
DISCRETE MEMORYLESS SOURCE

(DMS) Review

•	 The source output is an unending sequence,
X1, X2, X3, . . . , of random letters, each from
a finite alphabet X .

•	 Each source output X1, X2, . . . is selected
from X using a common probability mea­
sure with pmf pX(x).

•	 Each source output Xk is statistically inde­
pendent of all other source outputs X1, . . . ,
Xk−1, Xk+1,

•	 Without loss of generality, let X be {1, . . . , M}
and denote pX(i), 1 ≤ i ≤ M as pi.

1

OBJECTIVE: Minimize expected length L of
prefix codes for a given DMS.

Let l1, . . . , lM be integer codeword lengths.

Lmin = min
l1,... ,lM :

P
2−li≤1






MX

=1i

pili






Without the integer constraint, li = − log pi
minimizes L̄min, so

li = − log pi (desired length)

.
Lmin(non−int) =

X
−pi log pi = H(X)

i

H(X) is the entropy of X. It is the expected
value of − log p(X) and the desired expected
length of the binary codeword.

2

Theorem: Let Lmin be the minimum expected

codeword length over all prefix-free codes for

X. Then

H(X) ≤ Lmin < H(X) + 1

Lmin = H(X) iff each pi is integer power of 2.

✟

✟✟✟
1✟✟✟ b

a 0

✟✟✟✟1✟✟✟❍❍❍0❍
→

11
b
❍

❍❍❍0
❍

❍ c c
→

101
❍❍❍❍ a

→

Note that if p(a) = 1/2, p(b) = 1/4, p(c) = 1/4,
then each binary digit is IID, 1/2. This is gen­

eral.

3

Huffman Coding Algorithm

Above theorem suggested that good codes have
li ≈ log(1/pi).

Huffman took a different approach and looked
at the tree for a prefix-free code.

1
✟✟✟✟✟✟✟ C(2)

p1 = 0.6
❍

✟✟✟
1✟✟✟✟❍

❍0❍ p2 = 0.3
❍❍❍❍❍0

❍ C(3) p3 = 0.1
❍❍❍❍ C(1)

Lemma: Optimal prefix-free codes have the
property that if pi > pj then li ≤ lj. This means
that pi > pj and li > lj can’t be optimal.

Lemma: Optimal prefix-free codes are full.

4

The sibling of a codeword is the string formed

by changing the last bit of the codeword.

Lemma: For optimality, the sibling of each

maximal length codeword is another codeword.

Assume that p1 ≥ p2 ≥ · · · ≥ pM .

Lemma: There is an optimal prefix-free code

in which C(M − 1) and C(M) are maximal length

siblings.

Essentially, the codewords for M −1 and M can

be interchanged with max length codewords.

The Huffman algorithm first combines C(M −1)

and C(M) and looks at the reduced tree with

M − 1 nodes.

5

After combining two least likely codewords as

sibliings, we get a “reduced set” of probabili­

ties.

symbol pi
1 0.4
2 0.2
3 0.15
4 0.151 0.25

✥✥0✥✥✥✥✥

5 0.1

Finding the optimal code for the reduced set

results in an optimal code for original set. Why?

6

Finding the optimal code for the reduced set

results in an optimal code for original set. Why?

For any code for the reduced set X 0, let ex­
pected length be L0.

The expected length of the corresponding code
for X has L = L0 + pM−1 + pM .

symbol pi
1 0.4
2 0.2
3 0.15
4
5

0.15
0.1 ✥✥✥✥✥✥✥

 0.25
1

0

7

Now we can tie together (siblingify?) the least

two probable nodes in the reduced set.

symbol pi
1 0.4	 1 0.4
2	 0.2 2 0.2 1 0.353 0.15	 3 0.15✥✥✥0✥✥✥✥

4 0.151 0.25 4 0.151 0.25
✥✥0✥✥✥✥✥	

✥✥✥0✥✥✥✥

5 0.1	 5 0.1

8

1

2

3

4

5

Surely the rest is obvious.

