Measure and complements

We listed the rational numbers in [-T/2,T/2]
as ai,an,. ..

k k
p{ U ai} = > p(lai,a]) =0
i=1 i=1

The complement of UY_, a; is Nf_;a; where g;
is all t € [-T/2.T/2] except a;.

Thus NY_; @; is a union of k+1 intervals, filling
[-T/2,T/2] except aq,... ,a.

In the limit, this is the union of an uncountable
set of irrational numbers; the measure is 7.



MEASURABLE FUNCTIONS

A function {u(t) : R — R} is measurable if
{t : u(t) < b} is measurable for each b € R.

The Lebesgue integral exists if the function is
measurable and if the limit in the figure exists.
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Horizontal crosshatching is what is added when

e — ¢/2. For u(t) > 0, the integral must exist
(with perhaps an infinite value).



For u(t) > 0, the Lebesgue approximation might
be infinite for all c. Example: u(t) = |1/t|.

If approximation finite for any ¢, then changing
e to ¢/2 adds at most /2 to approximation.

Continued halving of interval adds at most
ef24+¢e/4+ -+ — €.
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If any approximation is finite, integral is finite.



For a positive and negative function u(t) define
a positive and negative part:

Lon [ () for t:u(t) >0
ut(t) = 10 for t:u(t) <O
_ . O for t:u(t) >0
w ) =) —u) for t:u(t) <0,

u(®) = ut (@) —u(2).

If «(¢) is measurable, then v (¢) and v (¢t) are
also and can be integrated as before.

/ w(t) = / wt () — / u=(t) dt.

except if both [vT(¢)dt and [uw(t)dt are infi-
nite, then the integral is undefined.



For {u(t) : [-T/2, T/2] — R}, the functions |u(t)|
and |u(t)|? are non-negative.

They are measurable if u(t) is.
()| = ut () + u (1) thus/|u(t)|dt — /u+(t) dt—l—/u_(t) dt
Def: u(t) is £1 if measurable and [ |u(t)|dt < co.

Def: u(t) is Lo if measurable and [ |u(t)|? dt < co.



A complex function {u(t) : [-T/2,T/2] — C} is
measurable if both R[u(¢t)] and &[u(t) are mea-
surable.

Def: u(t) is £ if [|u(t)|dt < cc.

Since |u(t)| < [R(u(t)| + |S(u(t)|, it follows that
u(t) Is L£41 if and only if R[u(t)] and S[u(t)] are
L.

Def: u(t) is Lo if [|u(t)|?dt < co. This happens
iIf and only if R[«(¢t)] and S[u(t)] are Lo.



If |u(t)| > 1 for given t, then |u(t)| < |u(t)|?.
Otherwise |u(t)| < 1. For all t,
u(®)] < |u(t)]® + 1.
For {u(t) : [-T/2,T/2 — C],
T/2 T/2 5
[ u@lae < [ (P + 1) de

—T/2
T/2
= T+/_T/2 w(t)|? dt

Thus £, finite duration functions are also ;.
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L-> functions [-7/2,T/2] — C ]

L1 functions [-7/2,T/2] — C

~

/

Measurable functions [-7/2,T/2] — C




Back to Fourier series:
Note that |u(t)| = |u(t)e?™/?|
Thus, if {u(t) : [-T/2,T/2] — C} is L1, then

/|u(t)62mft| dt < oo.
|/u(t)627”'ft dt| < /|u(t)ydt < 0.

If u(t) Is £L» and time-limited, it is £; and same
conclusion follows.



