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� � 
The DTFT generalizes to arbitrary frequency 

intervals [∆−W, ∆+W ], 

v̂(f) = l.i.m. 
� 

vke−2πikf/(2W ) rect 
f−∆ 

where 
2W

k

1 � ∆+W


vk = v̂(f)e 2πikf/(2W ) df.

2W ∆−W 

Taking the inverse Fourier transform, � 1 k 
v(t) =  vk sinc(2Wt  − k) exp{2πi∆(t − )}

2W 2W � k k 
= v( ) sinc(2Wt  − k) exp{2πi∆(t − )}

2W 2W � t 
= v(kT ) sinc( 

T 
− k) exp{2πi∆(t − kT )} 
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Just as we segmented an arbitrary L2 time 

function into intervals of duration T , we can 

segment an arbitrary L2 frequency function into 

intervals of duration 2W . � f 
û(f) = l.i.m. v̂m(f); v̂m(f) = û(f ) rect( 

2W 
−m). 

m 

v̂m(f) is non-zero over [2Wm  − W, 2Wm  +W ], so  � t 
vm(t) =  vm(kT ) sinc( 

T 
− k) exp{2πi(2Wm)(t − kT )}� t 

= vm(kT ) sinc( 
T 

− k) exp{2πimt/T }� t

u(t) =  vm(kT ) sinc( 

T 
− k) exp{2πimt/T }


k,m 
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� � 

� � � 

This is the T-spaced sinc-weighted sinusoid 

expansion, 

u(t) = l.i.m. 
� 

vm(kT ) sinc 
T

t − k e 2πimt/T . 
m,k 

Both this and the T-spaced truncated sinusoid 

expansion 

u(t) = l.i.m. ûk,m e 2πikt/T rect 
T

t − m 
m,k 

break the function into increments of time du­

ration T and frequency duration 1/T . 
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Consider a large time interval T0 (i.e., [−T0/2, T0/2]) 

and a baseband limited band W0 (i.e., [−W0, W0]). 

There are T0/T segments of duration T and 

W0T positive frequency segments. 

Counting negative frequencies also, there are 

2T0W0 time/frequency blocks and 2T0W0 coef­

ficients. 

If one ignores coefficients outside of T0, W0, 

then the function is specified by 2T0W0 com­

plex numbers. 

For real functions, it is T0W0 complex numbers. 
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� � 
� � 

� 
� � 

ALIASING


Suppose we approximate a function u(t) that 
is not quite baseband limited by the sampling 

expansion s(t) ≈ u(t). � t

s(t) =  u(kT ) sinc 

T 
− k .


k 

u(t) = l.i.m. 
� 

vm(kT ) sinc 
T

t − k e 2πimt/T 

m,k 

s(kT ) =  u(kT ) =  vm(kT ) (Aliasing) 
m 

� � t

s(t) =  vm(kT ) sinc 

T 
− k .


k m 
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t
2πimt/T
u(t) − s(t) =  vm(kT )
 − 1 sinc 
T 

− k
e

k m


k m=0 

vm(kT ) e 2πimt/T − 1 sinc

T 

− k
=


u(t) − s(t)

2


vm(kT )

2

+ T


2

vm(kT )
dt = T
 .


k m=0 k m=0 

s(t) need not be L2 and first term above can 

be infinite. 

We will see later that for a random process 

U(t), the expected value of the first term is 

often the same as the second term. 

� 
t
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� 
� � 

ALIASING VIEWED IN FREQUENCY


Since u(kT ) =  k vm(kT ), � � t 
s(t) =  sm(t), sm(t) =  vm(kT )sinc 

T 
− k . 

m k 

vm(t) =  
� 

vm(kT ) sinc( 
T

t − k) e 2πimt/T 

k 

m 
û(f) rect(fT  − m) = v̂m(f) = ŝm(f − )

T 

� m 
ŝ(f) =  û(f + ) rect[fT  ]. 

Tm 

The frequency slices are added together at 

baseband, losing their identity. 
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Theorem: Let û(f) be L2, and satisfy 

lim û(f)|f |1+ε = 0  for ε >  0. 
|f |→∞ 

Then û(f) is L1, and the inverse transform u(t) 
is continuous and bounded. For T >  0, the 
sampling approx. s(t) =  

� 
k u(kT ) sinc(T

t + k) is 
bounded and continuous. ŝ(f) satisfies � m 

ŝ(f) = l.i.m. û(f + ) rect[fT ]. 
Tm 
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L2 AS A VECTOR SPACE 

We have been developing the ability to go back


and forth between waveforms and sequences.


You are familiar with the use of vectors to rep­


resent n-tuples. Representing a countably infi­


nite sequence is a small conceptual extension.


Viewing waveforms as vectors is a larger con­

ceptual extension. We have to view vectors as 

abstract objects rather than as n-tuples. 

Orthogonal expansions are best viewed in vec­

tor space terms. 
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Axioms of vector space


Addition: For each �v ∈ V  and �u ∈ V, there is 

a vector �v + �u ∈ V  called the sum of �v and �u 
satisfying 

1. Commutativity: �v + �u = �u + �v, 

2. Associativity:	 �v + (�u + w�) = (�v + �u) + w� for 

each �v, �u, � ,w ∈ V

3. There is a unique vector 0 ∈ V  such that 
�v + 0 = �v for all � ,v ∈ V

4. For each �v ∈ V, there is a unique vector −�v 
such that �v + (−�v) = 0. 

11




Every vector space V, along with the vectors, 

has another set of objects called scalars. For 

us, scalars are either the set of real or complex 

numbers, giving rise to real vector spaces and 

complex vector spaces. 

