
MARKOV CHAINS 

A finite state Markov chain is a sequence S0, S1, . . .  

of discrete cv’s from a finite alphabet S where 

q0(s) is a pmf on S0 and for n ≥ 1, 

Q(s|s′) = Pr(Sn =s|Sn−1=s′) 
= Pr(Sn =s|Sn−1=s′, Sn−2 = sn−2 . . .  , S0=s0) 

for all choices of sn−2 . . .  , s0, We use the states 

to represent the memory in a discrete source 

with memory. 
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Markov chain graph has node for each state 

and directed edge for each transition of posi­

tive probability. 
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The label on an edge is the probability of that 

transition. 
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A Markov chain has period p if the states are

partitioned into at most p classes, 1, 2, p such
· · ·
that transitions from each class i go only to 
class i + 1. 
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Period = 1 (chain is aperiodic) 
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∑ ∑ 

A finite state Markov chain is ergodic if it is

aperiodic (period 1) and each state can be

reached by some path from each other state.
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Ergodic chain has steady state probabilities 

q(s) =  q(s)Pr(s|s′) q(s) = 1  
s′ s 
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A Markov source is a finite state Markov chain 

with each transition labeled by a source symbol 

from alphabet X . For each state, each outgo­

ing transition has a different label. Thus the 

next state and the symbol specify each other. 
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Coding for Markov sources


Simplest approach: use separate prefix-free 
code for each prior state. 

If Sn−1=s, then encode Xn with the prefix-free 
code for s. The codeword lengths l(x, s) are 
chosen for the pmf p(x|s). 

2−l(x,s) ≤ 1 for each s 
x 

Optimal code given prior state s satisfies: 

H[X|s] ≤ Lmin(s) < H[X|s] + 1  

where 

H[X|s] =  −P (x|s) logP (x|s)

x∈X 
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If the pmf on S0 is the steady state pmf, {q(s)}, 
then the chain remains in steady state. 

H[X|S] ≤ Lmin < H[X|S] + 1, (1) 

where 

Lmin = q(s)Lmin(s) and 
s∈S 

H[X|S] =  q(s)H[X|s]

s∈S


The encoder transmits s0 followed by code-
word for x1 using code for s0. 

This specifies s1 and x2 is encoded with code 
for s1, etc. 

This is prefix free and can be decoded instan­
taneously. 
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Conditional Entropy 

H[X S] for Markov is like H[X] for DMS. | ∑ ∑ 1 
H[X|S] =  q(s)P (x|s) log 

P (x|s)s∈S x∈X 

Note that ∑ 1 
H[XS] =  

s,x 
q(s)P (x|s) log 

q(s)P (x|s) 
= H[S] +  H[X S]
|

Recall that 

H[XS] ≤ H[S] +  H[X] 

H[X|S] ≤ H[X] 

This is general for any random symbols. 
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Suppose we use 2-to-variable-length codes for 

each state. 

H[X1X2|S0] =  q(s0)H[X1X2|s0]

s0


= q(s0)H[S1S2|s0] 
s0 

= q(s0)(H[S1|s0] + H[S2|S1, s0]) 
s0 

H[S2|S1, s0] =  Q(s1|s0)H[S2|s1] 
s1 

q(s0)H[S2|S1, s0] =  q(s1)H[S2|s1] = H[S2|S1] 
s0 s1 

H[X1X2|S0] = H(S1|S0] + H(S2|S1] = 2H(X|S) 
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In the same way, 

H[X1, X2, . . . Xn|S0] =  nH[X|S] 

By using n-to-variable length codes, 

H[X|S] ≤ Lmin,n < H[X|S] + 1/n 

Thus, for Markov sources, H[X|S] is asymptot­

ically achievable. 

The AEP also holds for Markov sources. 

L ≤ H[X|S] − ε can not be achieved, either in 

expected length or fixed length, with low prob­

ability of failure. 
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THE LZ77 UNIVERSAL ALGORITHM


A Univeral data compressor operates without 

source statistics. We describe a standard string 

matching algorithm for this due to Ziv and 

Lempel (LZ77). 

In principle, a universal algorithm attempts to 

model the source and to encode it simultane­

ously. 

With instantaneous decodability, the decoder 

knows the past also, and thus can track the 

encoder. 
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The objective (achieved by LZ77): 

Given the output from a given probability model 

(say a Markov source); 

L should be almost as small as for an algorithm 

designed for that model. 

Also, the algorithm should compress well in 

the absence of any ordinary kind of statistical 

structure. 

It should deal with gradually changing statis­

tics. 
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Let x1, x2, . . .  be the output of a source with 

known alphabet X of size M. Let xn denotem 
the string xm, xm+1, . . . , xn. 

The window is the w = 2k most recently en­

coded source symbols for some k to be se­

lected. 

The Lempel-Ziv algorithm matches the longest 

string of yet unencoded symbols with strings 

starting in the window. 

w = window P 

n = 3 

b c d a c b a b a c d b c a b a b d 


Match 
· · ·  

u = 7  
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The compression algorithm: 

1. Encode the first w symbols without com­

pression, using �M� binary digits per sym­

bol. 