Theorem: Let {u(t): [-T/2,T/2] — C} be an L,
function. Then for each k£ € Z, the Lebesgue
integral

exists and satisfies || < F [|u(t)|dt < co. Fur-
thermore,
2

dt =0,

lim u(t) — > ﬁkeQWikt/T

]{Zo—>OO —T/2

where the limit iIs monotonic in kg.
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The most important part of the theorem is
that

ko |
u(t) ~ Z ,ak827mkt/T
k=—ko
where the energy difference between the terms
goes to 0 as kg — oo, 1.e.,

ko 2

lim wt) — Y Gy e?™ T gt = o,

ko—oo J—T/2

We abbreviate this convergence by

: t
w(t) = 1im. 3 Gy, 2Tk T rect(.).
k
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: t
u(t) = 1im.> ay e2mikt/T rect(=).
2 T
This does not mean that the sum on the right
converges to u(t) at each ¢t and does not mean

that the sum converges to anything.

There is an important theorem by Carleson
that says that for £, functions, the sum con-
verges a.e. That is, it converges to u(t) except
on a set of ¢ of measure 0.

T his means that it converges for all integration
purposes.
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It is often important to go from sequence to
function. The relevant result about Fourier
series then is

Theorem: If a sequence of complex numbers
{qy,; k € Z} satisfies Y ;. |i;|?, then an £, function
{u(t) : [-T/2,T/2] — C} exists satisfying

: t
w(t) = 1im. 3 Gy, 2Tk T rect(.).
k
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Aside from all the mathematical hoopla (which
Is important), there is a very simple reason why
sO many things are simple with Fourier series.
The expansion functions,

0, (t) = 2™t/ Trect(¢/T)
are orthogonal. That is
/ BOHOY T

This is the feature that let us solve for 4. (t)
from the Fourier series u(t) = > ui0(t).
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Functions not limited in time

We can segment an arbitrary £, function into
segments of width 7. The mth segment is
um(t) = u(t)rect(t/T — m). We then have

mo

uw(t) = LiMumg—oo Y um(t)

m=—my
This works because u(t) is £». The energy in
um (t) must go to 0 as m — oo.

By shifting u,,(¢t), we get the Fourier series:

: N - t
um(t) = Lim.)_ Uk m, e2mikt/T rect(? —m), Wwhere
k

1 [oo : t
m = — / w(®)e 2™k Tract(L — m)dt, —co < k < oo.
T J—co T
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This breaks u(t) into a double sum expansion
of orthogonal functions, first over segments,
then over frequencies.

' t
u(t) =Lim. >~ Uk m, g2mikt/T rect(? —m)
m,k

This is the first of a number of orthogonal
expansions of arbitrary £, functions.

We call this the T-spaced truncated sinusoid
expansion.
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- t
u(t) =lLim. >~ Uk m, e2mikt/T rect(? —m)

m,k
This is the conceptual basis for algorithms such

as voice compression that segment the wave-
form and then process each segment.

It matches our intuition about frequency well;
that is, in music, notes (frequencies) keep chang-
ing.

The awkward thing is that the segmentation
parameter 7' is arbitrary and not fundamental.
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Fourier transform: «(t) :R—-C to u(f) :R —-C

i(f) = / T u(t)e~2mift gy

—0

u() = [~ (et ay.

For ‘“well-behaved functions,” first integral ex-
ists for all f, second exists for all ¢ and results

in original u(t).

What does well-behaved mean? It means that
the above is true.
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au(t) + bu(t)
u*(—t)

u(t)

u(t — 1)
u(t)e2mifot
u(t/T)
du(t)/dt

/_0:0 w(r)v(t — 7) dr
/ ()t (r — t) dr

— OO
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au(f) + bo(f).

u”(f).
u(—f).
2l f)
u(f — fo)
Tua(fT).
27 fa(f).
u(f)o(f).

a(fHv*(f).

Linearity
Conjugate
Duality
Time shift
Frequency shift

Scaling
Differentiation

Convolution

Correlation
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Two useful special cases of any Fourier trans-
form pair are:

w(0) = [ a(p)df

i(0) = /_ O:O u(t) dt.

Parseval’s theorem:
@) @)
| uvr = [ a)srn) dr.
— 00 — 0
Replacing v(t) by «(t) yields the energy equa-
tion,

| w@Pa= [ [anrRd.
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