ENTROPY OF X, |X|=M, Pr(X=j) =p;,

H(X) = Z—pj logp; = E[—log px (X)]
J

—logp,(X) is a rv, called the log pmf.
H(X) > 0; Equality if X deterministic.
H(X) <log M; Equality if X equiprobable.

If X and Y are independent random symbols,
then the random symbol XY takes on sample

value zy with probability p,. (zy) = py(z)p, (v).

H(XY> — E[_ Iongy(XY)] — E[_ |ngX(X)pY(Y)]
= E[-logp,(X) —logp, (V)] = H(X) + H(Y)



For a discrete memoryless source, a block of
n random symbols, Xi,...,X,, can be viewed
as a single random symbol X" taking on the
sample value x" = zqx> - - xn, With probability

pxn (X™) = ][ py(z))
j=1

The random symbol X" has the entropy

n

H(X") = E[—logpxn(X")] =E[-log ] px(X;)]
j=1

= nH(X)

= E Lﬁ: —log py (X;)

1



Fixed-to-variable prefix-free codes
Segment input into n-blocks X" = X1 X5--- Xj.
Form min-length prefix-free code for X",
This iIs called an n-to-variable-length code

H(X") = nH(X)

H(X") < E[L(X")]min <HX") +1

— E(L(X" :
Liminn = L - NImin bpss

H(X) < Lminn, <HX) +1/n



WEAK LAW OF LARGE NUMBERS
(WLLN)

Let Y7,Y5,... be sequence of rv’'s with mean Y

and variance 032/.

The sum S =Yy +---+ Y, has mean nY and

variance no

The sample average of Y7,...,Y, is
" _§_Y1—I—---—|—Yn
Y n n

It has mean and variance

2
E[A7] =Y VAR[AL] = %Y

Note: limy oo VAR[S] =00  limp_e0 VAR[AZ] =0.



Pr{\A%”—?\ < s}_

Pr{|A}-Y| < e}

The distribution of A}, clusters around Y, clus-
tering more closely as n — oo.

_ 2
Chebyshev: for ¢ > 0, Pr{|A}, — Y| > ¢} < Z_é
For any ¢,6 > 0, large enough n,

Pr{|A} — Y| >e} <6



ASYMPTOTIC EQUIPARTITION
PROPERTY (AEP)

Lete X1, X»,..., be output from DMS.
Define log pmf as w(z) = —logp, (z).
w(x) maps source symbols into real numbers.

For each j, W(X;) is a rv; takes value w(z) for
X; = z. Note that

E[W(X)] =) px(z)[~logpy(x)] = H(X)

W(X1),W(X5),... sequence of iid rv’s.



For X1 = 21, Xo = 25, the outcome for W (X1)+
W(X2) is

w(z1) + w(zo) —logpy(x1) — logpy(x2)

—log{py(z1)py(z2)}
= —log{py, x,(z122)} = w(z122)
where w(x1zo) Is -log pmf of event X1 X, = x5
W(X1X2) = W(X1) + W(X2)
X1X5 is a random symbol in its own right (takes

values z1z5). W(X1X5) is -log pmf of X;1X»

Probabilities multiply, log pmf’s add.



For X" =x"; x" = (x1,...,2zn), the outcome for
W(X1)+ - +W(Xp) is

2?21 w(x]) - = Z;‘L:l log pX(x]) = —log an(Xn)

Sample average of log pmf’s is

n W(X1)+ - W(Xn)  —10gpyn(X™)
o — —

n n

WLLN applies and is

2
Pr ( Apy — EW(X)]| 2 e) < 7y

— 109 pop (X 2
Pr(' 9 Pxn( )—H(X)‘zg>ga—%.
n ne



Define typical set as

As n — oo, typical set approaches probability 1:

2

o
Pr(X"eTl) >1 -5
ne



We can also express 7' as

2

T =<x" i n(H(X)—¢e) < —10g pyn (x") < n(H(X)—I—e)}

\

T _ Jx“ ConUH)+) (5 < 2—n(H(X)—e)}.

\

Typical elements are approximately equiprob-
able in the strange sense above.

The complementary, atypical set of strings,

satisfy
o2
Pri(T)] < 5
ne

For any ¢,6 > 0, large enough n, Pr[(T)¢] < 4.
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For all x" € T, pyn(x"™) > o>—n[H(X)+e]

xneTr

77| < onlH(X)+e

1-8< Y pa(x”) < 7727 HEO]
xneTr
T > (1 — §)2nH(X) =]
Summary: Pri(T™)¢ ~0, |T7|=~ 2nHE),

pxn (X)) & >—nH(X)  for x" ¢ T

11



EXAMPLE
Consider binary DMS with Pr[X=1] =p; < 1/2.

H(X) = —py logp1 — polog(po)
Consider a string x™ with n; ones and ng zeros.

ni  no

an(Xn) — P17 P

— 109 pyn (™) n n
X = ——tlogp; — —>log pg
n n n
The typical set 7" is the set of strings for which

o |Og pxn (Xn) —

n1 n
H(X) = —;Iogpl—;ologpo

In the typical set, n; = p,n. For this binary
case, a string is typical if it has about the right
relative frequencies.

12



n1 no
———logp1 — — 109 pg
n T

T he probability of a typical n-tuple is about

—nH(X
ph" pho" = 27 HX),

The number of n-tuples with pin ones is

n! ~ onH(X)
(p1n)!(pon)!

Note that there are 2" binary strings. Most of
them are collectively very improbable.

