
6.450, Lecture 2, 9/14/09; REVIEW

Input
✲

Source

Encoder
✲

Channel

Encoder
❄

Channel

✛
Source

Decoder
✛

Channel

Decoder

Binary
Interface

✛
Output

Separation of source and channel coding.

1

REASONS FOR BINARY INTERFACE

• Standardization (Simplifies implementation)

• Layering (Simplifies conceptualization)

• Loses nothing in performance (Shannon says)

2

input
✲

discrete
✲ ✲sampler quantizer

waveform coder
❄

reliable
analog symbol binary
sequence sequence Channel

output tableanalog
✛

discrete
✛ ✛ ✛

waveform lookup
filter decoder

Layering of source coding

3

input
✲

discrete
✲ ✲sampler quantizer

waveform coder
❄

reliable
analog symbol binary
sequence sequence Channel

output tableanalog
✛

discrete
✛ ✛ ✛

waveform lookup
filter decoder

⇑
A waveform source is usually sampled or

expanded into a series, producing a sequence

of real or complex numbers.

4

input
✲

discrete
✲ ✲sampler quantizer

waveform coder
❄

reliable
analog symbol binary
sequence sequence Channel

output tableanalog
✛

discrete
✛ ✛ ✛

waveform lookup
filter decoder

⇑
The analog sequence is encoded by

quantization into sequence of symbols.

5

input
✲

discrete
✲ ✲sampler quantizer

waveform coder
❄

reliable
analog symbol binary
sequence sequence Channel

output tableanalog
✛

discrete
✛ ✛ ✛

waveform lookup
filter decoder

⇑
Both analog and discrete sources then require

binary encoding of sequence of symbols.

6

DISCRETE SOURCE CODING

OBJECTIVE: Map sequence of symbols into

binary sequence with unique decodability.

SIMPLEST APPROACH: Map each source sym­

bol into an L-tuple of binary digits.

Choose L as smallest integer satisfying 2L ≥ M,

i.e.,

log2 M ≤ L < log2 M + 1; L = dlog2 Me

7

Example (for alphabet {red, blue, green,
yellow, purple, magenta}):

red 000→
blue 001→
green 010→
yellow 011→
purple 100→
magenta 101→

This can be easily decoded.

Example: the ASCII code maps let­

ters, numbers, etc. into bytes.

These are called fixed length codes.

8

FIXED-TO-FIXED LENGTH SOURCE

CODES

Segment source symbols into n-tuples.

Map each n-tuple into binary L-tuple where

log2 M
n ≤ L < log2 M

n + 1; L = dn log2 Me

Let L = Ln be number of bits per source symbol

1
log2 M ≤ L < log2 M +

n

9

VARIABLE LENGTH SOURCE CODES

Motivation: Probable symbols should have shorter

codewords than improbable to reduce bpss.

A variable-length source code C encodes each

symbol x in source alphabet to a binary
X

codeword C(x) of length l(x).

For example, for X = {a, b, c}

C(a) = 0

C(b) = 10

C(c) = 11

10

Decoder must parse the received sequence.

Requires unique decodability: For every string

of source letters {x1, x2, . . . , xn}, the encoded

output {C(x1)C(x2), . . . , C(xn)} must be distinct,

i.e., must differ from {C(x01)C(x2
0), . . . , C(xm

0)} for

any other source string {x1
0 , . . . , x0m}.

If C(x1) · · · C(xn) = C(x1
0) · · · C(xm

0), decoder must

fail on one of these inputs.

We will show that prefix-free codes are uniquely

decodable.

11

Unique Decodability: For every string of source

letters {x1, x2, . . . , xn}, the encoded output

{C(x1)C(x2), . . . , C(xn)} must be distinct, i.e., must

differ from {C(x01)C(x2
0), . . . , C(xm

0)} for any other

source string {x1
0 , . . . , x0m}.

If C(x1) · · · C(xn) = C(x1
0) · · · C(x0m), decoder must

fail on one of these inputs.

Example: Consider a 0, b 01, c 10→ → →

Then ac 010 and ba 010,→ →

Not uniquely decodable.

