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Separation of source and channel coding.
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REASONS FOR BINARY INTERFACE 

• Standardization (Simplifies implementation)


• Layering (Simplifies conceptualization) 

• Loses nothing in performance (Shannon says)
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Layering of source coding
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⇑
A waveform source is usually sampled or


expanded into a series, producing a sequence


of real or complex numbers.
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⇑
The analog sequence is encoded by


quantization into sequence of symbols.
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input 
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✲ ✲sampler quantizer


waveform coder 
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reliable 
analog symbol binary 
sequence sequence Channel 

output tableanalog 
✛ 

discrete
✛ ✛ ✛ 

waveform lookup
filter decoder 

⇑
Both analog and discrete sources then require


binary encoding of sequence of symbols.


6 



DISCRETE SOURCE CODING 

OBJECTIVE: Map sequence of symbols into 

binary sequence with unique decodability. 

SIMPLEST APPROACH: Map each source sym­

bol into an L-tuple of binary digits. 

Choose L as smallest integer satisfying 2L ≥ M, 

i.e., 

log2 M ≤ L < log2 M + 1; L = dlog2 Me 
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Example (for alphabet {red, blue, green, 
yellow, purple, magenta}): 

red 000→
blue 001→ 
green 010→
yellow 011→
purple 100→
magenta 101→

This can be easily decoded. 

Example: the ASCII code maps let­

ters, numbers, etc. into bytes. 

These are called fixed length codes. 
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FIXED-TO-FIXED LENGTH SOURCE


CODES


Segment source symbols into n-tuples. 

Map each n-tuple into binary L-tuple where 

log2 M
n ≤ L < log2 M

n + 1; L = dn log2 Me 

Let L = Ln be number of bits per source symbol 

1 
log2 M ≤ L < log2 M + 

n 
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VARIABLE LENGTH SOURCE CODES 

Motivation: Probable symbols should have shorter 

codewords than improbable to reduce bpss. 

A variable-length source code C encodes each


symbol x in source alphabet to a binary
X 

codeword C(x) of length l(x). 

For example, for X = {a, b, c} 

C(a) = 0

C(b) = 10

C(c) = 11
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Decoder must parse the received sequence. 

Requires unique decodability: For every string 

of source letters {x1, x2, . . . , xn}, the encoded 

output {C(x1)C(x2), . . . , C(xn)} must be distinct, 

i.e., must differ from {C(x01)C(x2
0 ), . . . , C(xm

0 )} for 

any other source string {x1
0 , . . . , x0m}. 

If C(x1) · · · C(xn) = C(x1
0 ) · · · C(xm

0 ), decoder must 

fail on one of these inputs. 

We will show that prefix-free codes are uniquely 

decodable. 
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Unique Decodability: For every string of source 

letters {x1, x2, . . . , xn}, the encoded output 

{C(x1)C(x2), . . . , C(xn)} must be distinct, i.e., must 

differ from {C(x01)C(x2
0 ), . . . , C(xm

0 )} for any other 

source string {x1
0 , . . . , x0m}. 

If C(x1) · · · C(xn) = C(x1
0 ) · · · C(x0m), decoder must 

fail on one of these inputs. 

Example: Consider a 0, b 01, c 10→ → → 

Then ac 010 and ba 010,→ → 

Not uniquely decodable. 
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Unique Decodability: For every string of source 

letters {x1, x2, . . . , xn}, the encoded output 

{C(x1)C(x2) · · · C(xn)} must be distinct, i.e., must 

differ from {C(x01)C(x02) · · · C(xm
0 )} for any other 

source string {x1
0 , . . . , x0m}. 

If C(x1) · · · C(xn) = C(x1
0 ) · · · C(x0m), decoder must 

fail on one of these inputs. 

Example: Consider a 0, b 01, c 11→ → → 

Then accc 0111111=016; bccc 01111111=017 .→ → 

This can be shown to be uniquely decodable. 
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PREFIX-FREE CODES


A code is prefix-free if no codeword is a prefix 
of any other codeword. A prefix of a string 
y1, . . . , yk is y1, . . . , yi for any i ≤ k. 

