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The Lempel-Ziv algorithm matches the longest 

string of yet unencoded symbols with strings 

starting in the window. 

Window size w is large power of 2, maybe 217 . 

logw bits to encode u, 2�logn� + 1  bits for n 

w = window P 

n = 3 

b c d a c b a b a c d b c a b a b d 


Match 
· · ·  

u = 7  
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Slightly flaky argument about optimality for 

ergodic Markov source: 

P+nFrom WLLN, relative frequency of xP+1 in very 

long window is ≈ w Pr[xP+n].P+1

For typical xP+n, this is ≈ w2−nH[X S].P+1
|

P+nWe expect many appearances of xP+1 in the 

window (high probablity of match of size n or 

more) if n <  (logw)/H[X|S] 

Bits per step is 

2 logn 
(l(n) + logw)/n ≈ 

n 
+ H[X|S]
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QUANTIZATION


waveform 

input 
� sampler � quantizer � 

discrete 

encoder 

analog 

sequence 

symbol 

sequence 

� 

reliable 

binary 

channel 

waveform 

output
� 

analog 

filter 
� 

table 

lookup 
� 

discrete 

decoder 
� 

3




Converting real numbers to binary strings re­

quires a mapping from R to a discrete alpha­

bet. 

This is called scalar quantization. 

Converting real n-tuples to binary strings re­

quires mapping Rn to a discrete alphabet. 

This is called vector quantization. 

Scalar quantization encodes each term of the 

source sequence separately. 

Vector quantization segments source sequence 

into n-blocks which are quantized together. 
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A scalar quantizer partitions R into M regions 

R1, . . .  ,RM. 

Each region Rj is mapped to a symbol aj called 

the representation point for Rj. 

b1 b2 b3 b4 b5 
�� 

R1 R2 R3 R4 R5 R6� � � � � �� � � � �� 

a1 a2 a3 a4 a5 a6 

Each source value u ∈ Rj is mapped into the 

same representation point aj. 

After discrete coding and channel transmis­

sion, the receiver sees aj and the distortion 

is u − aj. 
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View the source value u as a sample value of 

a random variable U. 

The representation aj is a sample value of the 

rv V where V is the quantization of U. 

That is, if U ∈ Rj, then V = aj. 

The source sequence is U1, U2, . . . . The rep­

resentation is V1, V2, . . .  where if Uk ∈ Rj, then 

Vk = aj. 

Assume that U1, U2, . . .  is a memoryless source 

which means that U1, U2, . . .  is iid. 

For a scalar quantizer, we can look at just a 

single U and a single V . 
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We are almost always interested in the mean 

square distortion of a scalar quantizer 

MSE = E[(U − V )2] 

Interesting problem: 

For given probability density fU (u) and 

given alphabet size M, choose {Rj, 1≤j≤M}
and {aj, 1≤j≤M} to minimize MSE. 
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Subproblem 1: Given representation points {aj}, 
choose the regions {Rj} to minimize MSE. 

This is easy: for source output u, squared error 

to aj is |u − aj|2 . 

Minimize by choosing closest aj. 

b1 b2 b3 b4 b5 R1 R2 R3 R4 R5 R6 

a1 a2 a3 a4 a5 a6 

Thus Rj is region closer to aj than any aj′. 
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�	 � � � � � � � � � � � 

b1 b2 b3 b4 b5 R1 R2 R3 R4 R5 R6 

a1 a2 a3 a4 a5 a6 

Rj is bounded by 

=bj−1	
aj +

2 

aj−1 

aj + aj+1
bj = 

2 
MSE regions must be intervals and region sep­

arators must lie midway between representa­

tion points in any minimum MSE scalar quan­

tizer. 
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∫ 
Subproblem 2: Given interval regions {Rj}, 
choose the representation points {aj} to mini­
mize MSE. 

MSE = 
∞ 

fU (u)(u − v(u))2 du 
−∞∫∑M ( )2 

= fU (u) u − aj du. 
j=1 Rj 

Given U ∈ Rj, the conditional density of U is 
fj(u) =  fU (u)/Qj for u ∈ Rj where Qj = Pr(U ∈ 
Rj). 

Let U(j) be rv with density fj(u). 

E[|U(j) − aj|2] =  σU
2
(j) + |E[U(j)] − aj|2 

Choose aj = E[u(j)]. 
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b1 b2 b3 b4 b5 R1 R2 R3 R4 R5 R6 

a1 a2 a3 a4 a5 a6 

Given Rj, aj must be chosen as the conditional 

mean of U within Rj. 

This is another condition that must be sat­

isfied over each interval in order to minimize 

MSE. 
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An optimal scalar quantizer must satisfy both 
bj = (aj + aj+1)/2 and aj = E[U(j)]. 

