DISCRETE MEMORYLESS SOURCE
(DMS) Review

T he source output is an unending sequence,
X1,Xo,X3,..., of random letters, each from
a finite alphabet X.

Each source output X4, X»,... IS selected
from X using a common probability mea-
sure with pmf py(z).

Each source output X, is statistically inde-
pendent of all other source outputs X,,...,

Xp—1, Xg41s-- -

Without loss of generality, let X be {1,... , M}
and denote px (7)), 1 <:< M as p;.



OBJECTIVE: Minimize expected length L of
prefix codes for a given DMS.

Let [4,...,[); be integer codeword lengths.
B M
Lmin = min pili
I,...y: > 271 | ;2
Without the integer constraint, [, = —logyp;

minimizes Lyin, SO

l; = —log p; (desired length)

Liin(non—int) = 3" —p; log p; = H(X)
i
H(X) is the entropy of X. It is the expected
value of —logp(X) and the desired expected
length of the binary codeword.



Theorem: Let L,,;,, be the minimum expected
codeword length over all prefix-free codes for
X. Then

H(X) < zmz’n < H(X) +1
Lmin = H(X) iff each p; is integer power of 2.

1 b
a— 0O
b— 11
0 ¢ ¢ — 101
a

Note that if p(a) = 1/2, p(b) = 1/4, p(c) = 1/4,
then each binary digit is IID, 1/2. This is gen-
eral.



Huffman Coding Algorithm

Above theorem suggested that good codes have

Huffman took a different approach and looked
at the tree for a prefix-free code.

C(2) 0.6
p1 = 0.
p% = 0.3

) p3=0.1

C(1)
Lemma: Optimal prefix-free codes have the
property that if p; > p; then [; < ;. This means
that p; > p; and [; > [; can’t be optimal.

Lemma: Optimal prefix-free codes are full.



T he sibling of a codeword is the string formed
by changing the last bit of the codeword.

Lemma: For optimality, the sibling of each
maximal length codeword is another codeword.

Assume that p;1 > p> > -+ > pyy-

Lemma: There is an optimal prefix-free code
in which C(M —1) and C(M) are maximal length
siblings.

Essentially, the codewords for M —1 and M can
be interchanged with max length codewords.

The Huffman algorithm first combines C(M —1)
and C(M) and looks at the reduced tree with
M — 1 nodes.



After combining two least likely codewords as
sibliings, we get a “reduced set” of probabili-
ties.

symbol p;
1 0.4
2 0.2
3 0.15
4 O 15
0.25
5 >

Finding the optimal code for the reduced set
results in an optimal code for original set. Why?



Finding the optimal code for the reduced set
results in an optimal code for original set. Why?

For any code for the reduced set X/, let ex-
pected length be T .

The expected length of the corresponding code
for X has L=L"+py_1+pu.

symbol p;

0.4
0.2
0.15

0. 15>O 25

aPrPWN



Now we can tie together (siblingify?) the least
two probable nodes in the reduced set.

symbol p;
0.4 0.4
0.2 0.2 1
0.15 0.15_0—0.35

O WNDE
OPPWNDHE

0. 15>o 25 0. 15}0 25



Surely the rest is obvious.

0.4
0.2
0.1
0.1
0.1
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DISCRETE SOURCE CODING: REVIEW

The Kraft inequality, ¥, 27% < 1, is a necessary
and sufficient condition on prefix-free code-
word lengths.

Given a pmf, pi,... ,pys on a set of symbols,
the Huffman algorithm constructs a prefix-free
code of minimum expected length, L,y = >; pil;-

A discrete memoryless source (DMS) is a se-
quence of iid discrete chance variables X, X»,....
The entropy of a DMS is H(X) = >, —p; 109(p;)-

Theorem: H(X) < Lyin < H(X) + 1.
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ENTROPY OF X, |X| =M, Pr(X=i) = p,

H(X) = Z —p;logp; = E[—10g px (X)]

1

—logpx(X) is a rv, called the log pmf.
H(X) > 0; Equality if X deterministic.
H(X) <log M; Equality if X equiprobable.

For independent rv’'s X,Y, XY is also a chance
variable taking on the sample value xy with

probability pxy(zy) = px(z)py(y).

E[-logp(XY)] = E[—logp(X)p(Y)]
E[—-l0ogp(X) —logp(Y)] = H(X) + H(Y)

H(XY)
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For a discrete memoryless source, a block of
n random symbols, X4,...,X,, can be viewed
as a single random symbol X" taking on the
sample value x" = zqz5...xn With probability

pxn(x™) = T[ px (@)
1=1

The random symbol X has the entropy

E[— logp(X™)] = E[-log .H px (X;)]

=1

H(X™)

n

E|) —|OQPX(X2')} = nH(X)

1=1

12



Fixed-to-variable prefix-free codes
Segment input into n-blocks X" = X1 X5...X).
Form min-length prefix-free code for X",
This is called an n-to-variable-length code

H(X") = nH(X)
H(X") < E[L(X™)]min <HX") +1

— E|IL(X"™)|m;
L = SO DImn

H(X) < Lminn, <HX) +1/n

Lmin,n — H(X)
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WEAK LAW OF LARGE NUMBERS
(WLLN)

Let Y7,Y>,... be sequence of rv’s with mean Y

and variance 032/.

