
MARKOV CHAINS

A finite state Markov chain is a sequence S0, S1, . . .

of discrete cv’s from a finite alphabet S where

q0(s) is a pmf on S0 and for n ≥ 1,

Q(s|s′) = Pr(Sn =s|Sn−1=s′)
= Pr(Sn =s|Sn−1=s′, Sn−2 = sn−2 . . . , S0=s0)

for all choices of sn−2 . . . , s0, We use the states

to represent the memory in a discrete source

with memory.

1

�

�� �� �
� � �

�
�
�

�

� �
�

� ��
�

�
�

�
�

� � �

�
� �

�
�

� �

Markov chain graph has node for each state

and directed edge for each transition of posi­

tive probability.

�
���� 0.1 ��

0 � 1
0.9 ��

�
�

��
���

0.5 �
�

�
�

�
�

0.5 0.5
�

�
�

�
�

�
�

�
0.5

2 � 3�� 0.1 �� 0.9

The label on an edge is the probability of that

transition.

2

�

�� ��

�� ��

�
� �

�

�
� �

��
� �

� �

�

A Markov chain has period p if the states are

partitioned into at most p classes, 1, 2, p such
· · ·
that transitions from each class i go only to
class i + 1.

�
���� 0.1 ��

0 � 1
0.9 �� �

��
���

�
�

�
�

�
�

�

0.5 �
� �

�

0.5 0.5
�

�
�
�

�
�

0.5

�
�
�

�
�

�
�

�
�

�

2 � 3
0.1 ��

� 0.9

Period = 1 (chain is aperiodic)

3

�

�
�

�� ��

�
� � �

�
�

�
�

�

�
� �

�

�
�
�

�
��

� �
�

� � �

�
� �

�

∑ ∑

A finite state Markov chain is ergodic if it is

aperiodic (period 1) and each state can be

reached by some path from each other state.

� �� 0.1 ��

0 � 1

0.9 ��

�
�

��
���

Ergodic chain
0.5 �

�
�
�

�

0.5 0.5
�

�
�

�
�

0.5
��� ��

2 � 3
0.1 ��

� 0.9

Ergodic chain has steady state probabilities

q(s) = q(s)Pr(s|s′) q(s) = 1
s′ s

4

�

� �

�� ��

�� ��
�

� �

�

�
�

�

� �
�

�
� �

��
�

�
�

�
�

�
� �

�

A Markov source is a finite state Markov chain

with each transition labeled by a source symbol

from alphabet X . For each state, each outgo­

ing transition has a different label. Thus the

next state and the symbol specify each other.

� �� 1; 0.1 ��

00 � 01
0; 0.9 �� �

����
� �

� �
�

1; 0.5�� �
�

0; 0.5 1; 0.5�
�
�

�
0; 0.5

�
� �

� �

10� 11
0; 0.1 ��

� 1; 0.9

5

∑

∑

Coding for Markov sources

Simplest approach: use separate prefix-free
code for each prior state.

If Sn−1=s, then encode Xn with the prefix-free
code for s. The codeword lengths l(x, s) are
chosen for the pmf p(x|s).

2−l(x,s) ≤ 1 for each s
x

Optimal code given prior state s satisfies:

H[X|s] ≤ Lmin(s) < H[X|s] + 1

where

H[X|s] = −P (x|s) logP (x|s)

x∈X

6

∑
∑

If the pmf on S0 is the steady state pmf, {q(s)},
then the chain remains in steady state.

H[X|S] ≤ Lmin < H[X|S] + 1, (1)

where

Lmin = q(s)Lmin(s) and
s∈S

H[X|S] = q(s)H[X|s]

s∈S

The encoder transmits s0 followed by code-
word for x1 using code for s0.

This specifies s1 and x2 is encoded with code
for s1, etc.

This is prefix free and can be decoded instan­
taneously.

