjugating sep­

arately. 

Binary = symbols = complex signals = ⇒ ⇒ ⇒ 

= u(t) = u(t)e2πifct = x(t).⇒ ⇒ ⇒ 

At the receiver, 

x(t) = u(t)e2πifct = u(t) =⇒ ⇒ ⇒ 

= complex signals = symbols = Binary.
⇒ ⇒ ⇒ 
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COMPLEX (QAM) SIGNAL SET


R = in bits per second. 

Segment b bits at a time (M = 2b). 

Map M symbols (binary b-tuples) to signal set.


Signal rate is Rs = R/b signals per second. 

T = 1/Rs is the signal interval. 

Signals {uk} are complex numbers (or real 2­

tuples).


Signal set is constellation of M complex
A 

numbers (or real 2-tuples) 
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� � � � 

� � 

� � � � 

� � � � 

A standard (
√

M ×
√

M)-QAM signal set is the

Cartesian product of two 

√
M-PAM sets; i.e.,


A = {(a′ + ia′′) | a′ ∈ A′, a′′ ∈ A′}, 
It is a square array of signal points located as 
below for M = 16. 

�� d �� 

The energy per 2D signal is 

d2[
√

M2 − 1] d2[M − 1]
Es = = . 

6 6 
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Choosing a good signal set is similar to choos­

ing a 2D set of representation points in quan­

tization. 

Here one essentially wants to choose M points 

all at distance at least d so as to minimize the 

energy of the signal set. 

This is even uglier than quantization. Try to


choose the optimal set of 8 signals with d = 1.


For the most part, standard signal sets are 

used. 
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SIGNALS TO COMPLEX WAVEFORM


Nyquist theory works without change (except 

modulation pulse can be complex). 

Bandedge symmetry requires real g(t). 

More important, orthogonality of p(t − kT ) re­

quires g(t) to be real, but not p(t). 

Nominal passband Nyquist bandwidth is 1/T . 

Actual passband bandwidth is 5 or 10 percent 

more. 
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BASEBAND TO PASSBAND


Assume that Bu = B/2 < fc. 

This ensures that u(t)e2πifct is strictly in the 

positive frequency band. 

It ensures that û(f + fc) and û(f − fc) do not 

overlap. 

View as two step: up(t) =  u(t)e2πifct . Then 

x(t) = up(t) + u∗
p(t). 

Note that up(t) can be retrieved from x(t) by a 

complex filter of frequency response ĥ(f) = 1  

for f >  0, ĥ(f) = 0 for f ≤ 0. 

This is called a Hilbert filter. 
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� �� � �� � � 
� �� � �� � � � �� � � �� � 

2πifct e−2πifcte
� up(t)

2�{ } � 
x(t) Hilbert 

filter 

up(t)��u(t) �� � u(t) 

transmitter receiver 

Note that u(t) is complex, and viewed as vector 

in complex L2. 

x(t) is real and viewed as vector in real L2. 

Orthogonal expansions must be treated with 

great care. 

This is nice for analysis, but not usually so for 

implementation. 
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QAM IMPLEMENTATION (DSB-QC)


Assume p(t) is real
 � t �{u(t)} = 
k 

�{uk} p(
T 
−k), 

� t 	{u(t)} = 
k 

	{uk} p(
T 
−k). 

With u′ = �{uk} and u′′ = k k 	{uk},     � � 
x(t) = 2cos(2πfct)  uk

′ p(t−kT )−2 sin(2πfct)  uk
′′p(t−kT ) 

k k 
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� 
�� 

�� 

�
��
� 

� 

�� 

�� 

�� 
��

� 

�� 

�� 

+ � 

cos 2πfct � 
k

a′kδ(t−kT ) � 

p(t) 

filter k a′kp(t−kT ) 
� 

� {ak
′ } 

�

� x(t) 

� 
k

a′′kδ(t−kT ) � 
filter 

p(t) 
�k a′′kp(t−kT )

− sin 2πfct� 

{a′′k} 
�

Demodulate by multiplying x(t) by both cosine


and sign. Then filter out components arount


2fc.
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