
DISCRETE MEMORYLESS SOURCE

(DMS) Review


•	 The source output is an unending sequence, 
X1, X2, X3, . . . , of random letters, each from 
a finite alphabet X . 

•	 Each source output X1, X2, . . . is selected 
from X using a common probability mea­
sure with pmf pX(x). 

•	 Each source output Xk is statistically inde­
pendent of all other source outputs X1, . . . , 
Xk−1, Xk+1, . . . . 

•	 Without loss of generality, let X be {1, . . . , M}
and denote pX(i), 1 ≤ i ≤ M as pi. 
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OBJECTIVE: Minimize expected length L of 
prefix codes for a given DMS. 

Let l1, . . . , lM be integer codeword lengths. 

Lmin = min 
l1,... ,lM :

P 
2−li≤1 


 




MX 

=1i

pili



 




Without the integer constraint, li = − log pi 
minimizes L̄min, so 

li = − log pi (desired length) 

. 
Lmin(non−int) = 

X 
−pi log pi = H(X) 

i 

H(X) is the entropy of X. It is the expected 
value of − log p(X) and the desired expected 
length of the binary codeword. 
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Theorem: Let Lmin be the minimum expected 

codeword length over all prefix-free codes for 

X. Then 

H(X) ≤ Lmin < H(X) + 1 

Lmin = H(X) iff each pi is integer power of 2. 

✟ 

✟✟✟
1✟✟✟ b 

a 0


✟✟✟✟1✟✟✟❍❍❍0❍
→ 

11
b 
❍

❍❍❍0 
❍

❍ c c 
→ 

101 
❍❍❍❍ a 

→ 

Note that if p(a) = 1/2, p(b) = 1/4, p(c) = 1/4, 
then each binary digit is IID, 1/2. This is gen­

eral. 
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Huffman Coding Algorithm


Above theorem suggested that good codes have 
li ≈ log(1/pi). 

Huffman took a different approach and looked 
at the tree for a prefix-free code. 

1 
✟✟✟✟✟✟✟ C(2) 

p1 = 0.6 
❍

✟✟✟
1✟✟✟✟❍

❍0❍ p2 = 0.3 
❍❍❍❍❍0 

❍ C(3) p3 = 0.1 
❍❍❍❍ C(1) 

Lemma: Optimal prefix-free codes have the 
property that if pi > pj then li ≤ lj. This means 
that pi > pj and li > lj can’t be optimal. 

Lemma: Optimal prefix-free codes are full. 
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The sibling of a codeword is the string formed


by changing the last bit of the codeword.


Lemma: For optimality, the sibling of each


maximal length codeword is another codeword.


Assume that p1 ≥ p2 ≥ · · · ≥ pM .


Lemma: There is an optimal prefix-free code


in which C(M − 1) and C(M) are maximal length


siblings.


Essentially, the codewords for M −1 and M can


be interchanged with max length codewords.


The Huffman algorithm first combines C(M −1)


and C(M) and looks at the reduced tree with


M − 1 nodes.
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After combining two least likely codewords as 

sibliings, we get a “reduced set” of probabili­

ties. 

symbol pi 
1 0.4 
2 0.2 
3 0.15 
4 0.151 0.25 

✥✥0✥✥✥✥✥ 

5 0.1 

Finding the optimal code for the reduced set


results in an optimal code for original set. Why?
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Finding the optimal code for the reduced set

results in an optimal code for original set. Why?


For any code for the reduced set X 0, let ex­
pected length be L0. 

The expected length of the corresponding code 
for X has L = L0 + pM−1 + pM . 

symbol pi 
1 0.4 
2 0.2 
3 0.15 
4 
5 

0.15 
0.1 ✥✥✥✥✥✥✥ 

 0.25 
1 

0 
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Now we can tie together (siblingify?) the least


two probable nodes in the reduced set.


symbol pi 
1 0.4	 1 0.4 
2	 0.2 2 0.2 1 0.353 0.15	 3 0.15✥✥✥0✥✥✥✥ 

4 0.151 0.25 4 0.151 0.25 
✥✥0✥✥✥✥✥	

✥✥✥0✥✥✥✥ 

5 0.1	 5 0.1 
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1

2

3

4

5

Surely the rest is obvious. 