7

Conditional Entropy

H[X S] for Markov is like H[X] for DMS. | ∑ ∑ 1
H[X|S] = q(s)P (x|s) log

P (x|s)s∈S x∈X

Note that ∑ 1
H[XS] =

s,x
q(s)P (x|s) log

q(s)P (x|s)
= H[S] + H[X S]
|

Recall that

H[XS] ≤ H[S] + H[X]

H[X|S] ≤ H[X]

This is general for any random symbols.

8

∑
∑
∑

∑
∑ ∑

Suppose we use 2-to-variable-length codes for

each state.

H[X1X2|S0] = q(s0)H[X1X2|s0]

s0

= q(s0)H[S1S2|s0]
s0

= q(s0)(H[S1|s0] + H[S2|S1, s0])
s0

H[S2|S1, s0] = Q(s1|s0)H[S2|s1]
s1

q(s0)H[S2|S1, s0] = q(s1)H[S2|s1] = H[S2|S1]
s0 s1

H[X1X2|S0] = H(S1|S0] + H(S2|S1] = 2H(X|S)

9

In the same way,

H[X1, X2, . . . Xn|S0] = nH[X|S]

By using n-to-variable length codes,

H[X|S] ≤ Lmin,n < H[X|S] + 1/n

Thus, for Markov sources, H[X|S] is asymptot­

ically achievable.

The AEP also holds for Markov sources.

L ≤ H[X|S] − ε can not be achieved, either in

expected length or fixed length, with low prob­

ability of failure.

10

THE LZ77 UNIVERSAL ALGORITHM

A Univeral data compressor operates without

source statistics. We describe a standard string

matching algorithm for this due to Ziv and

Lempel (LZ77).

In principle, a universal algorithm attempts to

model the source and to encode it simultane­

ously.

With instantaneous decodability, the decoder

knows the past also, and thus can track the

encoder.

11

The objective (achieved by LZ77):

Given the output from a given probability model

(say a Markov source);

L should be almost as small as for an algorithm

designed for that model.

Also, the algorithm should compress well in

the absence of any ordinary kind of statistical

structure.

It should deal with gradually changing statis­

tics.

12

� �

�

Let x1, x2, . . . be the output of a source with

known alphabet X of size M. Let xn denotem
the string xm, xm+1, . . . , xn.

The window is the w = 2k most recently en­

coded source symbols for some k to be se­

lected.

The Lempel-Ziv algorithm matches the longest

string of yet unencoded symbols with strings

starting in the window.

w = window P

n = 3

b c d a c b a b a c d b c a b a b d

Match
· · ·

u = 7

13

The compression algorithm:

1. Encode the first w symbols without com­

pression, using �M� binary digits per sym­

bol.

(this gets amortized over the sequence so

we don’t care about it)

2. Set the pointer P = w.

(As the algorithm runs, xP
1 is the already

encoded string of source symbols and xP +1

is the first new symbol to be encoded.)

14

� �

�

3. Find the largest n≥2 such that x P+n
P+1 =

P−u+n xP−u+1 for some u, 1 ≤ u ≤ w. Set n = 1

otherwise.

w = window P

n = 3

b c d a c b a b a c d b c a b a b d

Match
· · ·

u = 7

��
w = window P

Match

�
u = 2

n = 4

a b a a c b a b a c d a b a b a b d · · ·

15

(4) Encode the match size n into a codeword

from the so-called unary-binary code. The

positive integer n is encoded into the binary

representation of n, preceded by a prefix of

�log2 n� zeroes; i.e.,

n prefix base 2 exp.
1 1 1
2 0 10 010
3 0 11 011
4 00 100 00100
5 00 101 00101
6 00 110 00110
7 00 111 00110
8 000 1000 0001000

codeword

16

(5) If n > 1, encode the positive integer u ≤ w

using a fixed-length code of length logw bits.

(At this point the decoder knows n, and can

simply count back by u in the previously de­

coded string to find the appropriate n-tuple,

even if there is overlap as above.)

