6.450, Lecture 2, 9/14/09; REVIEW

Source | | | Channel

Input Encoder, Encode
iBinary
IInterface Channel

Output| Source | || Channel
Decoder Decoder

Separation of source and channel coding.

REASONS FOR BINARY INTERFACE

e Standardization (Simplifies implementation)

e Layering (Simplifies conceptualization)

e Loses nothing in performance (Shannon says)

input | _ discrete
sampler quantizer
waveform | coder
| reliable
analog symbol binary
sequence sequence Channel
|
output analog, | table discrete
waveform filter lookup decoder

Lavering of source coding

input | - | discrete
sampler quantizer
waveform | | _coder
| | reliable
analog symbol binary
sequence sequence Channel
| |
output analog| table | discrete
waveform filter lookup decoder

)

A waveform source is usually sampled or
expanded into a series, producing a sequence
of real or complex numbers.

input | - | discrete
sampler quantizer
waveform | | _coder
| | reliable
analog symbol binary
sequence sequence Channel
| |
output analog, table | discrete
waveform filter lookup decoder

)

The analog sequence is encoded by
quantization into sequence of symbols.

input | - | discrete
sampler quantizer
waveform | | _coder
| | reliable
analog symbol binary
sequence sequence Channel
| |
output analog, table | discrete
waveform filter lookup decoder

)

Both analog and discrete sources then require
binary encoding of sequence of symbols.

DISCRETE SOURCE CODING

OBJECTIVE: Map sequence of symbols into
binary sequence with unique decodability.

SIMPLEST APPROACH: Map each source sym-
bol into an L-tuple of binary digits.

Choose . as smallest integer satisfying 2L > M,
.e.,

logo M < L <logp M +1; L= [logyM]

Example (for alphabet {red, blue, green,

yellow, purple, magenta}):
red — 000
blue — 001
green — 010
yellow — 011
purple — 100
magenta — 101

This can be easily decoded.

Example: the ASCII code maps let-
ters, numbers, etc. into bytes.

These are called fixed length codes.

FIXED-TO-FIXED LENGTH SOURCE
CODES

Segment source symbols into n-tuples.

Map each n-tuple into binary L-tuple where

logo M" < L <logp M"+1; L= [nlogy M|

Let L. = % be number of bits per source symbol

— 1
logo M < L <logo M + —
n

VARIABLE LENGTH SOURCE CODES

Motivation: Probable symbols should have shorter
codewords than improbable to reduce bpss.

A variable-length source code C encodes each
symbol z In source alphabet X to a binary

codeword C(z) of length [(x).

For example, for X = {a,b,c}

Cla) = O
c(b) = 10
Clec) = 11

10

Decoder must parse the received sequence.

Requires unique decodability: For every string
of source letters {zi,zo,...,zn}, the encoded
output {C(x1)C(x3),...,C(xn)} Mmust be distinct,
i.e., must differ from {C(z})C(a5%),... ,C(xy,)} for
any other source string {z7,...,z,}.

If C(x1)---C(zn) = C(zY)---C(x},), decoder must
fail on one of these inputs.

We will show that prefix-free codes are uniquely
decodable.

11

Unique Decodability: For every string of source
letters {z1,xp,...,xzn}, the encoded output
{C(x1)C(x2),...,C(xn)} must be distinct, i.e., must
differ from {C(z})C(%),...,C(«},)} for any other
source string {z7,...,z,}.

If C(x1)---C(zn) = C(z})---C(xy,), decoder must
fail on one of these inputs.

Example: Consider a — 0,b — 01,¢c — 10
Then ac — 010 and ba — 010,

Not uniquely decodable.

12

Unique Decodability: For every string of source
letters {z1,xp,...,xzn}, the encoded output
{C(x1)C(xz2)---C(xn)} must be distinct, i.e., must
differ from {C(z})C(z5%)---C(«},)} for any other
source string {z7,...,z,}.

If C(x1)---C(zn) = C(z})---C(xy,), decoder must
fail on one of these inputs.

Example: Consider a — 0,b — 01,¢c — 11
Then acce — 0111111=01%; bcee — 01111111=01".

This can be shown to be uniquely decodable.

13

PREFIX-FREE CODES

A code is prefix-free if nho codeword is a prefix
of any other codeword. A prefix of a string
Yl,--- .Y IS y1,...,y; for any i < k.

A prefix-free code can be represented by a bi-
nary tree which grows from left to right; leaves
represent codewords.

b
C a— 0O
1 b— 11
0 c— 101
a

Every codeword is at a leaf, but not all leaves
are codewords. Empty leaves can be short-
ened. A full code tree has no empty leaves.

14

Prefix-free codes are uniquely decodable:

Construct a tree for a concatenation of code-
words.

To decode, start at the left, and parse when-
ever a leaf in the tree is reached.

15

THE KRAFT INEQUALITY

The Kraft inequality is a test on the existence
of prefix-free codes with a given set of code-
word lengths {i(z),x € X}.

Theorem (Kraft): Every prefix-free code for
an alphabet X with codeword lengths {i(x),x €
X} satisfies

S 27l@) < q (1)
reX
Conversely, If (1), then a prefix-free code with
lengths {/(x)} exists.

