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Measure and complements


We listed the rational numbers in [−T/2, T/2] 

as a1, a2, . . .  

k k

µ{ ai} = µ([ai, ai]) = 0 
i=1 i=1 

The complement of 
�

i
k 
=1 ai is 

�
i
k 
=1 ai where ai 

is all t ∈ [−T/2.T/2] except ai. 

Thus 
�

i
k 
=1 ai is a union of k+1 intervals, filling 

[−T/2, T/2] except a1, . . .  , ak. 

In the limit, this is the union of an uncountable 

set of irrational numbers; the measure is T . 
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MEASURABLE FUNCTIONS


A function {u(t) : R R} is measurable if → 
{t : u(t) < b} is measurable for each b ∈ R. 

The Lebesgue integral exists if the function is

measurable and if the limit in the figure exists.


3ε


2ε


−T/2 T/2 
Horizontal crosshatching is what is added when

ε ε/2. For u(t) ≥ 0, the integral must exist
→
(with perhaps an infinite value). 
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ε 

For u(t) ≥ 0, the Lebesgue approximation might 

be infinite for all ε. Example: u(t) = |1/t|. 

If approximation finite for any ε, then changing 

ε to ε/2 adds at most ε/2 to approximation. 

Continued halving of interval adds at most 

ε/2 + ε/4 + + ε.· · · →

3ε 

2ε 

−T/2 T/2 

If any approximation is finite, integral is finite.
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For a positive and negative function u(t) define 

a positive and negative part: 

u +(t) = 	
u(t) for t : u(t) ≥ 0 
0 for t : u(t) < 0 

u−(t) =  
0 for t : u(t) ≥ 0 

−u(t) for t : u(t) < 0. 

u(t) = u +(t) − u−(t). 

If u(t) is measurable, then u+(t) and u−(t) are 

also and can be integrated as before. 

u(t) =  u +(t) − u−(t) dt. 

except if both u+(t) dt and u−(t) dt are infi­

nite, then the integral is undefined. 
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For {u(t) : [−T/2, T/2] → R}, the functions |u(t)|
and |u(t)|2 are non-negative. 

They are measurable if u(t) is. 

|u(t)| = u +(t) + u−(t) thus |u(t)| dt = u +(t) dt + u−(t) dt 

Def: u(t) is L1 if measurable and |u(t)| dt < ∞. 

Def: u(t) is L2 if measurable and 
� |u(t)|2 dt < ∞. 
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A complex function {u(t) : [−T/2, T/2] C} is
→
measurable if both �[u(t)] and �[u(t) are mea­

surable. 

Def: u(t) is L1 if |u(t)| dt < ∞. 

Since |u(t)| ≤ |�(u(t)| + |�(u(t)|, it follows that


u(t) is L1 if and only if �[u(t)] and �[u(t)] are


L1.


Def: u(t) is L2 if 
� |u(t)|2 dt < ∞. This happens


if and only if �[u(t)] and �[u(t)] are L2.
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If |u(t)| ≥ 1 for given t, then |u(t)| ≤ |u(t)|2 . 

Otherwise |u(t)| ≤ 1. For all t, 

|u(t)| ≤ |u(t)|2 + 1. 

For {u(t) : [−T/2, T/2 C],→� T/2 � T/2 

−T/2
|u(t)| dt ≤

−T/2
[|u(t)|2 + 1] dt � T/2 

= T + 
−T/2

|u(t)|2 dt 

Thus L2 finite duration functions are also L1. 
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L2 functions [−T/2, T/2] → C 
� 

� 
L1 functions [−T/2, T/2] → C � 

� 
Measurable functions [−T/2, T/2] → C � 
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Back to Fourier series: 

Note that |u(t)| = |u(t)e2πift| 

Thus, if {u(t) : [−T/2, T/2] C} is L1, then →

|u(t)e 2πift| dt < ∞. 

| u(t)e 2πift dt| ≤  |u(t)| dt < ∞. 

If u(t) is L2 and time-limited, it is L1 and same 

conclusion follows. 
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Theorem: Let {u(t) : [−T/2, T/2] C} be an L2→ 

function. Then for each k ∈ Z, the Lebesgue 

integral 

1 � T/2 
ûk = u(t) e−2πikt/T dt 

T −T/2 

1exists and satisfies |ûk| ≤
thermore, 

|u(t)| dt < ∞. Fur-
T


� T/2

lim


k0→∞ −T/2


2


dt = 0,

k0

u(t) − ûk e 2πikt/T


k=−k0


where the limit is monotonic in k0.
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The most important part of the theorem is 

that 

k0

u(t) ≈ ûke 
k=−k0 

2πikt/T


where the energy difference between the terms 

goes to 0 as k0 → ∞, i.e., 

� T/2

lim


k0→∞ −T/2


k0

u(t) − ûk e 2πikt/T

2


dt = 0,

k=−k0


We abbreviate this convergence by


u(t) = l.i.m. ûk e
2πikt/T rect( 
t


T

).


k
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� 
u(t) = l.i.m. ûk e 2πikt/T rect( 

t 
). 