If n = 1, encode the single letter without com­

pression

(6) Set the pointer P to P + n and go to step

(2). (Iterate for ever.)

17

This is a variable-to-variable-length encoding.

A segment of length n > 1 is encoded into

l(n) + log(w) binary digits.

1 1 l(1) = 1→

2 010 l(2) = 3→

3 011 l(3) = 3→

4 00100 l(4) = 5→

5 00101 l(5) = 5→

l(n) = 2�logn� + 1

This is universal since no knowledge of source

statistics is used.

Match typically occurs at H[X|S]/ logw.

18

QUANTIZATION

waveform

input
� sampler � quantizer �

discrete

encoder

analog

sequence

symbol

sequence

�

reliable

binary

channel

waveform

output
�

analog

filter
�

table

lookup
�

discrete

decoder
�

19

Converting real numbers to binary strings re­

quires a mapping from R to a discrete alpha­

bet.

This is called scalar quantization.

Converting real n-tuples to binary strings re­

quires mapping Rn to a discrete alphabet.

This is called vector quantization.

Scalar quantization encodes each term of the

source sequence separately.

Vector quantization segments source sequence

into n-blocks which are quantized together.

20

A scalar quantizer partitions R into M regions

R1, . . . ,RM.

Each region Rj is mapped to a symbol aj called

the representation point for Rj.

b1 b2 b3 b4 b5
��

R1 R2 R3 R4 R5 R6� � � � � �� � � � ��

a1 a2 a3 a4 a5 a6

Each source value u ∈ Rj is mapped into the

same representation point aj.

After discrete coding and channel transmis­

sion, the receiver sees aj and the distortion

is u − aj.

21

View the source value u as a sample value of

a random variable U.

The representation aj is a sample value of the

rv V where V is the quantization of U.

That is, if U ∈ Rj, then V = aj.

The source sequence is U1, U2, The rep­

resentation is V1, V2, . . . where if Uk ∈ Rj, then

Vk = aj.

Assume that U1, U2, . . . is a memoryless source

which means that U1, U2, . . . is iid.

For a scalar quantizer, we can look at just a

single U and a single V .

22

We are almost always interested in the mean

square distortion of a scalar quantizer

MSE = E[(U − V)2]

Interesting problem:

For given probability density fU (u) and

given alphabet size M, choose {Rj, 1≤j≤M}
and {aj, 1≤j≤M} to minimize MSE.

23

Subproblem 1: Given representation points {aj},
choose the regions {Rj} to minimize MSE.

This is easy: for source output u, squared error

to aj is |u − aj|2 .

Minimize by choosing closest aj.

Thus Rj is region closer to aj than any aj′.

Rj is bounded by

=bj−1	
aj +

2

aj−1

aj + aj+1
bj =

2
MSE regions must be intervals.

24

Subproblem 2: Given interval regions {Rj},
choose the representation points {aj} to mini­

mize MSE.

Given U ∈ Rj, the conditional density of U is

fj(u) = fU (u)/Qj for u ∈ R where Qj = Pr(U ∈j

Rj).

Let U(j) be rv with density fj(u).

E[|U(j) − aj|2] = σU
2
(j) + |E[U(j)] − aj|2

Choose aj = E[u(j)].

25

An optimal scalar quantizer must satisfy both
bj = (aj + aj+1)/2 and aj = E[U(j)].

The Lloyd-Max algorithm:

1. choose a1 < a2 < < am.· · ·

2. Set bj = (aj + aj+1)/2 for 1 ≤ j ≤ M − 1.

3. Set a = E[U(j)] where Rj = (bj−1, bj] for j

1 ≤ j ≤ M − 1.

4. Iterate	 on 2 and 3 until improvement is
negligible.

The MSE is non-negative and non-increasing
with iterations, so it reaches a limit.

26

MIT OpenCourseWare
http://ocw.mit.edu

6.450 Principles of Digital Communication I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