Moreover, a prefix-free code is full iff (1) is
satisfied with equality.

16

We prove this by associating codewords with
base 2 expansions i.e., ‘decimals’ in base 2.

Represent binary codeword y1,y>,... ,ym as

Y1y ym =y1/2 +yo /4 + - Fym2™ ™

1.0

Interval [1/2,1)

1— .1

|Interval [1/4,1/2)
|Interva| [0,1/4)

17

Represent binary codeword y1,y>,... ,ym as

Y1y2 - ym = y1/2 +yp/4+ -+ ym2™ "

1.0

Interval [1/2,1)

1— .1

|Interva| [1/4,1/2)
IIntervaI [0,1/4)

C(a;) is a prefix of C(a;) if and only if the expan-
sion of C(a;) contains the expansion of C(a;) in
its “approximation interval.”

18

1.0

Interval [1/2,1)
1 — .1 L

01 — 01 IIntervaI [1/4,1/2)
00 — 00 |Interva| [0,1/4)

C(a;) is a prefix of C(a;) if and only if the expan-
sion of C(a;) contains the expansion of C(a;) in
its “approximation interval.”

Thus a code is a prefix code iff the base 2
approximation intervals are disjoint.

19

1.0

Interval [1/2,1)

1l — 1 L
01 — 01 |Interval [1/4,1/2)
00 — 00 |Interva| [0,1/4)

A code is a prefix code iff the base 2 approxi-
mation intervals are disjoint.

But the sum of disjoint approximation intervals
iIs at most 1.

20

Interval [1/2,1)

1 — .1 L
01 — 01 Interval [1/4,1/2)
00 — 00 | Interval [0,1/4)

The sum of disjoint approximation intervals is
at most 1.

Code is full iff approximation intervals fill up
[0, 1)

21

DISCRETE MEMORYLESS SOURCES

e [he source output is an unending sequence,
X1,Xo2,X3,..., of randomly selected letters
from a finite set X, called the source al-
phabet.

e Each source output Xq,X»,... IS selected
from X using a common probability mea-
sure.

e Each source output X, is statistically inde-
pendent of the other source outputs X4, ...,

Xp—1, Xp41,- - -

22

Probability Structure for Discrete Sources

English text: e, i, and o are far more probable
than q, X, and z.

Successive letters are dependent; (th and qu).
Some letter strings are words, others are not.

Long term grammatical constraints.
The discrete memoryless source is a toy model

that can be easily generalized after understand-
ing it.

23

PREFIX-FREE CODES FOR DMS

Let [(z) be the length of the codeword for let-
ter x € X.

Then L(X) is a random variable (rv) where
L(X)=1(x) for X = x.

Thus L(X) = I(z) with probability px(z).

E(L) =L=7} px(@)l(z)

Thus L is the number of encoder output bits
per source symbol.

24

OBJECTIVE: choose integers {l(z)} subject to
Kraft to minimize L.

Let ¥ ={1,2,... ,M} with pmf p1,... ,py,.
Denote the unknown lengths by [4,... .,

B M
Lyin = min pil;
I,y 27k | =1

Forget about the lengths being integer for now.
Minimize Lagrangian: >, (p;l; + A\274).

O i(pil; +227h)

- xIn2)27 =0
8l7; DPi ()

Choose)\ so that the optimizing {/;} satisfy
5,27% = 1. Then any other choice of {I;} sat-
isfying constraint will have a larger L.

25

0y i(pil; + A274) _
ol;
If we choose A =1/In2, then

p; — A(In2)27l =

p;=2""
l; = —1ogp;

Lnin(non—int.) = 3~ —p;logp; = H(X)
)

H(X) is called the entropy of the rv X. We
will see that it is the minimum number of bi-
nary digits per symbol needed to represent the
source.

For now, it is a lower bound for prefix-free
codes.

26

Theorem: Entropy bounds

Let L,,;, be the minimum expected codeword
length over all prefix-free codes for X. Then
H(X)< Ly, <H(X)+1
L., = H(X) iff each p; is integer power of 2.

Proof of H(X) < L for prefix-free codes:

Let [4,...,[l); be codeword lengths.

_ 1
H(X)-L =) p |09; — > . pili
7

2l

> ;pilog——,

P

27

The inequality Inu <u—1orlogu < (loge)(u—1).

This inequality is strict except at v = 1.

>~ l;

H(X)-L = Z p; 10

— Zi[Q L —pz} loge < o

Equality occurs iff p, = 2! for each i.

]Ioge

28

Theorem: Entropy bound for prefix-free codes:

H(X) < Lipin < H(X) + 1

Lmin = H(X) iff each p; is integer power of 2.
Proof that L, < H(X) 4+ 1:

Choose [; = [—log(p;)]. Then

l; < —log(p;)+1 so fmin <L< H(X)+1

l; > 1og(p;) soO ZQ_Zi <> p=1
i i

29

MIT OpenCourseWare
http://ocw.mit.edu

6.450 Principles of Digital Communication |
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

