LECTURE NOTES ON INFORMATION THEORY

Preface

“There is a whole book of readymade, long and convincing, lav-
ishly composed telegrams for all occasions. Sending such a
telegram costs only twenty-five cents. You see, what gets trans-
mitted over the telegraph is not the text of the telegram, but
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of Drugstore Breakfast #2. Everything is served up in a ready
form, and the customer is totally freed from the unpleasant
necessity to think, and to spend money on top of it.”

Little Golden America. Travelogue by 1. IIf and E. Petrov, 1937.
[Pre-Shannon encoding, courtesy of M. Raginsky]
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Part 1

Information measures



§ 1. INFORMATION MEASURES: ENTROPY AND DIVERGENCE

Review: Random variables

e Two methods to describe a random variable (R.V.) X:

1. a function X : Q — X from the probability space (2, F,P) to a target space X.

2. a distribution Px on some measurable space (X, F).
e Convention: capital letter - RV (e.g. X); small letter — realization (e.g. xo).

e X — discrete if there exists a countable set X = {z;,7 = 1,...} such that
Y721 Px(x5) = 1. X is called alphabet of X, z € X — atoms and Px (z;) — probability
mass function (pmf).

e For discrete RV support suppPyx = {z : Px(z) > 0}.

e Vector RVs: X7 = (X1,...,X,). Also denoted just X".

e For a vector RV X" and S c {1,...,n} we denote Xg ={X;,i€S}.

1.1 Entropy

Definition 1.1 (Entropy). For a discrete R.V. X with distribution Px:

H(X)

1
E[log PX(X)]

g}:{ Px(z)log OR

Definition 1.2 (Joint entropy). X" = (X1, X2,...,X,) — a random vector with n components.

1
H(X")=H(X1,...,X,) =E|log '
(X™) = H( n) [ Py x, (X1, Xa) ]

Definition 1.3 (Conditional entropy).

H(X|Y) =Ey.p, [H(Pxy-y)] = E[ log Py (X] (1X,y) ]

i.e., the entropy of H(Px|y-,) averaged over Py.

Note:



e Q: Why such definition, why log, why entropy?

Name comes from thermodynamics. Definition is justified by theorems in this course (e.g.
operationally by compression), but also by a number of experiments. For example, we can
measure time it takes for ants-scouts to describe location of the food to ants-workers. It was
found that when nest is placed at a root of a full binary tree of depth d and food at one of the
leaves, the time was proportional to log 2% = d — entropy of the random variable describing food
location. It was estimated that ants communicate with about 0.7 — 1 bit/min. Furthermore,
communication time reduces if there are some regularities in path-description (e.g., paths like
“left,right,left,right,left,right” were described faster). See [RZ86] for more.

e We agree that OIOg% =0 (by continuity of x — xlog %)
e Also write H(Px) instead of H(X) (abuse of notation, as customary in information theory).

e Basis of log — units

logy <> bits
log, <> nats
logosg <> Dbytes
log <> arbitrary units, base always matches exp

Example (Bernoulli): X €{0,1}, P[X=1]=Px(1)=2p

A
1 _ 1
H(X) = h(p) = plog — +plog =
p Z |
|
where h(-) is called the binary entropy func- :
tion. :
Proposition 1.1. h(:) is continuous, concave on | >
[0, 1] and 0 1/2 1
W (p) =log®
p

with infinite slope at 0 and 1. ‘
Example (Geometric): X €{0,1,2,...} P[X =i]=P,(i)=p-(p)"

H(X) = p-p'log - =Y pp'(ilog = + log —
Z;J p-p' ;) ( p p)
1 1- h
= log—+p-log—- 2p:_(p)
p P p
Example (Infinite entropy): Can H(X) =+00? Yes, P[X =k] = 75,,k=2,3,~



Review: Convexity

e Convex set: A subset S of some vector space is convex if x,y € S = ax + ay € S for
all a€[0,1]. (Notation: a=1-a.)

e.g., unit interval [0,1]; S = {probability distributions on X'}, S = {Px : E[X] = 0}.
o Convez function: f:5 - R is
— convex if f(az+ay) <af(x)+af(y) for all x,y € S,a€[0,1].
— strictly convex if f(ax+ay) <af(z)+af(y) forall z #yeS,ae(0,1).
— (strictly) concave if —f is (strictly) convex.

e.g., ¢~ xlogx is strictly convex; the mean P+~ [ xdP is convex but not strictly
convex, variance is concave (Q: is it strictly concave? Think of zero-mean distribu-
tions.).

o Jensen’s inequality: For any S-valued random variable X

— fis convex = f(EX) <Ef(X)

— [ is strictly convex = f(EX) <Ef(X)
unless X is a constant (X =EX a.s.)

Famous puzzle: A man says, ”I am the average height and average weight of the
population. Thus, I am an average man.” However, he is still considered to be a little
overweight. Why?

Answer: The weight is roughly proportional to the volume, which is roughly proportional
to the third power of the height. Let Px denote the distribution of the height among the
population. So by Jensen’s inequality, since x — 22 is strictle convex on z > 0, we have
(EX)3 < EX3, regardless of the distribution of X.

Source: [Yos03, Puzzle 94] or online [Har].

Theorem 1.1. Properties of H:
1. (Positivity) H(X) >0 with equality iff X = x¢ a.s. for some xg € X.
2. (Uniform maximizes entropy) H(X) <log|X|, with equality iff X is uniform on X.
3. (Invariance under relabeling) H(X) = H(f(X)) for any bijective f.

4. (Conditioning reduces entropy)
H(X|Y)<H(X), with equality iff X and Y are independent.

10



5. (Small chain rule)
H(X,Y)=H(X)+H(Y|X) < H(X) + HY)

6. (Entropy under functions) H(X) = H(X, f(X)) > H(f(X)) with equality iff f is one-to-one
on the support of Px,

7. (Full chain rule)

H(X1,...,Xn) = iH(XAXi‘l) < iH(XZ-), (1.1)
i=1 i=1

1 equality iff X1,..., X, mutually independent (1.2)

Proof. 1. Expectation of non-negative function
2. Jensen’s inequality
3. H only depends on the values of Px, not locations:

H(L) - H(M)
5. Elog »—1 IE[

— - = E| log ! ]
Pxy(X)Y) Px (X)-Pyx(Y|X)
6. Intuition: (X, f(X)) contains the same amount of information as X. Indeed, z — (z, f(x))
is 1-1. Thus by 3 and 5:

H(X) = H(X, f(X)) = H(f(X)) + H(X|f(X)) 2 H(f(X))

The bound is attained iff H(X|f(X)) =0 which in turn happens iff X is a constant given f(X).
7. Telescoping;:

4. Later (Lecture 2)

Px, x5 X0 = Px; Pxyx, P,y xn-1
]

Note: To give a preview of the operational meaning of entropy, let us play the following game. We
are allowed to make queries about some unknown discrete R.V. X by asking yes-no questions. The
objective of the game is to guess the realized value of the R.V. X. For example, X € {a,b,c,d} with
P[X =a]=1/2,P[X =b]=1/4, and P[X =c¢] =P[X =c¢] = 1/8. In this case, we can ask “X =a?”.
If not, proceed by asking “X = b?7”. If not, ask “X = ¢?”, after which we will know for sure the
realization of X. The resulting average number of questions is 1/2+1/4x2+1/8 x3+1/8 x 3 =1.75,
which equals H(X) in bits. It turns out (chapter 2) that the minimal average number of yes-no
questions to pin down the value of X is always between H(X) bits and H(X) + 1 bits. In this
special case the above scheme is optimal because (intuitively) it always splits the probability in half.

1.1.1 Entropy: axiomatic characterization

One might wonder why entropy is defined as H(P) = Y. p;log p%_ and if there are other definitions.
Indeed, the information-theoretic definition of entropy is related to entropy in statistical physics.
Also, it arises as answers to specific operational problems, e.g., the minimum average number of bits
to describe a random variable as discussed above. Therefore it is fair to say that it is not pulled out
of thin air.