12

Unique Decodability: For every string of source

letters {x1, x2, . . . , xn}, the encoded output

{C(x1)C(x2) · · · C(xn)} must be distinct, i.e., must

differ from {C(x01)C(x02) · · · C(xm
0)} for any other

source string {x1
0 , . . . , x0m}.

If C(x1) · · · C(xn) = C(x1
0) · · · C(x0m), decoder must

fail on one of these inputs.

Example: Consider a 0, b 01, c 11→ → →

Then accc 0111111=016; bccc 01111111=017 .→ →

This can be shown to be uniquely decodable.

13

PREFIX-FREE CODES

A code is prefix-free if no codeword is a prefix
of any other codeword. A prefix of a string
y1, . . . , yk is y1, . . . , yi for any i ≤ k.

A prefix-free code can be represented by a bi­
nary tree which grows from left to right; leaves
represent codewords.

✟✟✟
1✟✟✟✟ b

a 0

✟✟✟✟1✟✟✟❍❍❍0❍
✟✟✟

1✟✟✟✟ c
b
→

11
❍❍❍❍❍0

❍
❍❍❍0 c

→
101

❍ ❍❍
❍❍ a

❍
❍❍

→

Every codeword is at a leaf, but not all leaves
are codewords. Empty leaves can be short­
ened. A full code tree has no empty leaves.

14

✏✏✏✏✏✏ bb
✏✏✏✏✏✏PPPPPP

✟✟✟✟✟✟PPPPPP

bc
b ba

❍ ✏✏✏✏✏✏ cb
❍✓

✓ ❍
❍

✏✏✏✏✏✏PPPPPP cc1
✓

✓ ❍❍PPPPPP✓ c ca
✓

✓

✓

❅

❅ 0
✏✏✏✏✏✏ab

❅

❅

✟✟✟✟✟✟PPPPPP❅ a ac
❅PPPPPPaa

Prefix-free codes are uniquely decodable:

Construct a tree for a concatenation of code-

words.

To decode, start at the left, and parse when­

ever a leaf in the tree is reached.

15

THE KRAFT INEQUALITY

The Kraft inequality is a test on the existence
of prefix-free codes with a given set of code-
word lengths {l(x), x ∈ X}.

Theorem (Kraft): Every prefix-free code for
an alphabet X with codeword lengths {l(x), x ∈
X} satisfies

X
2−l(x) ≤ 1 (1)

x∈X

Conversely, if (1), then a prefix-free code with
lengths {l(x)} exists.

Moreover, a prefix-free code is full iff (1) is
satisfied with equality.

16

We prove this by associating codewords with

base 2 expansions i.e., ‘decimals’ in base 2.

Represent binary codeword y1, y2, . . . , ym as

.y1y2 · · · ym = y1/2 + y2/4 + · · · + ym2−m

1.0
✻

Interval [1/2, 1)

1 −→ .1 ❄
✻

Interval [1/4, 1/2)
❄01 −→ .01

✻

Interval [0, 1/4)
❄00 −→ .00

17

Represent binary codeword y1, y2, . . . , ym as

.y1y2 · · · ym = y1/2 + y2/4 + · · · + ym2−m

1.0

1 −→ .1

01 −→ .01

00 −→ .00

✻

Interval [1/2, 1)

❄
✻

Interval [1/4, 1/2)

❄

✻

Interval [0, 1/4)
❄

C(aj) is a prefix of C(ai) if and only if the expan­

sion of C(aj) contains the expansion of C(ai) in

its “approximation interval.”

18

1.0
✻

Interval [1/2, 1)

❄
✻

1 −→ .1
Interval [1/4, 1/2)
❄01 −→ .01

✻

Interval [0, 1/4)
❄00 −→ .00

C(aj) is a prefix of C(ai) if and only if the expan­

sion of C(aj) contains the expansion of C(ai) in

its “approximation interval.”

Thus a code is a prefix code iff the base 2

approximation intervals are disjoint.

19

1.0

1 −→ .1

01 −→ .01

00 −→ .00

✻

Interval [1/2, 1)

❄
✻

Interval [1/4, 1/2)

❄

✻

Interval [0, 1/4)
❄

A code is a prefix code iff the base 2 approxi­

mation intervals are disjoint.