T
k 

This does not mean that the sum on the right 

converges to u(t) at each t and does not mean 

that the sum converges to anything. 

There is an important theorem by Carleson 

that says that for L2 functions, the sum con­

verges a.e. That is, it converges to u(t) except 

on a set of t of measure 0. 

This means that it converges for all integration 

purposes. 
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It is often important to go from sequence to 

function. The relevant result about Fourier 

series then is 

Theorem: If a sequence of complex numbers 

{ûk; k ∈ Z} satisfies 
� 

k |ûk|2, then an L2 function 

{u(t) : [−T/2, T/2] C} exists satisfying → 

u(t) = l.i.m. ûk e 2πikt/T rect( 
t 
). 

T
k 
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Aside from all the mathematical hoopla (which 

is important), there is a very simple reason why 

so many things are simple with Fourier series. 

The expansion functions, 

θk(t) =  e 2πikt/T rect(t/T ) 

are orthogonal. That is 

θk(t)θj
∗(t) dt = Tδk,j 

This is the feature that let us solve for ûk(t) 

from the Fourier series u(t) =  k ûkθk(t). 
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Functions not limited in time 

We can segment an arbitrary L2 function into 
segments of width T . The mth segment is 
um(t) =  u(t)rect(t/T − m). We then have 

m0

u(t) = l.i.m.m0→∞ um(t) 
m=−m0 

This works because u(t) is L2. The energy in 
um(t) must go to 0 as m → ∞. 

By shifting um(t), we get the Fourier series: � t 
um(t) = l.i.m. ûk,m e 2πikt/T rect(

T 
− m), where 

k 

ˆ =
1 � ∞ 

u(t)e−2πikt/T rect(
T

t − m) dt, −∞ < k <  ∞.uk,m 
T −∞ 
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This breaks u(t) into a double sum expansion 

of orthogonal functions, first over segments, 

then over frequencies. 

u(t) = l.i.m. 
� 

ûk,m e 2πikt/T rect(
T

t − m) 
m,k 

This is the first of a number of orthogonal 

expansions of arbitrary L2 functions. 

We call this the T -spaced truncated sinusoid 

expansion. 
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� t 
u(t) = l.i.m. ûk,m e 2πikt/T rect(

T 
− m) 

m,k 

This is the conceptual basis for algorithms such 

as voice compression that segment the wave­

form and then process each segment. 

It matches our intuition about frequency well; 

that is, in music, notes (frequencies) keep chang­

ing. 

The awkward thing is that the segmentation


parameter T is arbitrary and not fundamental.
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C Fourier transform: u(t) : R C to û(f ) : R→ → 

û(f ) =  
∞ 

u(t)e−2πift dt. 
−∞ 

2πift df. u(t) =  
∞ 

û(f)e 
−∞ 

For “well-behaved functions,” first integral ex­

ists for all f, second exists for all t and results 

in original u(t). 

What does well-behaved mean? It means that 

the above is true. 
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au(t) +  bv(t)


u∗(−t)


û(t)


u(t − τ )


u(t)e 2πif0t


u(t/T )


du(t)/dt

∞ 

u(τ )v(t − τ ) dτ � −∞
∞ 

u(τ )v∗(τ − t) dτ 
−∞ 

aû(f) +  bv̂(f).↔ 

û∗(f).↔ 

↔	 u(−f ). 

e−2πifτ û(f )↔ 

↔	 û(f − f0) 

T û(fT  ).↔ 

i2πfû(f ).
↔ 

û(f)v̂(f ).
↔ 

û(f)v̂∗(f).↔ 

Linearity 

Conjugate 

Duality 

Time shift 

Frequency shift 

Scaling 

Differentiation 

Convolution 

Correlation 
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Two useful special cases of any Fourier trans­

form pair are: 

u(0) = 
∞ 

û(f) df ; 
−∞ 

û(0) = 
∞ 

u(t) dt. 
−∞ 

Parseval’s theorem: 
∞ 

u(t)v∗(t) dt = 
∞ 

û(f)v̂∗(f) df. 
−∞ −∞ 

Replacing v(t) by u(t) yields the energy equa­

tion, 
∞ 

u(t)|2 dt = 
∞ 

u(f)|2 df. 
−∞

|
−∞

|ˆ
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