Shannon has also showed that entropy can be defined aziomatically, as a function satisfying
several natural conditions. Denote a probability distribution on m letters by P = (p1,...,pm) and
consider a functional H,,(p1,...,pm). If Hy,, obeys the following axioms:

11



Permutation invariance

Expansible: H,,(p1,.--,Pm-1,0) = Hpo1 (1, -+« s Dm-1)-

)
)
c¢) Normalization: Hg(%,%) =log2.
) Continuity: Ha(p,1-p) -0 asp—0.
)

Subadditivity: H(X,Y) < H(X) + H(Y). Equivalently, Hy,, (711, ,7"mn) < Hn(D1, .-, Pm) +
H,(q1,...,q,) whenever Z?ﬂ rij = p; and Y0 15 = g5

f) Additivity: H(X,Y) = H(X)+H(Y)if X 1 Y. Equivalently, Hy,n,(p1q1,- -, Pmqn) < Hin(p1, .-, pm)+
Hn(q17 s 7Qn)-

then Hy,(p1,...,Pm) = 21 Di logz% is the only possibility. The interested reader is referred to
[CT06, p. 53] and the reference therein.

1.1.2 History of entropy

In the early days of industrial age, engineers wondered if it is possible to construct a perpetual
motion machine. After many failed attempts, a law of conservation of energy was postulated: a
machine cannot produce more work than the amount of energy it consumed from the ambient world
(this is also called the first law of thermodynamics). The next round of attempts was then to
construct a machine that would draw energy in the form of heat from a warm body and convert it
to equal (or approximately equal) amount of work. An example would be a steam engine. However,
again it was observed that all such machines were highly inefficiencient, that is the amount of work
produced by absorbing heat ) was << (). The remainder of energy was dissipated to the ambient
world in the form of heat. Again after many rounds of attempting various designs Clausius and
Kelvin proposed another law:

Second law of thermodynamics: There does not exist a machine that operates in a cycle
(i.e. returns to its original state periodically), produces useful work and whose only
other effect on the outside world is drawing heat from a warm body. (That is, every
such machine, should expend some amount of heat to some cold body too!)i

Equivalent formulation is: There does not exist a cyclic process that transfers heat from a cold
body to a warm body (that is, every such process needs to be helped by expending some amount of
external work).

Notice that there is something annoying about the second law as compared to the first law. In
the first law there is a quantity that is conserved, and this is somehow logically easy to accept. The
second law seems a bit harder to believe in (and some engineers did not, and only their recurrent
failures to circumvent it finally convinced them). So Clausius, building on an ingenious work of
S. Carnot, figured out that there is an “explanation” to why any cyclic machine should expend
heat. He proposed that there must be some hidden quantity associated to the machine, entropy of it
(translated as transformative content), whose value must return to its original state. Furthermore,
under any reversible (i.e. quasi-stationary, or “very slow”) process operated on this machine the
change of entropy is proportional to the ratio of absorbed heat and the temperature of the machine:

AQ

AS === (1.3)

'Note that the reverse effect (that is converting work into heat) is rather easy: friction is an example.

12



So that if heat () is absorbed at temperature T}, then to return to the original state, one
must return some @’ amount of heat. Q' can be significantly smaller than @ if Q' is returned at
temperature T,.q < Thot- Further logical arguments can convince one that for irreversible cyclic
process the change of entropy at the end of the cycle can only be positive, and hence entropy cannot
reduce.

There were a great many experimentally verified consequences that second law produced.
However, what is surprising is that the mysterious entropy did not have any formula for it (unlike
say energy), and thus had to be computed indirectly on the basis of relation (1.3). This was changed
with the revolutionary work of Boltzmann and Gibbs, who showed that for a system of n particles
the entropy of a given macro-state can be computed as

‘
1
S:Imijlog—,
j=1 Dbj

where k is the Boltzmann constant, we assume that each particle can only be in one of ¢ molecular
states (e.g. spin up/down, or if we quantize the phase volume into ¢ subcubes) and p; is the fraction
of particles in j-th molecular state.

1.1.3* Entropy: submodularity

Recall that [n] denotes a set {1,...,n}, (‘Z) denotes subsets of S of size k and 2° denotes all subsets
of S. A set function f:2°% — R is called submodular if for any 77,75 c S

f( o)+ f(T1nT) < f(T1) + f(T)

Submodularity is similar to concavity, in the sense that “adding elements gives diminishing returns”.
Indeed consider 7" c T and b ¢ T. Then

F(Tud) - f(T) < f(T"ub) - F(T).
Theorem 1.2. Let X" be discrete RV. Then T — H(Xp) is submodular.
Proof. Let A= Xp1,,B=Xr1,n1,,C = X1,o1,. Then we need to show
H(A,B,C)+H(B)<H(A,B)+H(B,C).
This follows from a simple chain

H(A,B,C)+ H(B) = H(A,C|B) + 2H(B) (1.4)
< H(AB) + H(C|B) + 2H(B)
- H(A,B) + H(B,C)

Note that entropy is not only submodular, but also monotone:
ThcTly — H(XTl) < H(XTQ) .

So fixing n, let us denote by I';, the set of all non-negative, monotone, submodular set-functions
on [n]. Note that via an obvious enumeration of all non-empty subsets of [n], I, is a closed
convex cone in R%n_l. Similarly, let us denote by I'; the set of all set-functions corresponding to

13



distributions on X™. Let us also denote I} the closure of I'}. It is not hard to show, cf. [ZY97],
that I';, is also a closed convex cone and that

rycl;cly,
The astonishing result of [ZY98] is that
F§ G f‘g =T3

rreliel, n>4.

This follows from the fundamental new information inequality not implied by the submodularity of
entropy (and thus called non-Shannon inequality). Namely, [ZY98] shows that for any 4 discrete
random variables:

1 1 1
I(X3;X4) - I(Xg;X4|X1) — I(Xg;X4|X2) < §I(X1;X2) + ZI(X1;X3,X4) + 1[(X2;X3,X4) .
(see Definition 2.3).

1.1.4 Entropy: Han’s inequality

Theorem 1.3 (Han’s inequality). Let X™ be discrete n-dimensional RV and denote Hyp(X™) =

(7—1}) ZT:([Z]) H(X7) — the average entropy of a k-subset of coordinates. Then % is decreasing in k:
k

H, < <—Hp<H. (1.10)

| =

S|

Furthermore, the sequence Hy, is increasing and concave in the sense of decreasing slope:
Hk+1_HkSHk_Hk:—l~ (1.11)

Proof. Denote for convenience Hy = 0. Note that me is an average of differences:

1 - 12 _
—Hp = — Y (Hp— Hy-1)
m m k=1

Thus, it is clear that (1.11) implies (1.10) since increasing m by one adds a smaller element to the
average. To prove (1.11) observe that from submodularity

H(Xqy,. oo, Xps1) + H(X1, oo, Xpo1) SH (X000, X)) + H(X1 o0 X1, Xge1) -
Now average this inequality over all n! permutations of indices {1,...,n} to get
Hy1 + Hy-y < 2Hy

as claimed by (1.11).
Alternative proof: Notice that by “conditioning decreases entropy” we have

H(Xg1| X1, Xi) € H(Xpe1| Xz, .0, X))
Averaging this inequality over all permutations of indices yields (1.11). O
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Note: Han’s inequality holds for any submodular set-function.
Example: Another submodular set-function is

Han’s inequality for this one reads

where [, = @ 25:S|=k I(Xg; Xgc) — gauges the amount of k-subset coupling in the random vector
X

1.2 Divergence

Review: Measurability

In this course we will assume that all alphabets are standard Borel spaces. Some of the
nice properties of standard Borel spaces:

e all complete separable metric spaces, endowed with Borel o-algebras are standard
Borel. In particular, countable alphabets and R"™ and R* (space of sequences) are
standard Borel.

if X;,i=1,... are s.B.s. then so is [];2; X;

singletons {x} are measurable sets

diagonal A = {(z,z) : x € X} is measurable in X x X

(Most importantly) for any probability distribution Pxy on X x ) there exists a
transition probability kernel (also called a regular branch of a conditional distribution)
PY|X s.t.