A prefix-free code can be represented by a bi­
nary tree which grows from left to right; leaves 
represent codewords. 

✟✟✟
1✟✟✟✟ b

a 0 

✟✟✟✟1✟✟✟❍❍❍0❍
✟✟✟

1✟✟✟✟ c
b 
→ 

11 
❍❍❍❍❍0 

❍
❍❍❍0 c 

→ 
101 

❍ ❍❍
❍❍ a 

❍
❍❍ 

→ 

Every codeword is at a leaf, but not all leaves 
are codewords. Empty leaves can be short­
ened. A full code tree has no empty leaves. 
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✏✏✏✏✏✏ bb 
✏✏✏✏✏✏PPPPPP 

✟✟✟✟✟✟PPPPPP 

bc 
b ba 

❍ ✏✏✏✏✏✏ cb 
❍✓

✓ ❍
❍

✏✏✏✏✏✏PPPPPP cc1
✓

✓ ❍❍PPPPPP✓ c ca 
✓ 

✓

✓

❅


❅ 0 
✏✏✏✏✏✏ab 

❅

❅


✟✟✟✟✟✟PPPPPP❅ a ac 
❅PPPPPPaa


Prefix-free codes are uniquely decodable: 

Construct a tree for a concatenation of code-

words. 

To decode, start at the left, and parse when­

ever a leaf in the tree is reached. 
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THE KRAFT INEQUALITY


The Kraft inequality is a test on the existence 
of prefix-free codes with a given set of code-
word lengths {l(x), x ∈ X}. 

Theorem (Kraft): Every prefix-free code for 
an alphabet X with codeword lengths {l(x), x ∈ 
X} satisfies 

X 
2−l(x) ≤ 1 (1) 

x∈X 

Conversely, if (1), then a prefix-free code with 
lengths {l(x)} exists. 

Moreover, a prefix-free code is full iff (1) is 
satisfied with equality. 
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We prove this by associating codewords with 

base 2 expansions i.e., ‘decimals’ in base 2. 

Represent binary codeword y1, y2, . . . , ym as 

.y1y2 · · · ym = y1/2 + y2/4 + · · · + ym2−m 

1.0 
✻ 

Interval [1/2, 1) 

1 −→ .1 ❄ 
✻ 

Interval [1/4, 1/2)
❄01 −→ .01 

✻ 

Interval [0, 1/4)
❄00 −→ .00 
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Represent binary codeword y1, y2, . . . , ym as 

.y1y2 · · · ym = y1/2 + y2/4 + · · · + ym2−m 

1.0 

1 −→ .1


01 −→ .01


00 −→ .00


✻ 

Interval [1/2, 1) 

❄ 
✻ 

Interval [1/4, 1/2)

❄ 

✻ 

Interval [0, 1/4)
❄ 

C(aj) is a prefix of C(ai) if and only if the expan­

sion of C(aj) contains the expansion of C(ai) in 

its “approximation interval.” 
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1.0 
✻ 

Interval [1/2, 1) 

❄ 
✻

1 −→ .1 
Interval [1/4, 1/2)
❄01 −→ .01 

✻ 

Interval [0, 1/4)
❄00 −→ .00 

C(aj) is a prefix of C(ai) if and only if the expan­

sion of C(aj) contains the expansion of C(ai) in 

its “approximation interval.” 

Thus a code is a prefix code iff the base 2 

approximation intervals are disjoint. 
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1.0 

1 −→ .1


01 −→ .01


00 −→ .00


✻ 

Interval [1/2, 1) 

❄ 
✻ 

Interval [1/4, 1/2)

❄ 

✻ 

Interval [0, 1/4)
❄ 

A code is a prefix code iff the base 2 approxi­

mation intervals are disjoint. 

But the sum of disjoint approximation intervals 

is at most 1. 
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1.0 

1 −→ .1


01 −→ .01


00 −→ .00


✻ 

Interval [1/2, 1) 

❄ 
✻ 

Interval [1/4, 1/2)

❄ 

✻ 

Interval [0, 1/4)
❄ 

The sum of disjoint approximation intervals is 

at most 1. 