T he most probable strings have almost all ze-
ros, but there aren’t enough of them to mat-

ter.

13



Fixed-to-fixed-length source codes

For any ¢,6 > 0, and any large enough n, assign
fixed length codeword to each x" ¢ T.

Since |77 < 2nHXO+el T < H(X)+e+1.

Pr{failure} <.
Conversely, take L < H(X) — 2¢, and n large.

Probability of failure will then be almost 1.

14



For any ¢ > 0, the probability of failure will be
almost 1 if L < H(X)—2¢ and n is large enough:

We can provide codewords for at most 27H(X)—2en
source n-tuples. Typical n-tuples have at most
probability 2—H(X)+en,

The aggregate probability of typical n-tuples
assigned codewords is at most 27¢",

The aggregate probability of typical n-tuples
not assigned codewords is at least 1 —§ — 27"¢,

Pr{failure} >1—-6-2"°" — 1

15



General model: Visualize any kind of mapping
from the sequence of source symbols X°° into
a binary sequence Y°°,

Visualize a decoder that observes encoded bits,
one by one. For each n, let D, be the number
of observed bits required to decode X" (deci-
sions are final).

The rate rv, as a function of n, is Dy/n.

In order for the rate in bpss to be less than
H(X) in any meaningful sense, we require that
Dy /n be smaller than H(X) with high probabil-
ity as n — .

16



Theorem: For a DMS and any coding/decoding
technique, let ,0 > 0 be arbitrary. Then for
large enough n,

Pr{DnSn[H(X)_Qg]} < 4+ 27¢Em,

Proof: For given n, let m = |[n[H(X) — 2¢]].
Suppose that x" is decoded upon observation
of yJ for some j < m. Only x" can be decoded
from y™. There are only 2™ source n-tuples
(and thus at most 2™ typical n-tuples) that
can be decoded by time m. Previous result
applies.

17



Questions about relevance of AEP and fixed-
to-fixed length source codes:

1) Are there important real DMS sources? No,
but DMS model provides memory framework.

2) Are fixed-to-fixed codes at very long length
practical? No, but view length as product life-
time to interpret bpss.

3) Do fixed-to-fixed codes with rare failures
solve queueing issues? NoO, queueing issues
arise only with real-time sources, and discrete
sources are rarely real time.

18



MARKOV SOURCES

A finite state Markov chain is a sequence S, 51, ...
of discrete cv’s from a finite alphabet S where
go(s) Is a pmf on Sy and for n > 1,

Q(s|s) = Pr(Sp=s|S,_1=5")
= Pr(Sp=s|Sp—1=5",S,—2 =s,_2...,50=s0)
for all choices of s,,_»>...,sp, We use the states

to represent the memory in a discrete source
with memory.

19



Example: Binary source X1, Xo,... ; Sp = (X,,_1Xn)

Q\@ 1; 0.1

1; 0.5

1;: 0.9

Each transition from a state has a single and
distinct source letter.

Letter specifies new state, new state specifies
letter.

20



Transitions in graph imply positive probability.

A state s is accessible from state s’ if graph
has a path from s’ — s.

The period of s is gcd of path lengths from s
back to s.

A finite state Markov chain is ergodic if all
states are aperiodic and accessible from all
other states.

A Markov source X1, Xo,... is the sequence of
labeled transitions on an ergodic Markov chain.

21



Ergodic Markov chains have steady state prob-
abilities given by

q(s) = > q(sHQ(sls'); ses (1)
s'eS
> q(s)

1
seS
Steady-state probabilities are approached asymp-
totically from any starting state, i.e., for all
s,s' €8,

lim Pr(Sp=s|Sg=s") = q(s) (2)

n—aoeo

22



Coding for Markov sources

Simplest approach: use separate prefix-free
code for each prior state.

If 5,,_1=s, then encode X, with the prefix-free
code for s. The codeword lengths [(x,s) are
chosen for the pmf p(x|s).

S 27i@s) <1 for each s

xr
It can be chosen by Huffman algorithm and
satisfies

H[X|s] < Lyin(s) < H[X|s] + 1
where

H[X|s] = Y —P(zl|s)log P(z|s)
reEX

23



If the pmf on Sj is the steady state pmf, {q(s)},
then the chain remains in steady state.

H[X|S] < Linin < H[XIS] + 1, (3)
where
Lmin = Z q(8) Limin(s) and
SES
H[X|S] = > q(s)H[X]s]
SeS

The encoder transmits sg followed by code-
word for ;1 using code for sg.

This specifies s; and x> Is encoded with code
for s1, etc.

This is prefix free and can be decoded instan-
taneously.

24



Conditional Entropy

H[X|S] for Markov is like H[X] for DMS.

1
H[X|S] = (s)P(x|s) log
S5 PGl
Note that
1
H[XS] = &Z;q(s)P(aﬂs) log ()Pl ®)
= H[S] + H[X]|S]
Recall that
H[XS] < H[S] 4+ H[X]
Thus,

H[X[S] < H[X]

25



Suppose we use n-to-variable-length codes for
each state.

H[S1, So,...Sn]So] = nH[X|S]

H[Xl, XQ, . Xn|SO] — nH[X|S]
By using n-to-variable length codes,
H[X|S] < Lmin,, < H[X[S] + 1/n

Thus, for Markov sources, H[X|S] is asymptot-
ically achievable.

The AEP also holds for Markov sources.

L < H[X|S] — ¢ can not be achieved, either in
expected length or fixed length, with low prob-
ability of failure.
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