Pxy[E]= [ Px(d) [ Proxeo(an)i{(z.y) e ).

Intuition: D(P|Q) gauges the dissimilarity between P and Q.
Definition 1.4 (Divergence). Let P,Q be distributions on
o A = discrete alphabet (finite or countably infinite)

D(PI) 3 P(a)log% ,

where we agree:

(1) O-logg =0
(2) Ja:Q(a)=0,P(a)>0=D(P|Q) =00

15



A=RF P and Q have densities fp and fo

[ log £ i~ (xk;fp(a:k)da; , Leb{fp>0,fg=0}=0

+00 , otherwise

D(P|Q) ={

A — measurable space:

EQdQlong—Eplong , P<@
+00

, otherwise

D(P|Q) ={

(Also known as information divergence, Kullback—Leibler divergence, relative entropy.)

Notes:

e (Radon-Nikodym theorem) Recall that for two measures P and @, we say P is absolutely

continuous w.r.t. @ (denoted by P « Q) if Q(FE) =0 implies P(F) =0 for all measurable E.
If P« @, then there exists a function f: X — R, such that for any measurable set F,

P(FE) = ﬁ fdQ. [change of measure]

Such f is called a density (or a Radon-Nikodym derivative) of P w.r.t. @, denoted by %
For finite alphabets, we can just take g—g(x) to be the ratio of the pmfs. For P and Q on R"
possessing pdfs we can take %(x) to be the ratio of pdfs.

(Infinite values) D(P||Q) can be oo also when P <« @, but the two cases of D(P|Q) = +oo are
consistent since D(P|Q) = supy D(Pr|Qm), where I is a finite partition of the underlying
space A (proof: later)

(Asymmetry) D(P|Q) # D(Q|P). Asymmetry can be very useful. Example: P(H) = P(T) =
1/2, Q(H) = 1. Upon observing HHHHHHH, one tends to believe it is @ but can never
be absolutely sure; Upon observing HHT, know for sure it is P. Indeed, D(P|Q) = oo,
D(Q|IP) = 1bit.

(Pinsker’s inequality) There are many other measures for dissimilarity, e.g., total variation
(L1-distance)

TV(P,Q) = s%pP[E] - Q[E] (1.12)
- % f |dP - dQ) = (discrete case)% ZI: |P(z) - Q(x)]. (1.13)

This one is symmetric. There is a famous Pinsker’s (or Pinsker-Csiszar) inequality relating D
and TV:

TV(P,Q) < \/@D(PHQ). (1.14)

(Other divergences) A general class of divergence-like measures was proposed by Csiszar.
Fixing a convex function f:R,; — R with f(1) =0 we define f-divergence Dy as

Dy(PIQ) = Eo[ £ (55)]- (115

16



This encompasses total variation, y?-distance, Hellinger, Tsallis etc. Inequalities between
various f-divergences such as (1.14) was once an active field of research. It was made largely
irrelevant by a work of Harremoés and Vajda [HV11] giving a simple method for obtaining
best possible inequalities between any two f-divergences.

Theorem 1.4 (H v.s. D). If distribution P is supported on A with |A| < oo, then
H(P) =log|A| - D(P| Ua).
——

uniform distribution on A

Example (Binary divergence): A={0,1}; P=[p,p]; Q = [q,q]
- N P . D
D(P|Q) = d(pla) = plog ' +Plog

Here is how d(p|q) depends on p and g¢:

A A

y —log q

—log q |
+ t > ( >

p 1 q 1 g
Quadratic lower bound (homework):
d(pla) > 2(p - 9)*loge
Example (Real Gaussian): A=R
9 o\y 1 o2 1p(mi-mg)? o?
D(N(my,07)||IN(mo,05)) = Elog = + 5[0—(2) + i 1] loge (1.16)

1
Example (Complex Gaussian): A = C. The pdf of N,(m,o?) is —26_|m_m|2/02, or equivalently:
o

2
No(m,o?) = N([Re(m) Im(m)] , [U 0/2 020/2]) (1.17)

2 2\y _ 03 Imq —m0|2 U%
D(Nc(ml,a'l)HNc(m0,0—())) = loga—% + I:o'—g + O_—g - 1] loge (118)

Example (Vector Gaussian): A= CF

D(N:(m1,%1)|Ne(mg, X)) = logdet Xg —logdet X1 + (mq — mg)HE{)l(ml -mg)loge
+tr(Xy'%; - I)loge

17



(assume det X # 0).

Note: The definition of D(P| Q) extends verbatim to measures P and () (not necessarily probability
measures), in which case D(P||@) can be negative. A sufficient condition for D(P|Q) >0 is that P
is a probability measure and @ is a sub-probability measure, i.e., [dQ <1 = [dP.

1.3 Differential entropy

The notion of differential entropy is simply the divergence with respect to the Lebesgue measure:
Definition 1.5. The differential entropy of a random vector X* is
h(X*) = h(Pyx) 2 —D(Pyx|Leb). (1.19)

In particular, if X* has probability density function (pdf) p, then h(X*) = Elog ]ﬁ; other-

wise h(X*) = —co. Conditional differential entropy h(X*|Y") = Elog
X

1 .
———— where k 1S a
k|y(Xk|Y) Px Y

conditional pdf.
Warning: Even for X with pdf h(X) can be positive, negative, take values of +oo or even be

undefined?.
Nevertheless, differential entropy shares many properties with the usual entropy:

Theorem 1.5 (Properties of differential entropy). Assume that all differential entropies appearing
below exists and are finite (in particular all RVs have pdfs and conditional pdfs). Then the following
hold :

1. (Uniform mazimizes diff. entropy) If P[X™ € S] =1 then h(X™) < Leb{S} with equality iff
X™ is uniform on S.

2. (Conditioning reduces diff. entropy) h(X|Y) <h(X) (here Y could be arbitrary, e.g. discrete)

3. (Chain rule)

h(X™) = i h( Xy X%y .
k=1

4. (Submodularity) The set-function T — h(Xr) is submodular.

5. (Han’s inequality) The function kv —= 3 gy W(X7) is decreasing in k.
k(i) <Te(t)
1.3.1 Application of differential entropy: Loomis-Whitney and
Bollobas-Thomason

The following famous result shows that n-dimensional rectangle simultaneously minimizes volumes
of all projections:*

Theorem 1.6 (Bollobds-Thomason Box Theorem). Let K ¢ R"™ be a compact set. For S c [n]
denote by Kg — projection of K on the subset S of coordinate axes. Then there exists a rectangle A
s.t. Leb{A} = Leb{K} and for all S c [n]:

Leb{Ags} < Leb{Kg}

2For an example, consider piecewise-constant pdf taking value D" on the n-th interval of width A, = < e (D",

nZ
3Note that since K is compact, its projection and slices are all compact and hence measurable.
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Proof. Let X™ be uniformly distributed on K. Then h(X") = logLeb{K}. Let A be rectangle
ai X+ X a, where

loga; = h(X;|X1).
Then, we have by 1. in Theorem 1.5

h(Xs) <logLeb{Kg}

On the other hand, by the chain rule

B(Xs) = 31 € SHH(XIX(1-1105) (1.20)
>3 h(X;| XY (1.21)

_ 1021—[ a; (1.22)

- log fgb{AS} (1.23)

OJ

Corollary 1.1 (Loomis-Whitney). Let K be a compact subset of R™ and let Kje denote projection
of K on coordinate axes [n]~ j. Then

Leb{K} < ﬁLeb{ch}ﬁ . (1.24)

7=1
Proof. Apply previous theorem to construct rectangle A and note that
n
Leb{K} = Leb{A} = [ ] Leb{A;c} w1
j=1
By previous theorem Leb{Ajc} < Leb{Kje}. O

The meaning of Loomis-Whitney inequality is best understood by introducing the average width

. Leb{K}

of K in direction j: w; = ——==5. Then (1.24) is equivalent to
J T Leb{Kjc} 42

Leb{K} > [Jwj;,
j=1

i.e. that volume of K is greater than volume of the rectangle of average widths.
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§ 2. INFORMATION MEASURES: MUTUAL INFORMATION

2.1 Divergence: main inequality

Theorem 2.1 (Information Inequality).