Scalar multiplication: For each scalar α and 

each �v ∈ V  there is a vector α�v ∈ V  called the 

product of α and �v satisfying 

1. Scalar associativity:	 α(β�v) = (αβ)�v for all 

scalars α, β, and all � ,v ∈ V

2. Unit multiplication:	 for the unit scalar 1, 

1�v = �v for all � .v ∈ V
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Distributive laws: 

1. For all scalars α and all �v, � , α(�v + �u) = 
u ∈ V
α�v + α�u; 

2. For all scalars α, β and all � , (α + β)�v =
v ∈ V
α�v + β�v. 

In the axiomatic approach, one establishes re­

sults from the axioms, and anthing that satis­

fies the axioms is a vector space and satisfies 

those results. 
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Elementary view: Vectors are n-tuples of real 

or complex numbers. 

For real vector space, tuples and scalars are 

real. 

For complex vector space, tuples and scalars 

are complex 

Real 2D or 3D vectors are points in plane or


space and extremely valuable for visualization.


Even complex 2D space is hard to visualize. 
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Simple properties: 

Cancellation: if �u + �v = w� + �v, then �u = w�

Multiplication by 0: 0�v = �0 

Subtraction: �u − �v means �u + (−�v) 

Solving equations: �u − �v = w� = �u = �v + w�⇒ 

Note: scalars can’t be infinite; neither can vec­

tors. 
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� 

For space L2 of finite energy complex func­

tions, we can define �u + �v as function w� where 

w(t) = u(t) + v(t) for each t. 

Define α�v as vector �u for which u(t) = αv(t). 

Theorem: L2 is a complex vector space. 

Proof: One question: For �v, �u ∈ L2, is  �u + �v ∈ 

L2? 

i.e., is it true that 
∞ 

2 dt < ∞
−∞ 

|u(t) + v(t)|

For each t |u(t)+ v(t)|2 ≤ 2|u(t)|2 +2|v(t)|2; thus 
yes. 
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Inner product spaces


Vector space definition lacks distance and an­
gles. 

Inner product adds these features. The inner 
product of �v and �u is denoted 〈�v, �u〉. Axioms: 

1. Hermitian symmetry: 〈�v, �u〉 = 〈�u,�v〉∗ 

2. Hermitian bilinearity: 〈α�v+β�u, �w〉 = α〈�v, �w〉+ 
β〈�u, �w〉

�3. Strict positivity: 〈�v,�v〉 ≥ 0, equality iff �v = 0.


For Cn, we usually define 〈�v, �u〉 = i viu
∗
i .


If �e1, �e2, . . .  , �en are unit vectors in Cn, then 〈�v,�ei〉 =

vi. 
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� 

Definitions: ‖�v‖2 = 〈�v,�v〉 is squared norm of �v. 

‖�v‖ is length of �v. �v and �u are orthogonal if 

〈�v, �u〉 = 0. 

More generally �u can be broken into a part 

�⊥�v that is orthogonal to � and another partu v 

collinear with �v. 

�u = (u1, u2) �� �v = (v1, v2) 

������

������

�����

���
����������������� � 

�
� ��u

� 
⊥�v 

v2 

� �u
� |�v 

�0 v1 
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�Theorem: (1D Projection) Let �v and �u = 0 

be arbitrary vectors in a real or complex inner 

product space. Then there is a unique scalar 

α for which 〈�v − α�u, �u〉 = 0. That α is given by 

α = 〈�v, �u〉/‖�u‖2 . 

Proof: Calculate 〈�v − α�u, �u〉 for an arbitrary scalar 

α and find the conditions under which it is zero: 

〈�v − α�u, �u〉 = 〈�v, �u〉 − α〈�u, �u〉 = 〈�v, �u〉 − α‖�u‖2 , 

which is equal to zero if and only if α = 〈�v, �u〉/‖�u‖2 . 
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Pythagorean theorem: For �v, �u orthogonal, 

‖�u + �v‖2 = ‖�u‖2 + ‖�v‖2 

Thus 

‖�u‖2 ‖� |�v‖2 + ‖�⊥�v‖2= u u


It follows that ‖�u‖2 ≥ ‖�u|�v‖2 = |α|2‖�u‖2 . This 

yields the Schwartz inequality, 

|〈�u,�v〉| ≤ ‖�u‖ ‖�v‖
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� 
If we define the inner product of the vector 

space L2 as 

u,�
∞ 

u(t) t)dt,〈� v〉 = v∗(
−∞ 

then L2 becomes an inner product space. 

Because 〈� u〉 = 0� for � = 0� , we must define
u, � u 

quality as L2 equivalence. 
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A subspace of a vector space V is a subset S


of V that forms a vector space in its own right.


Equivalent: For all �u,� , α�u + β�v ∈ S v ∈ S  

Important: Rn is not a subspace of Cn; real L2 

is not a subspace of complex L2. 

A subspace of an inner product space (using 

the same inner product) is an inner product 

space. 
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� 
The set �v1, . . .  , �vn is linearly dependent if n

j=1 αj�vj = 

0 for some set of scalars that are not all equal 

to 0. 

The set is linearly independent if it is not de­

pendent. 

The dimension of a space (or subspace) is the 

largest number of indepentent vectors in that 

space. 

Any set of n linearly independent vectors in an 

n dimensional space are said to be a basis of 

that space. 

A set of vectors spans V if all vectors in V are 
linear combinations of that set. 
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Theorem: For n dimensional space, every basis 

spans space and no set of fewer than n vectors 

spans space. 
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