The sum A =Y; +---+ Y, has mean nY and

variance no?

The sample average of Yi,... ,Y, IS
n_ A Y14+ ---4Y,
Sy = — =
n n

It has mean and variance
n

E[S?] =7, VAR[SE] = ‘%Y
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Pr{|S?"—Y]| < e}

Pr{|Sy—Y| < e}

T he distribution of 53", clusters around Y, clus-
tering more closely as n — oo.

— 2
Chebyshev: for ¢ > 0, Pr{|S} — Y| > ¢} < %
For any ¢,0 > 0, large enough n,

Pr{|Sp —Y|>e} <6

15



ASYMPTOTIC EQUIPARTITION
PROPERTY (AEP)

Let X1,Xo,..., be output from DMS.
Define log pmf as w(z) = —logpx(x).
w(x) mMmaps source symbols into real numbers.

For each j, W(X;) is a rv; takes value w(z) for
X; =z. Note that

E[W(X;)] =) px(@)[-logpx(z)] = H(X)

W(X1),W(X5),... sequence of iid rv’s.
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For X1 = z1, Xo = z5, the outcome for W(X1)+
W(Xz2) is

w(xy) + w(zo) —logpx(x1) —logpx(x2)
—log{px,(z1)px,(x2)}

—log{px, x,(r122)} = w(x172)

where w(xqz>) is -log pmf of event X1 X> = zq25

W(X1X2) = W(X1) + W(X>2)

X1X5 is a random symbol in its own right (takes
values zr1x5). W(X1X5) is -log pmf of random
symbol X.X5.

Probabilities multiply, log pmf’s add.

17



For X" =x"; x" = (z1,...,zn), the outcome for
W(X1)+ - +W(Xy) is

Z?:]_ w(aj]) - = Z?:]_ IOg pX(CE']) — — |Og an(Xn)

Sample average of log pmf’s is

o _ WX+ W(Xn) _ —logpxa(X")
W — p—

n mn
WLLN applies and is

Pr ( g — EW (0] | 2 e) < “—52

_ n n 2
Pr(‘ 109 pxn(X )—H(X)‘ Ze) < TW.
n
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Define typical set as
—log pxn(x™)

— H(X)

)

Pr{T "}

Pr{T"}

H-e¢ H H-+e

ASs n — oo, typical set approaches probability 1:

2

n n Sw
PrX" e T) > 1~ 1
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We can also express 7!' as

T = {X” ‘n(H(X)—e) < —logp(x") < n(H(X)—I—e)}

I — {Xn 2 HOOT & (xm) < 2—n<H<X>—e>}.

Typical elements are approximately equiprob-
able in the strange sense above.

The complementary, atypical set of strings,

satisfy
o2
Pri(T{)e] < 25
Te

For any ¢,6 > 0, large enough n, Pr[(T?)¢] <.
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For all X € T?, pyn(X®?) > 2 2HEX)+],

1> 3 pxn(XD) > T2 2 2HE)+
Xnern

1-6< 3 pxn(X™) < |22 PHEX) ]
XneTn

T > (1 - 8)2nHEO=
Summary: Pr[(T")¢] ~0, |T7|~ 2nHEX),

pxn(X™) & 2 nHX)  for X1 ¢ T2,
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EXAMPLE
Consider binary DMS with Pr[X=1] =p < 1/2.

H(X) = —plogp — (1—-p) log(1—p)
The typical set T is the set of strings with
about pn ones and (1-p)n zeros.

The probability of a typical string is about
pP(1—p)(1—P)n = o—nH(X)

_ . . - n!
T he number of n-strings with pn ones is (o) (n—pn)]

Note that there are 2" binary strings. Most of
them are collectively very improbable.

T he most probable strings have almost all ze-
ros, but there aren’'t enough of them to mat-
ter.
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Fixed-to-fixed-length source codes

For any ¢, > 0, and any large enough n, assign
fixed length code word to each X! ¢ T..

Since |Ti| < 2nHX)+ed | T < H(X)4e+1/n.

Pr{failure} <.

Conversely, take L < H(X) — 2¢, and n large.

Since [T > (1 — §)2MH(X)—€l most of typical
set can not be assigned codewords.

Pr{failure} >1—-6—-2"°“" =1
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Kraft inequality for unique decodability

Suppose {l;} are lengths of a uniquely decod-
able code and ;27 % =b. We show that b > 1
leads to contradiction. Choose DMS with p, =

(1/b)27 4, i.e., I; = —log(bp;).

L= szlz = H(X) — logb
i
Consider string of n source letters. Concatena-
tion of code words has length less than n[H(X)—
b/2] with high probability. Thus fixed length
code of this length has low failure probability.

Contradiction.
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