D(P|@)20; D(P|Q)=0 iff P=Q

Proof. Let ¢(x) = xlogx, which is strictly convex, and use Jensen’s Inequality:

D(PIQ) - T P@)loz ) = T Qe (QE i) (zm )Qgg):wu):o

2.2 Conditional divergence

The main objects in our course are random variables. The main operation for creating new
random variables, and also for defining relations between random variables, is that of a random
transformation:

Definition 2.1. Conditional probability distribution (aka random transformation, transition prob-
ability kernel, Markov kernel, channel) K (-|-) has two arguments: first argument is a measurable
subset of ), second argument is an element of X. It must satisfy:

1. For any z € X: K(-|z) is a probability measure on )
2. For any measurable A function z — K (A|x) is measurable on X.

In this case we will say that K acts from & to y In fact, we will abuse notation and write Py|x
instead of K to suggest what spaces X and ) are . Furthermore, if X and Y are connected by the

random transformation Py|x we will write X l> Y.

Remark 2.1. (Very technical!) Unfortunately, condition 2 (standard for probability textbooks) will

frequently not be sufficiently strong for this course. The main reason is that we want Radon-Nikodym
dPy|x—s

dQy

derivatives such as (y) to be jointly measurable in (z,y). See Section ?? for more.
Example:
1. deterministic system: Y = f(X) & Py|x—z = 0f(a)

2. decoupled system: Y 1L X < Pyx_, = Py

! Another reason for writing Py|x is that from any joint distribution Px y (on standard Borel spaces) one can
extract a random transformation by conditioning on X.
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3. additive noise (convolution): Y = X + Z with Z 1L X < Pyx_, = Pri 2.

Multiplication:
\P);
Py |x
X ——Y toget Pxy = PXpy|XI

Pxy(z,y) = Pyx(y|lz) Px ().

Composition (Marginalization): Py = Py|x o Px, that is Py|x acts on Px to produce Py:

Py(y) = Y Pyix(ylz)Px(x).

reX
. : Pyix
Will also write Py —— Py-.
Definition 2.2 (Conditional divergence).
D(Pyx|Qyx|Px) = Euupy[D(Pyix-2/Qyvix-2)] (2.1)
= Y Px(2)D(Py|x-|Qyix=0) -
reX

Note: H(X|Y') =log|A| - D(Pxy |[Ux|Py), where Uy is is uniform distribution on X.
Theorem 2.2 (Properties of Divergence).

1. D(Pyix|Qyx|Px) = D(Px Py|x | PxQyx)
(Simple chain rule) D(Pxy |Qxy) = D(Py|x |Qy|x|Px) + D(Px|Qx)
(Monotonicity) D(Pxy |Qxy) > D(Py |Qy)
(Full chain rule)

e e

n
D(Px,..x, |Qx,.-x,) = D, D(Px,xi-1[Qx;, xi-1|Pyxi-1)
i1

In the special case of Qxn = []; Qx, we have

D(Px,..x,Qx,Qx,) = D(Px,..x, | Px,-Px,) + ), D(Px,|Qx,)

5. (Conditioning increases divergence) Let Pyx and Qyx be two kernels, let Py = Py|xoPx
and Qy = Qy|x o Px. Then

D(Py|Qy) < D(Pyx|Qyix|Px)
equality iff D(Pxy|Qxy|Py) =0

Pictorially:

Pyix Py
Px <
QY\X — QY
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6. (Data-processing for divergences) Let Py = Py|x o Px

b e = pervien < Dexiax) 2

Qy = [ Pyx(-|lz)dQx
Pictorially:
Px Py
\x Lv/ — D(Px|Qx) > D(Pr|Qy)
Qx/ Q

Proof. We only illustrate these results for the case of finite alphabets. General case follows by doing
a careful analysis of Radon-Nikodym derivatives, introduction of regular branches of conditional
probability etc. For certain cases (e.g. separable metric spaces), however, we can simply discretize
alphabets and take granularity of discretization to 0. This method will become clearer in Lecture 4,
once we understand continuity of D.

Pyix Px

L Eowpy [D(Py|x=:|Qyx=2)] = E(x y)~Px Py [log Trix pX]

. . . P
2. Disintegration: E(x y [log PX—Y] =Exy) [log Q};‘li + log g—f{]

XY

3. Apply 2. with X and Y interchanged and use D(-||-) > 0.
4. Telescoping Pxn =iy Px, x+1 and Qx» = [TiL1 Qx, xi-1-

5. Inequality follows from monotonicity. To get conditions for equality, notice that by the chain
rule for D:

D(Pxy|Qxy) = D(Py|x||Qyx|Px) + D(Px| Px)
| —

=0
= D(PX|Y||QX\Y|PY) +D(Py|Qy)
and hence we get the claimed result from positivity of D.

6. This again follows from monotonicity. O

Corollary 2.1.

\2

D(Px,-x,1Qx,Qx,) 2 X D(Px[Qx,) or
iff Pxn =11} Px;
Note: In general we can have D(Pxy|Qxy) S D(Px|Qx) + D(Py|Qy). For example, if X =Y

under P and @, then D(Pxy|D(Qxy) = D(Px|Qx) <2D(Px||Qx). Conversely, if Px = Qx and
Py = Qy but Pxy # Qxy we have D(Pxy[Qxy) >0=D(Px|Qx) + D(Py|Qy).

Corollary 2.2. Y = f(X) = D(Py|Qy) < D(Px|Qx), with equality if f is 1-1.
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Note: D(Py|Qy) = D(Px|Qx) = f is 1-1. Example: Px = Gaussian, Qx = Laplace, Y =|X]|.
Corollary 2.3 (Large deviations estimate). For any subset E c X we have
d(Px[E]|Qx[E]) < D(Px|Qx)

Proof. Consider Y =1 xcp). O

2.3 Mutual information

Definition 2.3 (Mutual information).
I(X;Y)=D(Pxy||PxPy)

Note:

e Intuition: 7(X;Y") measures the dependence between X and Y, or, the information about X
(resp. Y') provided by Y (resp. X)

e Defined by Shannon (in a different form), in this form by Fano.

e Note: not restricted to discrete.

e I(X;Y) is a functional of the joint distribution Pyy, or equivalently, the pair (Px, Py|x)-
Theorem 2.3 (Properties of I).