The Lloyd-Max algorithm: 

1. choose a1 < a2 < < am.· · ·

2. Set bj = (aj + aj+1)/2 for 1 ≤ j ≤ M − 1. 

3. Set a = E[U(j)] where Rj = (bj−1, bj] for j

1 ≤ j ≤ M − 1.


4. Iterate	 on 2 and 3 until improvement is 
negligible. 

The MSE is non-negative and non-increasing 
with iterations, so it reaches a limit. 
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� � 
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The Lloyd-Max conditions are necessary but 

not sufficient for minimum MSE. 

It finds local min, not necessarily global min.


fU (u) 

b1 R1 R2 

a1 a2 

Moving b1 to right of peak 2 reduces MSE. 
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VECTOR QUANTIZATION 

Is scalar quantization the right approach? 

Look at quantizing two samples jointly and 

draw pictures.


Possible approach: use rectangular grid of quan­


tization regions.


This is really just two scalar quantizers.
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This is 2D picture of 2 uses of scalar quantizer


MSE per dimension of best vector quantizer is 

at least as small as best scalar quantizer. 

Note that 2D region separators are perpendic­

ular bisectors. These are called Voronoi re­

gions. 
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For 2D (and for n-D), MSE is minimized for 

given points by Voronoi regions. 

For given regions, MSE minimized by condi­

tional means. 

Lloyd-Max still finds local min. 
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ENTROPY-CODED QUANTIZATION


Finding minimum MSE quantizer for fixed M 

is often not the right problem. 

With quantization followed by discrete coding,


quantizer should minimize MSE for fixed


representation point entropy. 

Given regions, the representation points should 

be the conditional means. 

Given the representation points, the Voronoi 

regions are not necessarily best. 
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∫ 

The exact minimization here is difficult, but a 

simple approximation works for high rate (large 

entropy). 

This is best explained by defining an entropy 

like quantity for random variables with a prob­

ability density. 

Definition: The differential entropy of a continuous-

valued real random variable U with pdf fU (u) 

is 
∞

h[U ] =  
−∞ 

−fU (u) log fU (u) du. 
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∫ ∞
h[U ] =  

−∞ 
−fU (u) log fU (u) du. 

Similarities between h[U ] and discrete H(V ): 

h[U ] =  E[− log fU (u)] 

h[U1U2] =  h[U1] +  h[U2] for U1, U2 IID 

h(U + a) =  h(U) (shift invariance) 

Differences: 

•	 h[U ] not scale invariant. If fU (u) stretched 
by a, h[U ] increases by log a, i.e., 

h(aU) =  h(U) + log a 

•	 h[U ] can be negative. 
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∫ 

Uniform high-rate scalar quantizers 

� ∆ � 

R0 R1 R2 R3 R4R−1· · ·
� 

· · ·  

a a0 a1 a2 a3 a4−1· · ·  · · ·  

Assume ∆ is small - fU (u) almost constant 
within each region. Define average f as 

f(u) =  
Rj 

fU (u)du 
= 

Pr(Rj) 
for 

∆ ∆ 
u ∈ Rj 

fU (u)f (u) 
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High-rate approximation: f (u) ≈ fU (u) for all u. 

Conditional on u ∈ Rj, fU |Rj 
(u) = 1/∆, u ∈ Rj. 

Conditional on u ∈ Rj, fU |Rj 
(u) ≈ 1/∆, u ∈ Rj. 

For f, ∫ ∆/2 1 ∆2 
MSE ≈

−∆/2 ∆ 
u 2du = 

12
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∫ 
∑ 
∑ ∫ 
∫ 
∫ 
∫ 

Entropy of quantizer output V . V has alphabet 
{aj} and pmf given by 

pj = fU (u) du and pj = f(u)∆. 
Rj 

H[V ] =  −pj log pj

j


= −fU (u) log[f(u)∆] du 
j Rj 

∞
= 

−∞ 
−fU (u) log[f(u)∆] du 

∞
= 

−∞ 
−fU (u) log[f(u)] du − log∆ 

∞
≈ 

−∞
−fU (u) log[fU (u)] du − log∆ 

= h[U ] − log∆ 

22 



Summary: uniform scalar high-rate quantizer


• Efficient discrete coding achieves L ≈ H[V ].


• L ≈	H[V ] depends only on ∆ and h(U). 

•	 h[U ] ≈ H[V ] + log∆ explains diff. entropy. 

L ≈ h(U) − log∆; MSE ≈ ∆
2 •	 12 

• Uniform approaches optimal for small ∆
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∆2 
L ≈ h(U) − log∆; MSE ≈ 

12 

Reducing ∆ by a factor of 2 increases L by 

1 bit/symbol and reduces MSE by factor of 4 

(i.e., by 6 dB). 

log 12 logMSEL ≈ h[U ] − 2 − 2
MSE 

MSE≈ 2
2h[U ]−2L 

12 

L ≈ H[V ] 
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