But the sum of disjoint approximation intervals

is at most 1.

20

1.0

1 −→ .1

01 −→ .01

00 −→ .00

✻

Interval [1/2, 1)

❄
✻

Interval [1/4, 1/2)

❄

✻

Interval [0, 1/4)
❄

The sum of disjoint approximation intervals is

at most 1.

Code is full iff approximation intervals fill up

[0, 1)

21

DISCRETE MEMORYLESS SOURCES

•	 The source output is an unending sequence,
X1, X2, X3, . . . , of randomly selected letters
from a finite set X , called the source al­
phabet.

•	 Each source output X1, X2, . . . is selected
from X using a common probability mea­
sure.

•	 Each source output Xk is statistically inde­
pendent of the other source outputs X1, . . . ,
Xk−1, Xk+1,

22

Probability Structure for Discrete Sources

English text: e, i, and o are far more probable

than q, x, and z.

Successive letters are dependent; (th and qu).

Some letter strings are words, others are not.

Long term grammatical constraints.

The discrete memoryless source is a toy model

that can be easily generalized after understand­

ing it.

23

PREFIX-FREE CODES FOR DMS

Let l(x) be the length of the codeword for let­

ter x ∈ X .

Then L(X) is a random variable (rv) where

L(X) = l(x) for X = x.

Thus L(X) = l(x) with probability pX(x).

E(L) = L =
X

pX(x)l(x)
x

Thus L is the number of encoder output bits

per source symbol.

24

OBJECTIVE: choose integers {l(x)} subject to

Kraft to minimize L.

Let X = {1, 2, . . . , M} with pmf p1, . . . , pM .

Denote the unknown lengths by l1, . . . , lM .

Lmin = min
l1,... ,lM :

P
2−li≤1






MX

=1i

pili






Forget about the lengths being integer for now.
Minimize Lagrangian:

P
i(pili + ∏2−li).

@
P

i(pili + ∏2−li)
= pi − ∏(ln 2)2−li = 0

@li

Choose ∏ so that the optimizing {li} satisfy
P

i 2
−li = 1. Then any other choice of {li} sat­

isfying constraint will have a larger L̄.

25

@
P

i(pili + ∏2−li)
= pi − ∏(ln 2)2−li = 0

@li
If we choose ∏ = 1/ ln 2, then

pi = 2−li

li = − log pi

Lmin(non−int.) =
X

−pi log pi = H(X)
i

H(X) is called the entropy of the rv X. We
will see that it is the minimum number of bi­
nary digits per symbol needed to represent the
source.

For now, it is a lower bound for prefix-free
codes.

26

Theorem: Entropy bounds

Let Lmin be the minimum expected codeword
length over all prefix-free codes for X. Then

H(X) ≤ Lmin < H(X) + 1

Lmin = H(X) iff each pi is integer power of 2.

Proof of H(X) ≤ L for prefix-free codes:

Let l1, . . . , lM be codeword lengths.

H(X) − L =
X

i
pi log

p

1

i
−

X

i
pili

=
X

pi log
2−li

,
i pi

27

°

°
°

°
°

°
°

°
°

°
°

°
°

°
°

u−1

u1

ln u

The inequality ln u ≤ u−1 or log u ≤ (log e)(u−1).

This inequality is strict except at u = 1.

H(X) − L =
X

i
pi log

2−li
≤

X

i
pi

"
2−li

− 1

log e

pi pi

=
X

i

h
2−li − pi

i
log e ≤ 0

Equality occurs iff pi = 2−li for each i.

28

Theorem: Entropy bound for prefix-free codes:

H(X) ≤ Lmin < H(X) + 1

Lmin = H(X) iff each pi is integer power of 2.

Proof that Lmin < H(X) + 1:

Choose li = d− log(pi)e. Then

li < − log(pi) + 1 so Lmin ≤ L < H(X) + 1

li ≥ log(pi) so
X

2−li ≤
X

pi = 1
i i

29

MIT OpenCourseWare
http://ocw.mit.edu

6.450 Principles of Digital Communication I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