1. I(X;Y) = D(Pxy | Px Py) = D(Py|x | Py|Px) = D(Px)y | Px|FPy)

2. Symmetry: I(X;Y) =1(Y; X)

3. Positivity: 1(X;Y)>0; I(X;Y)=04f X 1Y

4. I(f(X);Y) <I(X;Y); f one-to-one = I(f(X);Y)=1(X;Y)

5. “More data = More info”: I(X1,X9;7) > 1(X1; %)

Proof. 1. I(X;Y) = Elog 2% = Elog "X = Elog A"

Px -

2. Apply data-processing inequality twice to the map (z,y) - (y,x) to get D(Px y|PxPy) =
D(Py,x| Py Px).

3. By definition.

4. We will use the data-processing property of mutual information (to be proved shortly, see
Theorem 2.5). Consider the chain of data processing: (z,y) = (f(z),y) = (f'(f(2)),v).
Then
I(X5Y) 2 I(f(X);Y) 2 I(f7H(f(X));Y) = I(X;Y)

5. Consider f(X7,X2) = Xj. O

Theorem 2.4 (I v.s. H).
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H(X) X discrete

+00 otherwise

1. I(X;X):{
2. If X, Y discrete then
I(X;Y)=H(X)+H(Y)-H(X,Y)
If only X discrete then
I(X;Y)=H(X)-H(X|Y)

3. If X, Y are real-valued vectors, have joint pdf and all three differential entropies are finite
then
I(X;Y)=h(X)+h(Y)-h(X,Y)

If X has marginal pdf px and conditional pdf pxy (zly) then

I(X;Y) = h(X) - h(X|Y).

4. If X or'Y are discrete then I(X;Y) <min (H(X),H(Y)), with equality iff H(X|Y) =0 or
H(Y|X) =0, i.e., one is a deterministic function of the other.

Proof. 1. By definition, I(X;X) = D(Px x| Px|Px) = Ez.x D(0:|Px). If Px is discrete, then
D(6,|Px) =log #(x) and I(X; X) = H(X). If Px is not discrete, then let A = {z : Px(x) > 0}
denote the set of atoms of Px. Let A = {(x,z): 2 ¢ A} c X xX. Then Px x(A) = Px(A°) >0
but since

(PX XP)()(E) = '/;;Px(dxl)/:pr(dxz)l{(l’l,l’g) EE}
we have by taking £ = A that (Px x Px)(A) =0. Thus Px x < Px x Px and thus

I(X,X) = D(PX’)(HP)(P)() =+4+00.

2. Elog ;}fﬁy :E[log%Jrlog%—log%]. O

3. Similarly, when Pxy and Px Py have densities pxy and pxpy we have

D(Pxy|PxPy)=E [log ;}fpi] = h(X) +h(Y) - h(X,Y)

4. Follows from 2.

Corollary 2.4 (Conditioning reduces entropy). X discrete: H(X|Y) < H(X), with equality iff
X1Y.
Intuition: The amount of entropy reduction = mutual information

Example: X = UORY, where U, Yi'i&d'Bern(%). Then X ~ Bern(%) and H(X) = h(zll) < 1bits =

H(X|Y =0), i.e., conditioning on Y = 0 increases entropy. But on average, H(X|Y) =P[Y = 0] H(X|Y =

0)+P[Y =1]H(X|Y =1) = 1 bits < H(X), by the strong concavity of h(-).
Note: Information, entropy and Venn diagrams:

1. The following Venn diagram illustrates the relationship between entropy, conditional entropy,
joint entropy, and mutual information.
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H(X,Y)

H(Y) H(X)

2. If you do the same for 3 variables, you will discover that the triple intersection corresponds to

H(Xl) + H(XQ) + H(Xg) - H(Xl,XQ) - H(XQ, Xg) - H(Xl, X3) + H(Xl,XQ, X3) (2.4)
which is sometimes denoted I(X;Y;Z). It can be both positive and negative (why?).

. In general, one can treat random variables as sets (so that r.v. X; corresponds to set E; and
(X1, X2) corresponds to E7 U E5). Then we can define a unique signed measure p on the finite

algebra generated by these sets so that every information quantity is found by replacing

I/H-p ;-»n ,->U

As an example, we have

H(X1|X2,X3) = M(El AN (E2 U Eg)),

|—>\.

I(Xl,XQ;X3|X4) = M(((El U Eg) n Eg) N\ E4) .

(2.5)
(2.6)

By inclusion-exclusion, quantity (2.4) corresponds to p(E1 n Eon E3), which explains why p

is not necessarily a positive measure.

I(X:Y)
Example: Bivariate Gaussian. X,Y — jointly Gaussian
1 1
I(X;Y) = - log ———
2 T l-pxy
. E[(X-EX)(Y-EY)] . .
where pxy = — € [-1,1] is the correlation p
xov -1 0 1

coefficient.

Proof. WLOG, by shifting and scaling if necessary, we can assume EX = EY =0 and EX? =EY? = 1.
Then p = EXY. By joint Gaussianity, Y = pX + Z for some Z ~ N'(0,1 - p?) L X. Then using the

divergence formula for Gaussians (1.16), we get

I(X;Y) = D(Pyx | Py|Px)
= ED(N(pX,1-p*)|N(0,1))

- E[llog Lo 18 ox)2i1-p? —1)]

2 °1-p2 2
1 1

=21
2 12

25



Note: Similar to the role of mutual information, the correlation coefficient also measures the
dependency between random variables which are real-valued (more generally, on an inner-product
space) in certain sense. However, mutual information is invariant to bijections and more general: it
can be defined not just for numerical random variables, but also for apples and oranges.

Example: Additive white Gaussian noise (AWGN) channel. X L N — independent Gaussian

N
o2
¢ I(X;X+N)=%log(1+g—§)
N
. . ——
X @ Y signal-to-noise ratio (SNR)

Example: Gaussian vectors. X e R™,Y € R” — jointly Gaussian

1 b b
I(X;Y) _ —Iog det Xdet Y
2 det Z[ny]

where ¥x = E[(X - EX)(X - EX)'] denotes the covariance matrix of X € R™, and Yx y] denotes
the the covariance matrix of the random vector [X,Y] e R™*".
In the special case of additive noise: Y = X + N for N 1 X, we have

1. det(Sx + 3
I(X; X+ N) = Slog == XN (d Z‘g )
et oN

. hy?
since det X[x x N = det ( gi ZXE+XEN ) Y2 det Bx det In.

Example: Binary symmetric channel (BSC).
N
062 40 ¢

X—» X O —>Y @ XH@HY

15501 F,

X ~ Bern(%), N ~ Bern(¢)

Y=X+N
I(X;Y) =log2 - h(0)

Example: Addition over finite groups. X is uniform on G and independent of Z. Then
I(X;X+Z)=log|G|-H(Z)

Proof. Show that X + Z is uniform on G regardless of Z. O
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2.4 Conditional mutual information and conditional
independence

Definition 2.4 (Conditional mutual information).

I(X;Y|Z) = D(Pxy\z| Px|z Py|z|Pz) (2.7)
:]Ez~Pz[I(X;Y|Z:Z):| : (28)

where the product of two random transformations is (Px|z-.Py|z-:)(%,vy) = Px|z(]2) Py|z(yl2),
under which X and Y are independent conditioned on Z.

Note: I(X;Y]|Z) is a functional of Pxyz.

Remark 2.2 (Conditional independence). A family of distributions can be represented by a directed
acyclic graph. A simple example is a Markov chain (line graph), which represents distributions that
factor as {PXYZ : PXYZ = PXPY\XPZ\Y}'

X->Y—>2Z Pxzy = Pxyy - Pzy

Prxy = Pzy

Pxyz =Px - Py|x - Pzy
X,Y, Z form a Markov chain

X 12y

Cond. indep.
notation

U A A

Pxyz =Py - Px|y - Pzy
Z-Y > X

§

Theorem 2.5 (Further properties of Mutual Information).
1. I(X; Z|Y) 20, with equality iff X =Y - Z
2. (Kolmogorov identity or small chain rule)
I(X,Y;2) = I(X;2)+ I(Y: Z|X)
= (Y 2)+ I(X; Z]Y)
3. (Data Processing) If X - Y — Z, then
a) I(X;Z) <I(X;Y)
b) I(X;Y|Z)<I(X;Y)
4. (Full chain rule)
n
L(X™Y) = 371X VX5
k=1
Proof. 1. By definition and Theorem 2.3.3.