0.4 ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ 

0.2 1 (0.35) 1PPPPPPPPPPPPPP✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘ 

✥✥✥✥✥0✥✥✥✥✥✥ 

0.15 1 (0.6) 0 

0.15 1 (0.25) 0✏✏✏✏✏✏✏✏✏✏✏✏✏✏

✥✥✥✥✥0✥✥✥✥✥✥ 

0.1 
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DISCRETE SOURCE CODING: REVIEW


The Kraft inequality, 
P

i 2
−li ≤ 1, is a necessary 

and sufficient condition on prefix-free code-

word lengths. 

Given a pmf, p1, . . . , pM on a set of symbols, 

the Huffman algorithm constructs a prefix-free 

code of minimum expected length, Lmin = 
P

i pili. 

A discrete memoryless source (DMS) is a se­

quence of iid discrete chance variables X1, X2, . . . . 

The entropy of a DMS is H(X) = 
P

i −pi log(pi). 

Theorem: H(X) ≤ Lmin < H(X) + 1. 
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ENTROPY OF X, |X | = M, Pr(X=i) = pi 

H(X) = 
X 
−pi log pi = E[− log pX(X)] 

i 

− log pX(X) is a rv, called the log pmf. 

H(X) ≥ 0; Equality if X deterministic. 

H(X) ≤ log M; Equality if X equiprobable. 

For independent rv’s X, Y , XY is also a chance 

variable taking on the sample value xy with 

probability pXY (xy) = pX(x)pY (y). 

H(XY ) = E[− log p(XY )] = E[− log p(X)p(Y )] 

= E[− log p(X) − log p(Y )] = H(X) + H(Y ) 
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For a discrete memoryless source, a block of 

n random symbols, X1, . . . , Xn, can be viewed 

as a single random symbol Xn taking on the 

sample value xn = x1x2 . . . xn with probability 

n

pXn(xn) = 
Y 

pX(xi) 
i=1 

The random symbol Xn has the entropy 

n

H(Xn) = E[− log p(Xn)] = E[− log 
Y 

pX(Xi)] 
i=1 

n
 

= E 
X 

− log pX(Xi) = nH(X) 
i=1 
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Fixed-to-variable prefix-free codes 

Segment input into n-blocks Xn = X1X2 . . . Xn. 

Form min-length prefix-free code for Xn . 

This is called an n-to-variable-length code 

H(Xn) = nH(X)


H(Xn) ≤ E[L(Xn)]min < H(Xn) + 1


E[L(Xn)]min
Lmin,n = bpss 
n


H(X) ≤ Lmin,n < H(X) + 1/n


L̄min,n → H(X) 
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WEAK LAW OF LARGE NUMBERS

(WLLN)


Let Y1, Y2, . . . be sequence of rv’s with mean Y 
and variance σY 

2 . 

The sum A = Y1 + + Yn has mean nY and· · · 
variance nσY 

2 

The sample average of Y1, . . . , Yn is 

A Y1 + + Yn
Sn = = 

· · · 
Y n n


It has mean and variance 

σn 
E[Sy

n] = Y ; VAR[SY
n ] = Y 

n 
Note: limn→1 VAR[A] = 1 limn→1 VAR[Sn ]=0.Y 
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1 

y 

FSn 
Y 
(y) 
FS2n 

Y 
(y)✛ 

❍❍ 
✻ 

❄ 

✻ 
✲ 

❄ 

✲ 

Pr{|Sn 
Y −Y | < ≤} 

Pr{|S2n 
Y −Y | < ≤} 

Y −≤ Y Y +≤ 

The distribution of Sn clusters around Y , clus-Y 
tering more closely as n → 1. 

Chebyshev: for ≤ > 0, Pr{|Sn 
Y − Y | ≥ ≤} ≤ 

σ2 
Y 

n≤2 

For any ≤, δ > 0, large enough n, 

Pr{|Sn 
Y − Y | ≥ ≤} ≤ δ 
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ASYMPTOTIC EQUIPARTITION 

PROPERTY (AEP) 

Let X1, X2, . . . , be output from DMS. 

Define log pmf as w(x) = − log pX(x). 

w(x) maps source symbols into real numbers. 

For each j, W (Xj) is a rv; takes value w(x) for 

Xj = x. Note that 

E[W (Xj)] = 
X 

pX(x)[− log pX(x)] = H(X) 
x 

W (X1), W (X2), . . . sequence of iid rv’s. 
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For X1 = x1, X2 = x2, the outcome for W (X1)+ 

W (X2) is 

w(x1) + w(x2)	 = − log pX(x1) − log pX(x2) 

= − log{pX1
(x1)pX2

(x2)} 

= − log{pX1X2
(x1x2)} = w(x1x2) 

where w(x1x2)	 is -log pmf of event X1X2 = x1x2 

W (X1X2) = W (X1) + W (X2) 

X1X2 is a random symbol in its own right (takes 

values x1x2). W (X1X2) is -log pmf of random 

symbol X1X2. 

