
� 
ENTROPY OF X, |X | = M, Pr(X=j) =  pj 

H(X) =  −pj log pj = E[− log pX(X)]

j


− log p (X) is a rv, called the log pmf. X

H(X) ≥ 0; Equality if X deterministic.


H(X) ≤ logM; Equality if X equiprobable.


If X and Y are independent random symbols,


then the random symbol XY  takes on sample


value xy with probability pXY  (xy) =  pX(x)pY (y). 

H(XY  ) =  E[− log p (XY  )] = E[− log p (X)p (Y )]XY  X Y 

= E[− log p (X) − log p (Y )] = H(X) +  H(Y )X Y 
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For a discrete memoryless source, a block of 

n random symbols, X1, . . .  , Xn, can be viewed 

as a single random symbol Xn taking on the 

sample value xn = x1x2 xn with probability · · ·
n

pXn(x n) =  pX(xj) 
j=1 

The random symbol Xn has the entropy 

n

H(Xn) =  E[− log p (Xn)] = E[− log p (Xj)]Xn X
j=1   

n

= E  − log p (Xj) = nH(X)X
j=1 
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Fixed-to-variable prefix-free codes


Segment input into n-blocks Xn = X1X2 Xn.
· · ·

Form min-length prefix-free code for Xn . 

This is called an n-to-variable-length code 

H(Xn) =  nH(X) 

H(Xn) ≤ E[L(Xn)]min < H(Xn) + 1  

E[L(Xn)]minLmin,n = bpss 
n


H(X) ≤ Lmin,n < H(X) + 1/n
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WEAK LAW OF LARGE NUMBERS


(WLLN)


Let Y1, Y2, . . .  be sequence of rv’s with mean Y 
and variance σY

2 . 

The sum S = Y1 + + Yn has mean nY and· · ·  
variance nσY 

2 

The sample average of Y1, . . .  , Yn is 

An
Y = 

S 
= 

Y1 + · · · + Yn 

n n 
It has mean and variance 

σ2 
E[An

y ] =  Y ; VAR[AY
n ] =  Y 

n 
Note: limn→∞VAR[S] =  ∞ limn→∞VAR[An ]=0.Y
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Pr{|An 
Y −Y | < ε} 

Pr{|A2n 
Y −Y | < ε} 

Y −ε Y Y +ε 

The distribution of An
Y clusters around Y , clus­

tering more closely as n → ∞. 

σ2 
Chebyshev: for ε > 0, Pr{|An

Y − Y | ≥ ε} ≤  Y 
nε2 

For any ε, δ > 0, large enough n, 

Pr{|AY
n − Y | ≥ ε} ≤ δ 
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ASYMPTOTIC EQUIPARTITION 

PROPERTY (AEP) 

Lete X1, X2, . . .  ,  be output from DMS. 

Define log pmf as w(x) =  − log p (x).X

w(x) maps source symbols into real numbers.


For each j, W (Xj) is a rv; takes value w(x) for 

Xj = x. Note that 

E[W (Xj)] = p (x)[− log p (x)] = H(X)X X
x 

W (X1), W (X2), . . .  sequence of iid rv’s. 
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For X1 = x1, X2 = x2, the outcome for W (X1)+ 

W (X2) is 

w(x1) +  w(x2) =  − log p (x1) − log p (x2)X X

= − log{pX(x1)pX(x2)} 

= − log{p (x1x2)} = w(x1x2)X1X2

where w(x1x2) is -log pmf of event X1X2 = x1x2 

W (X1X2) =  W (X1) +  W (X2) 

X1X2 is a random symbol in its own right (takes 

values x1x2). W (X1X2) is -log pmf of X1X2 

Probabilities multiply, log pmf’s add. 
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For Xn = xn; xn = (x1, . . .  , xn), the outcome for 

W (X1) +  + W (Xn) is· · ·
n
 n 

log pX(xj) =  − log pXn(x n)w(xj) =  −

j=1
 j=1


Sample average of log pmf’s is 

Sn = 
W (X1) +  · · ·W (Xn)

= 
− log p (Xn)Xn

W n n 
WLLN applies and is 

Pr
 A
n 
W −E[W (X)] ≥ ε ≤


σ2 
W 

nε2


− log p (Xn)Xn

n

− H(X)


σ2

Pr
 ≥ ε ≤ 

nε
W 
2
.
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�
Define typical set as


Tε
n = x n :


− log p (xn)Xn

n

− H(X)
< ε 


1 

w 

FW n 
Y 
(w) 

FW 2n 
Y 
(w� 
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� 

� 

� 
� 

� 
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Pr{T n 
ε } 

Pr{T 2n 
ε } )


H−ε H H+ε 

As n → ∞, typical set approaches probability 1: 

σ2 
Pr(Xn ∈ Tε

n) ≥ 1 −
nε

W 
2 

9




� � 
� � 

We can also express Tε
n as 

Tε
n = x n : n(H(X)−ε) < − log pXn(x n) < n(H(X)+ε) 

Tn = x n : 2−n(H(X)+ε) < p (x n) < 2−n(H(X)−ε) .ε Xn

Typical elements are approximately equiprob­

able in the strange sense above. 