2.
Pxyz  Pxz 'PYIXZ
PxyPz PxPz Pyx
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3. Apply Kolmogorov identity to I(Y, Z; X):

1Y, Z;X) = [(X;Y) + [(X; Z]Y)
0

= I(X;Z)+ I(X;_Y|Z)

4. Recursive application of Kolmogorov identity. O

Example: 1-to-1 function = I'(X;Y) = I(X; f(YV))
Note: In general, I(X;Y|Z) 2 I(X;Y). Examples:

a) “>”: Conditioning does not always decrease M.I. To find counterexamples when X,Y,Z do
not form a Markov chain, notice that there is only one directed acyclic graph non-isomorphic to
X ->Y - Z, namely X - Y <« Z. Then a counterexample is

i 1
X,z Bern(3) Y=XoZ
I(X;Y)=0 since X 1Y

I(X;Y|Z)=I(X;X ® Z|Z) = H(X) =log2

b) “<”: Z =Y. Then I(X;Y|Y) = 0.
Note: (Chain rule for I = Chain rule for H) Set ¥ = X"”. Then H(X") = I(X™;X") =
Sr o T( X XM XFEL) = S0 H( X XE 1), since H (X X", X* 1) = 0.

Remark 2.3 (Data processing for mutual information via data processing of divergence). We
proved data processing for mutual information in Theorem 2.5 using Kolmogorov’s identity. In fact,
data processing for mutual information is implied by the data processing for divergence:

I(X;Z) = D(Pz x| Pz|Px) < D(Pyx | Py|Px) = I(X;Y),
Pzy Pzy .
where note that for each x, we have Py x_, —— Pzx-, and Py —— Pz. Therefore if we have a
bi-variate functional of distributions D(P|Q) which satisfies data processing, then we can define an
“M.L-like” quantity via Ip(X;Y) 2 D(Py|x|Py|Px) = Esnpy D(Py|x-; | Py) which will satisfy data
processing on Markov chains. A rich class of examples arises by taking D = Dy (an f-divergence,
defined in (1.15)). That f-divergence satisfies data-processing is going to be shown in Remark 4.2.

2.5 Strong data-processing inequalities

For many random transformations Py x, it is possible to improve the data-processing inequality (2.3):
For any Px,Qx we have
D(FPy|Qy) <nxrD(Px|@x),

where nir, <1 and depends on the channel Py|y only. Similarly, this gives an improvement in the
data-processing inequality for mutual information: For any Py x we have

U->X->Y — I(U;Y)S?]KLI(U;X).

For example, for Py|x = BSC(d) we have nxr = (1 - 26)2. Strong data-processing inequalities
quantify the intuitive observation that noise inside the channel Py x must reduce the information
that Y carries about the data U, regardless of how smart the hook up U — X is.

This is an active area of research, see [PW15] for a short summary.
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2.6* How to avoid measurability problems?
As we mentioned in Remark 2.1 conditions imposed by Definition 2.1 on Py|x are insufficient.
Namely, we get the following two issues:

dPy|x ¢
dQy

1. Radon-Nikodym derivatives such as (y) may not be jointly measurable in (z,y)

2. Set {z: Py|x—; < Qy} may not be measurable.

The easiest way to avoid all such problems is the following:

Agreement Al: All conditional kernels Py |x : X - ) in these notes will be assumed
to be defined by choosing a o-finite measure po on Y and measurable function p(y|z) >0
on X x ) such that

Pyix(Al2) = [ o(yia)pa(dy)
for all x and measurable sets A and [}, p(ylz)pa(dy) =1 for all .
Notes:

1. Given another kernel Qy|x specified via p'(y|z) and u; we may first replace pz and g via
py = p2 + p5 and thus assume that both Py x and Qyx are specified in terms of the same

dominating measure pj. (This modifies p(y|z) to p(y|x) gﬁg,(y))

2. Given two kernels Py|x and Qyx specified in terms of the same dominating measure g and
functions pp(y|z) and pg(y|z), respectively, we may set

dPy|x . pp(ylr)
dQyix  po(ylr)

outside of pg = 0. When Py|x_, < Qy|x-, the above gives a version of the Radon-Nikodym
derivative, which is automatically measurable in (x,y).

3. Given Qy specified as
dQy = q(y)dus

we may set

Ao=fw: [ o(ale)dps = 0)

This set plays a role of {z : Pyix_p < Qy }. Unlike the latter A is guaranteed to be measurable
by Fubini [C11, Prop. 6.9]. By “plays a role” we mean that it allows to prove statements like:
For any Px

PX,Y < Pny <~ Px[Ao] =1.

So, while our agreement resolves the two measurability problems above, it introduces a new
one. Indeed, given a joint distribution Px y on standard Borel spaces, it is always true that one
can extract a conditional distribution Py |x satisfying Definition 2 (this is called disintegration).
However, it is not guaranteed that Pyx will satisfy Agreement Al. To work around this issue as
well, we add another agreement:
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Agreement A2: All joint distributions Px y are specified by means of data: pi1,u0 —
o-finite measures on X and ), respectively, and measurable function A(z,y) such that

Pxy(E) = _[EA(QC,y)Ml(dﬂ?)Nz(dy)-

Notes:

1. Again, given a finite or countable collection of joint distributions Pxy,Qx,y, ... satisfying A2
we may without loss of generality assume they are defined in terms of a common 1, 2.

2. Given Py y satisfying A2 we can disintegrate it into conditional (satisfying A1) and marginal:

Prx(Ae) = [ ploloweatdn)  plole) = 2022 (2.9

Px(4)= [ p@m(de)  p()2 [ Anua(dn) (2:10)

with p(y|x) defined arbitrarily for those x, for which p(x) = 0.

Remark 2.4. The first problem can also be resolved with the help of Doob’s version of Radon-
Nikodym theorem [C11, Chapter V.4, Theorem 4.44]: If the o-algebra on ) is separable (satisfied
whenever ) is a Polish space, for example) and Py|x-z < Qy|x=, then there exists a jointly
measurable version of Radon-Nikodym derivative
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§ 3. SUFFICIENT STATISTIC. CONTINUITY OF DIVERGENCE AND MUTUAL INFORMATION

3.1 Sufficient statistics and data-processing
Definition 3.1 (Sufficient Statistic). Let
. P)% be a collection of distributions of X parameterized by 6

e Prx be some probability kernel. Let Pg = Ppix o Pg} be the induced distribution on T for
each 0.

We say that T is a sufficient statistic (s.s.) of X for 0 if there exists a transition probability kernel
Px\r so that P§PT|X = PJG‘PX|T- (Le.: Pxjp can be chosen to not depend on 0).

Note:

e Know 7', can forget X (7T contains all the information that is sufficient to make inference
about 0)

e Obviously any one-to-one transformation of X is sufficient. Therefore the interesting case is
when T is a low-dimensional recap of X (dimensionality reduction)

e 0 need not be a random variable (the definition does not involve any distribution on 6)
Theorem 3.1. Let 0 - X — T. Then the following are equivalent

1. T is a s.s. of X for 6.

2. VP, 0 -T - X.

3. VP, I(6; X|T) = 0.

4. VPy, 1(0; X) =1(0;T), i.e., data processing inequality for M.1. holds with equality.

Theorem 3.2 (Fisher’s factorization criterion). For all 6 € O, let Pg} have a density pyg with respect
to a measure p (e.g., discrete — pmf, continuous — pdf). Let T =T(X) be a deterministic function
of X. Then T is a s.s. of X for 0 iff

po(x) = go(T'(z))h(x)
for some measurable functions gg and h, V0 € ©.

