
� � 
Summary: For a high-rate, uniform scalar quan­
tizer with interval ∆, 

h(U) =  −f(u) log[f(u)] du ≈ −∆f(j∆) log[f(j∆)]

j
� pj
≈ −pj log[

∆
] =  H(V ) + log∆


j


H(V ) ≈ h(U) − log∆; MSE ≈ ∆
2 

12 

h(U) − log∆ is invariant to scaling. 

MSE 

MSE≈ 2
2h[U ]−2L 

; 6 db per bit 12 

L ≈ H[V ] 
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As ∆ 0, i.e., H(V ) → ∞, the uniform quan­→
tizer approaches optimality. 

For vector quantization, uniform quantization 

again approaches optimal for memoryless source. 

Here a shaping gain is possible (replace square 

regions by hexagonal regions in 2D case). 

The gain is not impressive; the MSE decreases 

by a factor of 1.039. 
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ANALOG SOURCE TO BIT STREAM 

Why? 

•	 Standard Binary interface separates source 

and channel coding 

•	 Multiplex data on high speed channels. 

•	 Digital data can be “cleaned up” at each 

link in a network. 

•	 Can separate problems of waveform sam­

pling from quantization from discrete source 

coding. 
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WAVEFORM SEQUENCE
→


waveform 

input 
� sampler � quantizer � 

discrete 

encoder 

analog 

sequence 

symbol 

sequence 

� 

reliable 

binary 

channel 

waveform 

output
� 

analog 

filter 
� 

table 

lookup 
� 

discrete 

decoder 
� 

Sampling is only one way to go from waveform to sequence. 

Filtering is only one way to go back. 
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FOURIER SERIES


The Fourier series of a time-limited function 

maps function to a sequence of coefficients. 

Let u(t) = 0 for t <  −T/2 and t > T/2. Then 

� �∞ ûk e2πikt/T for − T/2 ≤ t ≤ T/2 
u(t) =  k=−∞

0 elsewhere,


where the complex coefficients ûk satisfy 

ûk =
1 � T/2 

u(t)e−2πikt/T dt, −∞ < k <  ∞. 
T −T/2 

This works for u(t) complex as well as real. 
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To verify the formula for ûk, � T/2 
u(t)e−2πikt/T dt = 

� T/2 � 
ûme 2πi(m−k)t/T dt 

−T/2 −T/2 m � T/2 
= ûk dt = T ûk. 

−T/2 

Repeating the same kind of argument, � T/2
2 � 2 

−T/2
|u(t)| dt = T |uk|

k 

If we represent u(t) by {ûk; k ∈ Z}, then quantize 
each ûk to v̂k and reconstruct v(t), � T/2

2 � 2 

−T/2
|u(t) − v(t)| dt = T |ûk − v̂k|

k 

6




� Define the standard rectangular function 

rect(t) = 	
1 for − 1/2 ≤ t ≤ 1/2 
0 elsewhere, 

Then u(t)	can be expressed as 

� t 
u(t) =  

∞
ûk e 2πikt/T rect( ). 

T
k=−∞ 

Example: Suppose we expand the function 

rect(t/2) in a Fourier series over [−1 1].2, 2

1.1371 1 • • 
• • 

1 1−
2 
−

4
0

4
1 

2
1 −

2
1 0 

2
1 −

2
1 0 

2
1 −

2
1 −

4
1 0 

4
1 

2
1 

u(t) = rect(2t) 2
1 + π 

2 cos(2πt) 2
1 + π 

2 cos(2πt) 
� 

k uke2πiktrect(t) 

− 2 cos(6πt)3π 
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� 

Note that u(t) is equal to its Fourier series 

except at t = −1/4 and t = 1/4. 

However the function u(t) is not really equal 

to its Fourier series. 

As engineers we feel this isn’t a big deal. 

Two functions are said to be L2 equivalent if 

their difference has zero energy, i.e., 
∞ 

t) − v(t)|2 dt = 0  
−∞ 

|u(

u(t) above is L2 equivalent to its Fourier series. 

Two functions with the same Fourier series are 

also L2 equivalent. 
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Not all time-limited functions have Fourier se­

ries, even in the sense of L2 equivalence. 

It is important for us to make general state­


ments about whether functions have Fourier


series (and similarly about Fourier integrals).


An important class of such functions are the 

finite energy functions, i.e., functions that are 

square integrable. 

All physical waveforms have finite energy, but 

their models do not necessarily have finite en­

ergy. 