The complementary, atypical set of strings, 

satisfy 

σ2 
Pr[(Tε

n)c] ≤ W 
2nε

For any ε, δ > 0, large enough n, Pr[(Tε
n)c] < δ. 
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For all xn ∈ Tε
n , pXn(xn) > 2−n[H(X)+ε].


1 ≥ pXn (x n) > |Tε
n|2−n[H(X)+ε] 

xn Tn 
ε∈

|Tε
n| < 2n[H(X)+ε] 

1 − δ ≤ pXn (x n) < |Tε
n|2−n[H(X)−ε] 

xn Tn 
ε∈

|Tn| > (1 − δ)2n[H(X)−ε] 
ε 

Summary: Pr[(Tε
n)c] ≈ 0, |Tε

n| ≈ 2nH(X), 

p (x n) ≈ 2−nH(X) for x n ∈ Tε
n.Xn
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EXAMPLE


Consider binary DMS with Pr[X=1] = p1 < 1/2.


H(X) =  −p1 log p1 − p0 log(p0)


Consider a string xn with n1 ones and n0 zeros.


pXn (x n) =  pn
1
1 p

n
0
0


− log p

n 
Xn(xn)

= − 
n

n 
1 log p1 − 

n

n 
0 log p0 

The typical set Tε
n is the set of strings for which 

H(X) ≈ − log p (xn) n0 

n 
Xn 

= − 
n

n 
1 log p1 − 

n 
log p0 

In the typical set, n1 ≈ p1n. For this binary 
case, a string is typical if it has about the right 
relative frequencies. 
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H(X) ≈ − log p (xn) n1 n0 

n 
Xn 

= − 
n 

log p1 − 
n 

log p0 

The probability of a typical n-tuple is about 

p1 
p1n

p0 
p0n = 2−nH(X). 

The number of n-tuples with p1n ones is 

n!
2nH(X) 

(p1n)!(p0n)! 
≈ 

Note that there are 2n binary strings. Most of 

them are collectively very improbable. 

The most probable strings have almost all ze­

ros, but there aren’t enough of them to mat­

ter. 
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Fixed-to-fixed-length source codes


For any ε, δ > 0, and any large enough n, assign 

fixed length codeword to each xn ∈ Tε
n . 

Since |Tε
n| < 2n[H(X)+ε], L ≤ H(X)+ε+1 . n 

Pr{failure} ≤ δ. 

Conversely, take L ≤ H(X) − 2ε, and n large. 

Probability of failure will then be almost 1. 
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For any ε >  0, the probability of failure will be


almost 1 if L ≤ H(X)−2ε and n is large enough:


We can provide codewords for at most 2nH(X)−2εn 

source n-tuples. Typical n-tuples have at most 

probability 2−nH(X)+εn . 

The aggregate probability of typical n-tuples 

assigned codewords is at most 2−εn . 

The aggregate probability of typical n-tuples 

not assigned codewords is at least 1 − δ − 2−nε . 

Pr{failure} > 1 − δ − 2−εn 1→ 
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General model: Visualize any kind of mapping 

from the sequence of source symbols X∞ into 

a binary sequence Y∞. 

Visualize a decoder that observes encoded bits, 

one by one. For each n, let Dn be the number 

of observed bits required to decode Xn (deci­

sions are final). 

The rate rv, as a function of n, is  Dn/n. 

In order for the rate in bpss to be less than 

H(X) in any meaningful sense, we require that 

Dn/n be smaller than H(X) with high probabil­

ity as n → ∞. 
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Theorem: For a DMS and any coding/decoding 

technique, let ε, δ > 0 be arbitrary. Then for 

large enough n, 

Pr{Dn ≤ n[H(X) − 2ε]} < δ  + 2−εn. 