Probabilities multiply, log pmf’s add. 

17




For Xn = xn; xn = (x1, . . . , xn), the outcome for 

W (X1) + + W (Xn) is· · · 
Xn

w(xj) = − 
Xn 

log pX(xj) = − log pXn(xn)
j=1 j=1 

Sample average of log pmf’s is 

Sn W (X1) + W (Xn) − log pXn(Xn) 
= 

· · · 
= W n n 

WLLN applies and is 

Pr 
µ ØØØSn 

ØØØ ≥ ≤ 
∂ 

≤ 
n

σ

≤

2

2W − E[W (X)] W 

σ2 
WPr 

√ ØØØØØ 
− log pXn(Xn) − H(X) 

ØØØØØ ≥ ≤ 

! 

n 
≤ 

n≤2
. 
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Define typical set as


− log pXn(xn)
Tn = 

(

xn : 

ØØØØØ − H(X) 

ØØØØØ < ≤

)

≤ n


w 

FW n 
Y 
(w) 
FW 2n 

Y 
(w)✛ 

❍❍ 
✻ 

❄ 

✻ 
✲ 

❄ 

✲ 

Pr{T n 
≤ } 

Pr{T 2n 
≤ } 

1 

H−≤ H H+≤ 

As n →1, typical set approaches probability 1: 

σ2 
WPr(Xn ∈ T≤

n) ≥ 1 − 
n≤2 
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We can also express T≤
n as


( )

Tn = xn : n(H(X)−≤) < − log p(xn) < n(H(X)+≤)≤ 

( )

T≤
n = xn : 2−n(H(X)+≤) < pXn(xn) < 2−n(H(X)−≤) . 

Typical elements are approximately equiprob­

able in the strange sense above. 

The complementary, atypical set of strings, 

satisfy 

σ2 
Pr[(Tn W 

≤ )
c] ≤ 

n≤2 

For any ≤, δ > 0, large enough n, Pr[(T≤
n)c] < δ. 
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For all Xn ∈ Tn 
≤ , pXn(Xn) > 2−n[H(X)+≤].


1 ≥ 
X 

pXn(Xn) > |Tn 
≤ | 2−n[H(X)+≤] 

Xn∈Tn 
≤ 

|T≤
n| < 2n[H(X)+≤] 

1 − δ ≤ 
X 

pXn(Xn) < |Tn 
≤ |2−n[H(X)−≤] 

Xn∈T≤
n 

|T≤
n| > (1 − δ)2n[H(X)−≤] 

Summary: Pr[(T≤
n)c] ≈ 0, |T≤

n| ≈ 2nH(X), 

pXn(Xn) ≈ 2−nH(X) for Xn ∈ Tn 
≤ . 
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EXAMPLE 

Consider binary DMS with Pr[X=1] = p < 1/2. 

H(X) = −p log p − (1−p) log(1−p) 

The typical set T≤
n is the set of strings with 

about pn ones and (1−p)n zeros. 

The probability of a typical string is about 
ppn(1−p)(1−p)n = 2−nH(X). 

The number of n-strings with pn ones is (pn)!(
n
n
! 
−pn)! 

Note that there are 2n binary strings. Most of 
them are collectively very improbable. 

The most probable strings have almost all ze­
ros, but there aren’t enough of them to mat­
ter. 
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Fixed-to-fixed-length source codes


For any ≤, δ > 0, and any large enough n, assign 

fixed length code word to each Xn ∈ T≤. 

Since |T≤| < 2n[H(X)+≤], L ≤ H(X)+≤+1/n. 

Pr{failure} ≤ δ. 

Conversely, take L ≤ H(X) − 2≤, and n large. 

Since |T≤
n| > (1 − δ)2n[H(X)−≤], most of typical 

set can not be assigned codewords. 

Pr{failure} > 1 − δ − 2−≤≤n 1→ 
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Kraft inequality for unique decodability


Suppose {li} are lengths of a uniquely decod­

able code and 
P

i 2
−li = b. We show that b > 1 

leads to contradiction. Choose DMS with pi = 

(1/b)2−li, i.e., li = − log(bpi). 

L = 
X 

pili = H(X) − log b 
i 

Consider string of n source letters. Concatena­

tion of code words has length less than n[H(X)− 

b/2] with high probability. Thus fixed length 

code of this length has low failure probability. 

Contradiction. 
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