Proof. We only give the proof in the discrete case (continuous case Y. — [ dp). Let t = T'(z).
“=”: Suppose T is a s.s. of X for 0. Then pyp(z) = Pp(X =) =Py(X =2, T =t) = Pp(X =2|T =
OPy(T=t)=P(X =x|T=T(z)) Py(T =T(x))

h(z) 96(T'(x))
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“<=": Suppose the factorization holds. Then

po(x) go(t)h(z) h(x)
Py(X = 2|T =t) = _ _ ’
o(X =T =1) Yo Lir@)=0pe(®)  Xalir@)-n90(O)M®) i lir@)-t()

free of 6. O

Example:

1. Normal mean model. Let € R and observations X; in%p'./\/’(ﬁ, 1),i € [n]. Then the sample
mean X = %Zij is a s.s. of X™ for 6.
Verify: P)g(n factorizes.

2. Coin flips. Let Bz-i'i&d'Bern(Q). Then Y1, B; is a s.s. of B" for 6.

3. Uniform distribution. Let Uii'i&d'uniform[o,é’]. Then maxe[,) U; is a s.s. of U™ for 6.

Example: Binary hypothesis testing. 6 = {0,1}. Given # =0 or 1, X ~ Px or Qx. Then Y — the
output of Py|x —is a s.s. of X for 6 iff D(Pxy |Qxy|Py) =0, i.e., Pxy = Qxjy holds Py-as.
Indeed, the latter means that for kernel @ x|y we have

PxPyx = PyQx)y and QxPyix =QyQx)y,

which is precisely the definition of s.s. when 6 € {0,1}. This example explains condition for equality
in the data-processing for divergence:

Px Py

S P

X———»Y
b 4 N
/// N
Qx Qy

Then assuming D(Py|Qy) < oo we have:
D(Px||Qx) =D(Py|Qy) <= Y —s.s. for testing Px vs. Qx
Proof: Let Qxy = QXPy|X, Pxy = PXpy|X, then
D(Pxy|Qxy) = D(Pyix|Qyx|Px)+D(Px[Qx)

-0
= D(Pxyy|Q@xyy|Py) + D(Py|Qy)

D(Py|Qy)

v

with equality iff D(Pxy |Qxy|Py) =0, which is equivalent to Y being a s.s. for testing Py vs Qx
as desired.
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3.2 (Geometric interpretation of mutual information

Mutual information as “weighted distance”:

I(X;Y) = D(Py|x|Py|Px) = Y D(Py x| Py ) Px ()

Theorem 3.3 (Golden formula). YQy such that D(Py |Qy) < oo

I(X;Y) = D(Pyx||Qy|Px) - D(Py|Qy)

Proof. For discrete case: I(X;Y) =Elog P;X‘/XQ%Y, group Py|x and Qy. O

Corollary 3.1 (mutual information as center of gravity).

I(X;Y) = ménD(PHXHQ]PX),

achieved at @ = Py.
Note: This representation is useful to bound mutual information from above.

Theorem 3.4 (mutual information as distance to product distributions).

I(X;Y) = min D(Pxy|QxQy)
QXvQY

Proof. I(X;Y) =Elog %, group Pxy and @ xQy and bound marginal divergences D(Px | Qx)

and D(Py||Qy) by zero. O

Note: Generalization to conditional mutual information.

I(X;Z|Y) = min ZD(PXYZ”QXYZ)

Qxyz: X->Y~

Proof. By chain rule,

D(Pxyz|QxQyxQzy)
=D(Pxyz|Px Py|x Pzyy) + D(Px|Qx) + D(Py|x |Qy|x|Px) + D(Pzy |Qzy|Py)
=D(Pxyz| Py Pxy Pzy) + ..
=D(Pxzy |Pxyy Pzy|Py) +... O

I(X;Z|Y)

Interpretation: The most general graphical model for the triplet (X,Y, Z) is a 3-clique. What
is the information flow on the edge X — Z7 To answer, notice that removing this edge restricts
possible joint distributions to a Markov chain X - Y — Z. Thus, it is natural to ask what is the
minimum distance between a given Py y z and the set of all distributions Q)x,y,z satisfying the
Markov chain constraint. By the above calculation, optimal Qx y,z = Py Px|y Pz)y and hence the
distance is I(X; Z]Y). It is natural to take this number as the information flowing on the edge
X - Z.
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3.3 Variational characterizations of divergence:
Donsker-Varadhan
Why variational characterization (sup- or inf-representation): F'(x) =supyc fa(z)
1. Regularity, e.g., recall

a) Pointwise supremum of convex functions is convex

b) Pointwise supremum of lower semicontinuous (lsc) functions is Isc
2. Give bounds by choosing a (suboptimal) A

Theorem 3.5 (Donsker-Varadhan). Let P,Q be probability measures on X and let C denote the

set of functions f: X - R such that Eq[exp{f(X)}] < co. If D(P|Q) < oo then for every f € C
expectation Ep[f(X)] exists and furthermore

D(P|Q) = Sﬁng[f(X)] —log Eq[exp{f(X)}]. (3.1)

Proof. “<”: take f =log %.
“>": Fix f € C and define a probability measure Q' (tilted version of Q) via Qf(dr) =

e

Q' (dx) = exp{f(2) - Z;}Q(dx),  Zjy £ logEq[exp{f(X)}].

Then, obviously Qf « @ and we have

f f
B0 - 27 =B [1on 42| - B [l S0 DePI) - DCPIQ < DPIQ).

Notes:

1. What is Donsker-Varadhan good for? By setting f(x) = e-g(x) with € << 1 and linearizing exp
and log we can see that when D(P||Q) is small, expectations under P can be approximated by
expectations over () (change of measure): Ep[g(X)]~Eg[g(X)]. This holds for all functions

g with finite exponential moment under (). Total variation distance provides a similar bound,
but for a narrower class of bounded functions:

[Ep[g(X)] - Eq[g(X)] < [g]TV(P,Q).

2. More formally, inequality Ep[f(X)] < logEg[exp f(X)] + D(P|Q) is useful in estimating
Ep[f(X)] for complicated distribution P (e.g. over large-dimensional vector X™ with lots of
weak inter-coordinate dependencies) by making a smart choice of @ (e.g. with iid components).

3. In the next lecture we will show that P —~ D(P|Q) is convex. A general method of obtaining
variational formulas like (3.1) is by Young-Fenchel inequality. Indeed, (3.1) is exactly this
inequality since the Fenchel-Legendre conjugate of D(-|Q) is given by a convex map f+~ Zy.

Theorem 3.6 (Weak lower-semicontinuity of divergence). Let X be a metric space with Borel
o-algebra H. If P, and Q, converge weakly (in distribution) to P, Q, then

D(P|Q) < liminf D(P,Qn). (3.2)
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Proof. First method: On a metric space X bounded continuous functions (C) are dense in the set
of all integrable functions. Then in Donsker-Varadhan (3.1) we can replace C by Cp to get

D(P,|@n) = Sup Ep,[f(X)] -logEq, [exp{f(X)}].

Recall P, — P weakly if and only if Ep, f(X) - Epf(X) for all f € C,. Taking the limit concludes
the proof.

Second method (less mysterious): Let A be the algebra of Borel sets E whose boundary has
zero (P + @) measure, i.e.

A={EeH:(P+Q)(0OF)=0}.
By the property of weak convergence P, and @), converge pointwise on .A. Thus by (3.8) we have

D(PalQa) < lim D(Py 4| Qn.4)

If we show A is (P + Q))-dense in H, we are done by (3.7). To get an idea, consider X = R. Then
open sets are (P + @))-dense in H (since finite measures are regular), while the algebra F generated
by open intervals is (P + @)-dense in the open sets. Since there are at most countably many points
a € X with P(a)+ Q(a) >0, we may further approximate each interval (a,b) whose boundary has
non-zero (P + @) measure by a slightly larger interval from .A. O

Note: In general, D(P is not continuous in either P or (). Example: Let By,... ,Bni'i&d' +1
g

equiprobably. Then S, = ﬁ Y Bigj\/((), 1). But D( Ps, |N(0,1)) = oo for all n. Note that
di?c;;ce m

this is an example for strict inequality in (3.2).
Note: Why do we care about continuity of information measures? Let’s take divergence as an
example.