(this gets amortized over the sequence so 

we don’t care about it) 

2. Set the pointer P = w. 

(As the algorithm runs, xP 
1 is the already 

encoded string of source symbols and xP +1 

is the first new symbol to be encoded.) 
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3. Find the largest n≥2 such that x P+n 
P+1 = 

P−u+n xP−u+1 for some u, 1 ≤ u ≤ w. Set n = 1  

otherwise. 

w = window P 

n = 3 

b c d a c b a b a c d b c a b a b d 


Match 
· · ·  

u = 7  

�� 
w = window P 

Match 

� 
u = 2  

n = 4  

a b a a c b a b a c d a b a b a b d · · ·  
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(4) Encode the match size n into a codeword 

from the so-called unary-binary code. The 

positive integer n is encoded into the binary 

representation of n, preceded by a prefix of 

�log2 n� zeroes; i.e., 

n prefix base 2 exp. 
1 1 1 
2 0 10  010 
3 0 11  011 
4 00 100 00100 
5 00 101 00101 
6 00 110 00110 
7 00 111 00110 
8 000 1000 0001000 

codeword
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(5) If n > 1, encode the positive integer u ≤ w


using a fixed-length code of length logw bits.


(At this point the decoder knows n, and can 

simply count back by u in the previously de­

coded string to find the appropriate n-tuple, 

even if there is overlap as above.) 

If n = 1, encode the single letter without com­

pression 

(6) Set the pointer P to P + n and go to step 

(2). (Iterate for ever.) 
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This is a variable-to-variable-length encoding. 

A segment of length n > 1 is encoded into 

l(n) + log(w) binary digits. 

1 1 l(1) = 1→ 

2 010 l(2) = 3→ 

3 011 l(3) = 3→ 

4 00100 l(4) = 5→ 

5 00101 l(5) = 5→ 

l(n) = 2�logn� + 1  

This is universal since no knowledge of source 

statistics is used. 

Match typically occurs at H[X|S]/ logw. 
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QUANTIZATION


waveform 

input 
� sampler � quantizer � 

discrete 

encoder 

analog 

sequence 

symbol 

sequence 

� 

reliable 

binary 

channel 

waveform 

output
� 

analog 

filter 
� 

table 

lookup 
� 

discrete 

decoder 
� 

19




Converting real numbers to binary strings re­

quires a mapping from R to a discrete alpha­

bet. 

This is called scalar quantization. 

Converting real n-tuples to binary strings re­

quires mapping Rn to a discrete alphabet. 

This is called vector quantization. 

Scalar quantization encodes each term of the 

source sequence separately. 

Vector quantization segments source sequence 

into n-blocks which are quantized together. 
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A scalar quantizer partitions R into M regions 

R1, . . .  ,RM. 

Each region Rj is mapped to a symbol aj called 

the representation point for Rj. 

b1 b2 b3 b4 b5 
�� 

R1 R2 R3 R4 R5 R6� � � � � �� � � � �� 

a1 a2 a3 a4 a5 a6 

Each source value u ∈ Rj is mapped into the 

same representation point aj. 

After discrete coding and channel transmis­

sion, the receiver sees aj and the distortion 

is u − aj. 
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View the source value u as a sample value of 

a random variable U. 

The representation aj is a sample value of the 

rv V where V is the quantization of U. 

That is, if U ∈ Rj, then V = aj. 

The source sequence is U1, U2, . . . . The rep­

resentation is V1, V2, . . .  where if Uk ∈ Rj, then 

Vk = aj. 

Assume that U1, U2, . . .  is a memoryless source 

which means that U1, U2, . . .  is iid. 

For a scalar quantizer, we can look at just a 

single U and a single V . 
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We are almost always interested in the mean 

square distortion of a scalar quantizer 

MSE = E[(U − V )2] 

Interesting problem: 

For given probability density fU (u) and 

given alphabet size M, choose {Rj, 1≤j≤M}
and {aj, 1≤j≤M} to minimize MSE. 
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Subproblem 1: Given representation points {aj}, 
choose the regions {Rj} to minimize MSE.


This is easy: for source output u, squared error


to aj is |u − aj|2 .


Minimize by choosing closest aj.


Thus Rj is region closer to aj than any aj′.


Rj is bounded by


=bj−1	
aj +

2 

aj−1 

aj + aj+1
bj = 

2 
MSE regions must be intervals. 
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Subproblem 2: Given interval regions {Rj}, 
choose the representation points {aj} to mini­

mize MSE. 

Given U ∈ Rj, the conditional density of U is 

fj(u) =  fU (u)/Qj for u ∈ R where Qj = Pr(U ∈j 

Rj).


Let U(j) be rv with density fj(u).


E[|U(j) − aj|2] =  σU
2
(j) + |E[U(j)] − aj|2 

Choose aj = E[u(j)]. 
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An optimal scalar quantizer must satisfy both 
bj = (aj + aj+1)/2 and aj = E[U(j)]. 

The Lloyd-Max algorithm: 

1. choose a1 < a2 < < am.· · ·

2. Set bj = (aj + aj+1)/2 for 1 ≤ j ≤ M − 1. 

3. Set a = E[U(j)] where Rj = (bj−1, bj] for j

1 ≤ j ≤ M − 1.


4. Iterate	 on 2 and 3 until improvement is 
negligible. 

The MSE is non-negative and non-increasing 
with iterations, so it reaches a limit. 
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