Proof: For given n, let m = �n[H(X) − 2ε]�. 
Suppose that xn is decoded upon observation 

nof yj for some j ≤ m. Only x can be decoded 

from ym . There are only 2m source n-tuples 

(and thus at most 2m typical n-tuples) that 

can be decoded by time m. Previous result 

applies. 
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Questions about relevance of AEP and fixed-

to-fixed length source codes: 

1) Are there important real DMS sources? No,


but DMS model provides memory framework.


2) Are fixed-to-fixed codes at very long length 

practical? No, but view length as product life­

time to interpret bpss. 

3) Do fixed-to-fixed codes with rare failures 

solve queueing issues? No, queueing issues 

arise only with real-time sources, and discrete 

sources are rarely real time. 
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MARKOV SOURCES 

A finite state Markov chain is a sequence S0, S1, . . .  

of discrete cv’s from a finite alphabet S where 

q0(s) is a pmf on S0 and for n ≥ 1, 

Q(s|s′) = Pr(Sn =s|Sn−1=s′) 
= Pr(Sn =s|Sn−1=s′, Sn−2 = sn−2 . . .  , S0=s0) 

for all choices of sn−2 . . .  , s0, We use the states 

to represent the memory in a discrete source 

with memory. 
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Example: Binary source X1, X2, . . .  ; Sn = (Xn−1Xn) 

� �� 1; 0.1 ��


00 � 01

0; 0.9 �� �

��
��� 

1; 0.5��
�
�

�
�

0; 0.5 1; 0.5 
�

�
�

�
�

�
� 0; 0.5 

��� ���
�
�

� � � 

10� 11 
0; 0.1 � 1; 0.9 

Each transition from a state has a single and 
distinct source letter. 

Letter specifies new state, new state specifies 
letter. 
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Transitions in graph imply positive probability.


A state s is accessible from state s′ if graph 
has a path from s′ s.→ 

The period of s is gcd of path lengths from s 

back to s. 

A finite state Markov chain is ergodic if all 

states are aperiodic and accessible from all 

other states. 

A Markov source X1, X2, . . .  is the sequence of 

labeled transitions on an ergodic Markov chain. 
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� 
Ergodic Markov chains have steady state prob­

abilities given by 

q(s) =  q(s′)Q(s|s′); s ∈ S  (1) 

� s′∈S 

q(s) = 1  
s∈S 

Steady-state probabilities are approached asymp­

totically from any starting state, i.e., for all 

s, s′ ∈ S, 

lim Pr(Sn =s|S0=s′) =  q(s) (2)
n→∞ 
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Coding for Markov sources


Simplest approach: use separate prefix-free 
code for each prior state. 

If Sn−1=s, then encode Xn with the prefix-free 
code for s. The codeword lengths l(x, s) are 
chosen for the pmf p(x|s). 

2−l(x,s) ≤ 1 for each s 
x 

It can be chosen by Huffman algorithm and 
satisfies 

H[X|s] ≤ Lmin(s) < H[X|s] + 1  

where 

H[X|s] =  −P (x|s) logP (x|s)

x∈X 
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If the pmf on S0 is the steady state pmf, {q(s)}, 
then the chain remains in steady state. 

H[X|S] ≤ Lmin < H[X|S] + 1, (3) 

where 

Lmin = q(s)Lmin(s) and 
s∈S 

H[X|S] =  q(s)H[X|s]

s∈S


The encoder transmits s0 followed by code-
word for x1 using code for s0. 

This specifies s1 and x2 is encoded with code 
for s1, etc. 

This is prefix free and can be decoded instan­
taneously. 
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Conditional Entropy 

H[X S] for Markov is like H[X] for DMS. | � � 1 
H[X|S] =  q(s)P (x|s) log 

P (x|s)s∈S x∈X 

Note that � 1 
H[XS] =  

s,x 
q(s)P (x|s) log 

q(s)P (x|s) 
= H[S] +  H[X S]
|

Recall that 

H[XS] ≤ H[S] +  H[X] 

Thus, 

H[X|S] ≤ H[X] 

25 



Suppose we use n-to-variable-length codes for 

each state. 

H[S1, S2, . . . Sn|S0] = nH[X|S] 

H[X1, X2, . . . Xn|S0] = nH[X|S] 

By using n-to-variable length codes, 

H[X|S] ≤ Lmin,n < H[X|S] + 1/n 

Thus, for Markov sources, H[X|S] is asymptot­

ically achievable. 

The AEP also holds for Markov sources. 

L ≤ H[X|S] − ε can not be achieved, either in 

expected length or fixed length, with low prob­

ability of failure. 
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