Neither unit impulses nor constant functions 

have finite energy. 
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�

Theorem: Let {u(t) : [−T/2, T/2] → C} be a 
time-limited L2 function. Then for each k ∈ Z, 
the Lebesgue integral 

1 � T/2 
ûk = u(t)e−2πikt/T dt 

T −T/2 

exists as a finite complex number. Further­
more, 

� T/2

lim


k0→∞ −T/2


k0

u(t) − ûke 2πikt/T

2


dt = 0.

k=−k0


Also, the energy equation is satisfied. Finally,

if {ˆ
uk; k ∈ Z} is a sequence of complex numbers 
satisfying ∞

=−∞ |ûk|2 < ∞, then an L2 functionk

{u(t) : [−T/2, T/2] → C}
exists satisfying the above. 
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� � � � 

u3 
u2 u9 

u1 u10 

−T/2 T/2 � T/2 �m0 T 
−T/2 u(t) dt ≈ m=1 um withm0 intervals m0 

(a): Riemann 

t1 t2 t3 t43δ µ2 = (t2 − t1) + (t4 − t3)
2δ µ1 = (t1 + T 

2
) + (T 

2 
− t4)

δ µ0 = 0  

−T/2 T/2 � 
−
T/
T/
2
2 u(t) dt ≈ 

� 
m mδ µm 

(b): Lebesgue 
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Whenever the Riemann integral exists (i.e., 

the limit exists), the Lebesgue integral also 

exists and has the same value. 

The familiar rules for calculating Riemann in­

tegrals also apply for Lebesgue integrals. 

For some very weird functions, the Lebesgue 

integral exists, but the Riemann integral does 

not. 

There are also exceptionally weird functions 

for which not even the Lebesgue integral ex­

ists. 
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The tricky thing about Lebesgue integration 

is the measure µm = {t : mδ ≤ u(t) < (m+1)δ}. 
This is called Lebesgue measure. 

For any real a ≤ b, including a = −∞, b = ∞,


the interval I = (a, b) has measure µ(I) =  b − a.


Same if either or both end points included. 

The measure of a finite union, I1, . . .  , Ik of dis­

joint intervals is the sum of the measure of 

those intervals, 
�

j
k 
=1 µ(Ij). 

The measure of a countable union I1, I2, . . .  ,  of 

disjoint intervals is µ( 
� 

Ij) = limk→∞ 
�

j
k 
=1 µ(Ij). 

13




� 

Example: What is µ(Q) where Q is the set of 

rationals in [0,1]? 

Q is countable since it can be ordered 

a1 = 1/2, a2 = 1/3, a3 = 2/3, a4 = 1/4, 

a5 = 3/4, a6 = 1/5, a7 = 2/5, .· · ·  

Note that the point aj is the same as the closed 

interval [aj, aj], which has measure 0. Thus 

k

µ(Q) = lim (aj − aj) = 0. 
k→∞ j=1 

By the same argument, any countable set of 

real numbers has zero measure. 
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We need more than countable unions of inter­

vals for a viable integration theory. 

If B is measurable, we also need its comple­


ment, B, to be measurable with µ(B) =  T−µ(B).


Define the outer measure µo(A) of any set A 

as 

µ o(A) = inf µ(B). 
B:B coversA 

where B covers A if B is a countable union of 

intervals and A ⊆ B. 

Definition: A set A (over [−T/2, T/2]) is mea­

surable if µo(A)+µo(A) =  T . If  A is measurable, 

then its measure, µ(A), equals µo(A). 
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�

Each measurable set has a measurable com­

plement. 

If A ⊂ B are both measurable, then µ(A) ≤ µ(B). 

Any measurable set can be approximated arbi­

trarily closely by a cover. 

Theorem: Let A1,A2, . . .  ,  be any sequence of �
measurable sets. Then S = ∞

k=1Ak and D = 
∞

k are measurable. If A ,A2, . . .  are also k=1A � 1

disjoint, then µ(S) =  k µ(Ak). If  µo(A) = 0, 

then A is measurable with measure 0. 



ε


MEASURABLE FUNCTIONS


A function {u(t) :  R R} is measurable if → 
{t : u(t) < b} is measurable for each b ∈ R. 

The Lebesgue integral exists if the function is

measurable and if the limit in the figure exists.


3ε


2ε


−T/2 T/2 
Horizontal crosshatching is what is added when

ε ε/2. For u(t) ≥ 0, the integral must exist
→
(with perhaps an infinite value). 
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Example: Let {h(t) : (0,1) R satisfy h(t) = 1 
→ 

for t rational, h(t) = 0 otherwise. 

Then µ({t : a ≤ h(t) < b}) is one for a ≤ 0, b  >  0 

and is zero otherwise. 

Thus h(t) dt = 0. 

In other words, sets of measure zero do not 

effect the integral. 

The Riemann integral does not exist for h(t).


The ability to ignore sets of measure 0 is al­

most alone enough to justify Lebesgue inte­

gration. 

17




� 
� 

� �	 � 
�	 � 

For a positive and negative function u(t) define 

a positive and negative part: 

u +(t) = 	
u(t) for t : u(t) ≥ 0 
0 for t : u(t) < 0 

u−(t) =  
0 for t : u(t) ≥ 0 

−u(t) for t : u(t) < 0. 

u(t) = u +(t) − u−(t). 