0.4 ❤❤❤

0.2 1 (0.35) 1PPPPPPPPPPPPPP✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✥✥✥✥✥0✥✥✥✥✥✥

0.15 1 (0.6) 0

0.15 1 (0.25) 0✏✏✏✏✏✏✏✏✏✏✏✏✏✏

✥✥✥✥✥0✥✥✥✥✥✥

0.1

9

DISCRETE SOURCE CODING: REVIEW

The Kraft inequality,
P

i 2
−li ≤ 1, is a necessary

and sufficient condition on prefix-free code-

word lengths.

Given a pmf, p1, . . . , pM on a set of symbols,

the Huffman algorithm constructs a prefix-free

code of minimum expected length, Lmin =
P

i pili.

A discrete memoryless source (DMS) is a se­

quence of iid discrete chance variables X1, X2,

The entropy of a DMS is H(X) =
P

i −pi log(pi).

Theorem: H(X) ≤ Lmin < H(X) + 1.

10

ENTROPY OF X, |X | = M, Pr(X=i) = pi

H(X) =
X
−pi log pi = E[− log pX(X)]

i

− log pX(X) is a rv, called the log pmf.

H(X) ≥ 0; Equality if X deterministic.

H(X) ≤ log M; Equality if X equiprobable.

For independent rv’s X, Y , XY is also a chance

variable taking on the sample value xy with

probability pXY (xy) = pX(x)pY (y).

H(XY) = E[− log p(XY)] = E[− log p(X)p(Y)]

= E[− log p(X) − log p(Y)] = H(X) + H(Y)

11

For a discrete memoryless source, a block of

n random symbols, X1, . . . , Xn, can be viewed

as a single random symbol Xn taking on the

sample value xn = x1x2 . . . xn with probability

n

pXn(xn) =
Y

pX(xi)
i=1

The random symbol Xn has the entropy

n

H(Xn) = E[− log p(Xn)] = E[− log
Y

pX(Xi)]
i=1

n


= E 
X

− log pX(Xi) = nH(X)
i=1

12

Fixed-to-variable prefix-free codes

Segment input into n-blocks Xn = X1X2 . . . Xn.

Form min-length prefix-free code for Xn .

This is called an n-to-variable-length code

H(Xn) = nH(X)

H(Xn) ≤ E[L(Xn)]min < H(Xn) + 1

E[L(Xn)]min
Lmin,n = bpss
n

H(X) ≤ Lmin,n < H(X) + 1/n

L̄min,n → H(X)

13

WEAK LAW OF LARGE NUMBERS

(WLLN)

Let Y1, Y2, . . . be sequence of rv’s with mean Y
and variance σY

2 .

The sum A = Y1 + + Yn has mean nY and· · ·
variance nσY

2

The sample average of Y1, . . . , Yn is

A Y1 + + Yn
Sn = =

· · ·
Y n n

It has mean and variance

σn
E[Sy

n] = Y ; VAR[SY
n] = Y

n
Note: limn→1 VAR[A] = 1 limn→1 VAR[Sn]=0.Y

14

1

y

FSn
Y
(y)
FS2n

Y
(y)✛

❍❍
✻

❄

✻
✲

❄

✲

Pr{|Sn
Y −Y | < ≤}

Pr{|S2n
Y −Y | < ≤}

Y −≤ Y Y +≤

The distribution of Sn clusters around Y , clus-Y
tering more closely as n → 1.

Chebyshev: for ≤ > 0, Pr{|Sn
Y − Y | ≥ ≤} ≤

σ2
Y

n≤2

For any ≤, δ > 0, large enough n,

Pr{|Sn
Y − Y | ≥ ≤} ≤ δ

15

ASYMPTOTIC EQUIPARTITION

PROPERTY (AEP)

Let X1, X2, . . . , be output from DMS.

Define log pmf as w(x) = − log pX(x).

w(x) maps source symbols into real numbers.

For each j, W (Xj) is a rv; takes value w(x) for

Xj = x. Note that

E[W (Xj)] =
X

pX(x)[− log pX(x)] = H(X)
x

W (X1), W (X2), . . . sequence of iid rv’s.

16

For X1 = x1, X2 = x2, the outcome for W (X1)+

W (X2) is

w(x1) + w(x2)	 = − log pX(x1) − log pX(x2)

= − log{pX1
(x1)pX2

(x2)}

= − log{pX1X2
(x1x2)} = w(x1x2)

where w(x1x2)	 is -log pmf of event X1X2 = x1x2

W (X1X2) = W (X1) + W (X2)

X1X2 is a random symbol in its own right (takes

values x1x2). W (X1X2) is -log pmf of random

symbol X1X2.