Code is full iff approximation intervals fill up


[0, 1) 

21




DISCRETE MEMORYLESS SOURCES


•	 The source output is an unending sequence, 
X1, X2, X3, . . . , of randomly selected letters 
from a finite set X , called the source al­
phabet. 

•	 Each source output X1, X2, . . . is selected 
from X using a common probability mea­
sure. 

•	 Each source output Xk is statistically inde­
pendent of the other source outputs X1, . . . , 
Xk−1, Xk+1, . . . . 
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Probability Structure for Discrete Sources


English text: e, i, and o are far more probable


than q, x, and z.


Successive letters are dependent; (th and qu).


Some letter strings are words, others are not.


Long term grammatical constraints.


The discrete memoryless source is a toy model 

that can be easily generalized after understand­

ing it. 
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PREFIX-FREE CODES FOR DMS


Let l(x) be the length of the codeword for let­

ter x ∈ X . 

Then L(X) is a random variable (rv) where 

L(X) = l(x) for X = x. 

Thus L(X) = l(x) with probability pX(x). 

E(L) = L = 
X 

pX(x)l(x) 
x 

Thus L is the number of encoder output bits 

per source symbol. 
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OBJECTIVE: choose integers {l(x)} subject to

Kraft to minimize L.


Let X = {1, 2, . . . , M} with pmf p1, . . . , pM .

Denote the unknown lengths by l1, . . . , lM .


Lmin = min 
l1,... ,lM :

P 
2−li≤1 


 




MX 

=1i

pili



 




Forget about the lengths being integer for now. 
Minimize Lagrangian: 

P
i(pili + ∏2−li). 

@ 
P

i(pili + ∏2−li)
= pi − ∏(ln 2)2−li = 0 

@li 

Choose ∏ so that the optimizing {li} satisfy
P

i 2
−li = 1. Then any other choice of {li} sat­

isfying constraint will have a larger L̄. 
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@ 
P

i(pili + ∏2−li)
= pi − ∏(ln 2)2−li = 0 

@li 
If we choose ∏ = 1/ ln 2, then 

pi = 2−li 

li = − log pi 

Lmin(non−int.) = 
X 

−pi log pi = H(X) 
i 

H(X) is called the entropy of the rv X. We 
will see that it is the minimum number of bi­
nary digits per symbol needed to represent the 
source. 

For now, it is a lower bound for prefix-free 
codes. 
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Theorem: Entropy bounds 

Let Lmin be the minimum expected codeword 
length over all prefix-free codes for X. Then 

H(X) ≤ Lmin < H(X) + 1 

Lmin = H(X) iff each pi is integer power of 2. 

Proof of H(X) ≤ L for prefix-free codes: 

Let l1, . . . , lM be codeword lengths. 

H(X) − L = 
X 

i 
pi log 

p

1 

i 
− 

X 

i 
pili 

= 
X 

pi log 
2−li

,
i pi 
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°


° 
° 

° 
° 

° 
° 

° 
° 

° 
° 

° 
° 

° 
° 

u−1 

u1 

ln u 

The inequality ln u ≤ u−1 or log u ≤ (log e)(u−1).


This inequality is strict except at u = 1.


H(X) − L = 
X 

i 
pi log 

2−li 
≤ 

X 

i 
pi 

" 
2−li 

− 1 

# 

log e

pi pi


= 
X 

i 

h
2−li − pi 

i 
log e ≤ 0


Equality occurs iff pi = 2−li for each i.
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Theorem: Entropy bound for prefix-free codes: 

H(X) ≤ Lmin < H(X) + 1 

Lmin = H(X) iff each pi is integer power of 2. 

Proof that Lmin < H(X) + 1: 

Choose li = d− log(pi)e. Then 

li < − log(pi) + 1 so Lmin ≤ L < H(X) + 1 

li ≥ log(pi) so 
X 

2−li ≤ 
X 

pi = 1 
i i 
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