If u(t) is measurable, then u+(t) and u−(t) are 

also and can be integrated as before. 

u(t) =  u +(t) − u−(t) dt. 

except if both u+(t) dt and u−(t) dt are infi­

nite, then the integral is undefined. 
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For {u(t) : [−T/2, T/2] → R}, the functions |u(t)|

and |u(t)|2 are non-negative.


They are measurable if u(t) is.


Their integrals exist (but might be infinite).


u(t) is L1 if measurable and |u(t)| dt < ∞. 

u(t) is L2 if measurable and 
� |u(t)|2 dt < ∞. 

A complex function {u(t) : [−T/2, T/2] C} is→ 

measurable if both 	[u(t)] and 
[u(t) are mea­

surable. 

L1 and L2 are defined the same way as above. 
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If |u(t)| ≥ 1 for given t, then |u(t)| ≤ |u(t)|2 . 

Otherwise |u(t)| ≤ 1. For all t, 

|u(t)| ≤ |u(t)|2 + 1. 

For {u(t) : [−T/2, T/2 C,→� T/2 � T/2 

−T/2
|u(t)| dt ≤

−T/2
[|u(t)|2 + 1] dt � T/2 

= T + 
−T/2

|u(t)|2 dt 

Thus L2 finite duration functions are also L1. 
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� 
� � 

Back to Fourier series: 

Note that |u(t)| = |u(t)e2πift| 

Thus, if {u(t) : [−T/2, T/2] C} is L1, then →

|u(t)e 2πift| dt < ∞. 

| u(t)e 2πift dt| ≤  |u(t)| dt < ∞. 

If u(t) is L2 and time-limited, it is L1 and same 

conclusion follows. 
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Theorem: Let {u(t) : [−T/2, T/2] C} be an L2→ 

function. Then for each k ∈ Z, the Lebesgue 

integral 

1 � T/2 
ûk = u(t) e−2πikt/T dt 

T −T/2 

1exists and satisfies |ûk| ≤
thermore, 

|u(t)| dt < ∞. Fur-
T


� T/2

lim


k0→∞ −T/2


2


dt = 0,

k0

u(t) − ûk e 2πikt/T


k=−k0


where the limit is monotonic in k0.
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We refer to this type of convergence as con­

vergence in the mean, l.i.m. Thus the Fourier 

series is written as 

u(t) = l.i.m. 
� 

ûk e 2πikt/T rect( 
t 
), where 

T
k 

ûk =
1 � T/2 

u(t)e−2πikt/T dt, −∞ < k <  ∞. 
T −T/2 

We can segment an arbitrary L2 function into 

segments of width T . The mth segment has a 

Fourier series: 

um(t) = l.i.m. 
� 

ûk,m e 2πikt/T rect(
T

t − m), where 
k 

ˆ =
1 � ∞ 

u(t)e−2πikt/T rect(
T

t − m) dt, −∞ < k <  ∞.uk,m 
T −∞ 
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This breaks u(t) into a double sum expansion 

of orthogonal functions, first over segments, 

then over frequencies. 

u(t) = l.i.m. 
� 

ûk,m e 2πikt/T rect(
T

t − m) 
m,k 

This is the first of a number of orthogonal 

expansions of arbitrary L2 functions. 

It is the conceptual basis for voice compression 

algorithms. 

It matches our intuition about frequency well.
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� 
� 

C Fourier transform: u(t) : R C to û(f ) : R→ → 

û(f ) =  
∞ 

u(t)e−2πift dt. 
−∞ 

2πift df. u(t) =  
∞ 

û(f)e 
−∞ 

For “well-behaved functions,” first integral ex­

ists for all f, second exists for all t and results 

in original u(t). 

What does well-behaved mean? It means that 

the above is true. 
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au(t) +  bv(t)


u∗(−t)


û(t)


u(t − τ )


u(t)e 2πif0t


u(t/T )


du(t)/dt

∞ 

u(τ )v(t − τ ) dτ � −∞
∞ 

u(τ )v∗(τ − t) dτ 
−∞ 

aû(f) +  bv̂(f).↔ 

û∗(f).↔ 

↔	 u(−f ). 

e−2πifτ û(f )↔ 

↔	 û(f − f0) 

T û(fT  ).↔ 

i2πfû(f ).
↔ 

û(f)v̂(f ).
↔ 

û(f)v̂∗(f).↔ 

Linearity 

Conjugate 

Duality 

Time shift 

Frequency shift 

Scaling 

Differentiation 

Convolution 

Correlation 
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Two useful special cases of any Fourier trans­

form pair are: 

u(0) = 
∞ 

û(f) df ; 
−∞ 

û(0) = 
∞ 

u(t) dt. 
−∞ 

Parseval’s theorem: 
∞ 

u(t)v∗(t) dt = 
∞ 

û(f)v̂∗(f) df. 
−∞ −∞ 

Replacing v(t) by u(t) yields the energy equa­

tion, 
∞ 

u(t)|2 dt = 
∞ 

u(f)|2 df. 
−∞

|
−∞

|ˆ
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