Probabilities multiply, log pmf’s add.

17

For Xn = xn; xn = (x1, . . . , xn), the outcome for

W (X1) + + W (Xn) is· · ·
Xn

w(xj) = −
Xn

log pX(xj) = − log pXn(xn)
j=1 j=1

Sample average of log pmf’s is

Sn W (X1) + W (Xn) − log pXn(Xn)
=

· · ·
= W n n

WLLN applies and is

Pr
µ ØØØSn

ØØØ ≥ ≤
∂

≤
n

σ

≤

2

2W − E[W (X)] W

σ2
WPr

√ ØØØØØ
− log pXn(Xn) − H(X)

ØØØØØ ≥ ≤

!

n
≤

n≤2
.

18

Define typical set as

− log pXn(xn)
Tn =

(

xn :

ØØØØØ − H(X)

ØØØØØ < ≤

)

≤ n

w

FW n
Y
(w)
FW 2n

Y
(w)✛

❍❍
✻

❄

✻
✲

❄

✲

Pr{T n
≤ }

Pr{T 2n
≤ }

1

H−≤ H H+≤

As n →1, typical set approaches probability 1:

σ2
WPr(Xn ∈ T≤

n) ≥ 1 −
n≤2

19

We can also express T≤
n as

()

Tn = xn : n(H(X)−≤) < − log p(xn) < n(H(X)+≤)≤

()

T≤
n = xn : 2−n(H(X)+≤) < pXn(xn) < 2−n(H(X)−≤) .

Typical elements are approximately equiprob­

able in the strange sense above.

The complementary, atypical set of strings,

satisfy

σ2
Pr[(Tn W

≤)
c] ≤

n≤2

For any ≤, δ > 0, large enough n, Pr[(T≤
n)c] < δ.

20

For all Xn ∈ Tn
≤ , pXn(Xn) > 2−n[H(X)+≤].

1 ≥
X

pXn(Xn) > |Tn
≤ | 2−n[H(X)+≤]

Xn∈Tn
≤

|T≤
n| < 2n[H(X)+≤]

1 − δ ≤
X

pXn(Xn) < |Tn
≤ |2−n[H(X)−≤]

Xn∈T≤
n

|T≤
n| > (1 − δ)2n[H(X)−≤]

Summary: Pr[(T≤
n)c] ≈ 0, |T≤

n| ≈ 2nH(X),

pXn(Xn) ≈ 2−nH(X) for Xn ∈ Tn
≤ .

21

EXAMPLE

Consider binary DMS with Pr[X=1] = p < 1/2.

H(X) = −p log p − (1−p) log(1−p)

The typical set T≤
n is the set of strings with

about pn ones and (1−p)n zeros.

The probability of a typical string is about
ppn(1−p)(1−p)n = 2−nH(X).

The number of n-strings with pn ones is (pn)!(
n
n
!
−pn)!

Note that there are 2n binary strings. Most of
them are collectively very improbable.

The most probable strings have almost all ze­
ros, but there aren’t enough of them to mat­
ter.

22

Fixed-to-fixed-length source codes

For any ≤, δ > 0, and any large enough n, assign

fixed length code word to each Xn ∈ T≤.

Since |T≤| < 2n[H(X)+≤], L ≤ H(X)+≤+1/n.

Pr{failure} ≤ δ.

Conversely, take L ≤ H(X) − 2≤, and n large.

Since |T≤
n| > (1 − δ)2n[H(X)−≤], most of typical

set can not be assigned codewords.

Pr{failure} > 1 − δ − 2−≤≤n 1→

23

Kraft inequality for unique decodability

Suppose {li} are lengths of a uniquely decod­

able code and
P

i 2
−li = b. We show that b > 1

leads to contradiction. Choose DMS with pi =

(1/b)2−li, i.e., li = − log(bpi).

L =
X

pili = H(X) − log b
i

Consider string of n source letters. Concatena­

tion of code words has length less than n[H(X)−

b/2] with high probability. Thus fixed length

code of this length has low failure probability.

Contradiction.

24

MIT OpenCourseWare
http://ocw.mit.edu

6.450 Principles of Digital Communication I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