1. Computation. For complicated P and @ direct computation of D(P|Q) might be hard.
Instead, one may want to discretize them then let the computer compute. Question: Is this
procedure stable, i.e., as the quantization becomes finer, does this procedure guarantee to
converge to the true value? Yes! Continuity w.r.t. discretization is guaranteed by the next
theorem.

2. Estimating information measures. In many statistical setups, oftentimes we do not know P
or @, if we estimate the distribution from data (e.g., estimate P by empirical distribution
B, from n samples) and then plug in, does D(PnHQ) provide a good estimator for D(P|Q)?
Well, note from the first example that this is a bad idea if Q is continuous, since D(P,]Q) = oo
for n. In fact, if one convolves the empirical distribution with a tiny bit of, say, Gaussian
distribution, then it will always have a density. If we allow the variance of the Gaussian to
vanish with n appropriately, we will have convergence. This leads to the idea of kernel density
estimators. All these need regularity properties of divergence.

3.4 Variational characterizations of divergence:
Gelfand-Yaglom-Perez

The point of the following theorem is that divergence on general alphabets can be defined via
divergence on finite alphabets and discretization. Moreover, as the quantization becomes finer, we
approach the value of divergence.
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Theorem 3.7 (Gelfand-Yaglom-Perez). Let P,Q be two probability measures on X with o-algebra

F. Then . PLE]
D(P|Q)= sup > P[E;]log ==,
{El,...,En}z‘; Q[E:]

where the supremum is over all finite F-measurable partitions: U;L:I E; = X,E;nE; =@, and

(3.3)

Olog% =0 and log% = oo per our usual convention.

Remark 3.1. This theorem, in particular, allows us to prove all general identities and inequalities
for the cases of discrete random variables.

Proof. “>”: Fix a finite partition Ei,...E,. Define a function (quantizer/discretizer) f : X —
{1,...,n} as follows: For any z, let f(x) denote the index j of the set E; to which X belongs. Let
X be distributed according to either P or @ and set Y = f(X). Applying data processing inequality
for divergence yields

D(P|Q) =D(Px|Qx)
> D(Py|Qy) (3.4)

~ A P[E;]
=2 PEs o

“<”: To show D(P||Q) is indeed achievable, first note that if P <« @, then by definition,
there exists B such that Q(B) = 0 < P(B). Choosing the partition Ey = B and Ey = B®, we

have D(P|Q) = oo = Y2, P[E;]log S%E’% In the sequel we assume that P <« @, hence the likeli-
hood ratio leg is well-defined. Let us define a partition of X by partitioning the range of log ap,

={x: logmee [j-n/2,j+1-n/2)},j=1,...,n-1and E, = {z: log <1-n/2or logd

n/2)} 'Note that on Ej, log% <e(j+1-n/2) < log QEE]i + €. Hence PN fE dPlogg <
E, P(E;

>l eP(E;) + P(E; )1<;gg§E oS < et T eP(By) + P(Ej)logﬁ + P(Ey)log s In other

words, Y7y P(Ej)log QEEJ'; fEC dPlogm —€- P(En)logﬁ. Let n — oo and € - 0 be

such that ne - oo (e.g., € = 1/y/n). The proof is complete by noting that P(FE,) — 0 and

f1{|log%|£en}dplogz —>/dPlog e =D(P|Q). O

3.5 Continuity of divergence. Dependence on c-algebra.

For finite alphabet X it is easy to establish continuity of entropy and divergence:

Proposition 3.1. Let X be finite, fix distribution @Q on X with Q(x) >0 for all x € X. Then map
P~ D(P|Q)

18 continuous. In particular,
P~ H(P) (3.5)

18 continuous.

! Intuition: The main idea is to note that the loss in the inequality (3.4) is in fact D(Px|Qx) = D(Py|Qy) +
D(Px |y |@xv|Py), and we want to show that the conditional divergence is small. Note that Px|y_; = Px|xer; and

dP - - . .
Qx|y=j = Qx|xen,. Hence dQ?Ii ; = Zg ggg ;lE Once we partitioned the likelihood ratio sufficiently finely, these

two conditional distribution are very close to each other.
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Warning: Divergence is never continuous in the pair, even for finite alphabets: d(1[27™) 4 0.
Proof. Notice that

D(PIQ) = ¥ P(a) o 5

and each term is a continuous function of P(x). O

Our next goal is to study continuity properties of divergence for general alphabets. First,
however, we need to understand dependence on the o-algebra of the space. Indeed, divergence
D(P|Q) implicitly depends on the o-algebra F defining the measurable space (X, F). To emphasize
the dependence on F we will write

D(Pr|QF).
We want to understand how does D(Pg|Qx) depend upon refining F. Notice that we can even
define D(Pr|Qx) for any algebra of sets F and two positive additive set-functions P,Q on F. For
this we take (3.3) as the definition. Note that when F is not a o-algebra or P, Q are not o-additive,
we do not have Radon-Nikodym theorem and thus our original definition is not applicable.

Corollary 3.2 (Measure-theoretic properties of divergence). Let P,Q be probability measures on
the measurable space (X, H). Assume all algebras below are sub-algebras of H. Then:

o (Monotonicity) If F ¢ G then
D(Pr|Qr) < D(Fg|Qg) - (3.6)
o Let F1 € Fa... be an increasing sequence of algebras and let F = U, F, be their limit, then

D(Pr,|Qr,) » D(Pr|QF).
o If Fis (P+Q)-dense in G thenz
D(Pr|Qr) = D(Fg|Qg) - (3.7)

e (Monotone convergence theorem) Let Fy € Fa ... be an increasing sequence of algebras and let
F =V Fn be the o-algebra generated by them, then

D(Pr,|QF,) 7 D(Pr|QF).
In particular,
D(Px=[Qx=) = lim D(Pxn[Qx~).

e (Lower-semicontinuity of divergence) If P, - P and Q,, > Q pointwise on the algebra F, theni

D(Pr|Qr) <liminf D(P, 7| QnF)- (3-8)

Proof. Straightforward applications of (3.3) and the observation that any algebra F is p-dense in
the o-algebra o{F} it generates, for any p on (X, H).* O

Note: Pointwise convergence on H is weaker than convergence in total variation and stronger than
convergence in distribution (aka “weak convergence”). However, (3.8) can be extended to this mode
of convergence (see Theorem 3.6).

2Note: F is p-dense in G if VE € G,e > 03E € F s.t. u[EAE'] <e.

3P, — P pointwise on some algebra F if VE € F : P,[E] - P[E].

“This may be shown by transfinite induction: to each ordinal w associate an algebra F,, generated by monotone

limits of sets from F,» with w’ <w. Then o{F} = Fu,, where wp is the first ordinal for which F,, is a monotone class.
But F is py-dense in each F,, by transfinite induction.
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3.6 Variational characterizations and continuity of mutual
information

Again, similarly to Proposition 3.1, it is easy to show that in the case of finite alphabets mutual
information is continuous in the distribution:

Proposition 3.2. Let X and Y be finite alphabets. Then
Pxy ~I(X;Y)
18 continuous.

Proof. Apply representation
I(X;Y)=H(X)+H(Y)-H(X,Y)

and (3.5). O

Further properties of mutual information follow from I(X;Y") = D(Pxy | Px Py ) and correspond-
ing properties of divergence, e.g.

1.
I(X;Y) = St}pE[f(X,Y)] ~log E[exp{f(X.Y)}],
where Y is a copy of Y, independent of X and supremum is over bounded, or even bounded
continuous functions.

2. If (X, Yn) 4 (X,Y) converge in distribution, then

I(X;Y) <liminf I(X,;Yy). (3.9)

Good example of strict inequality: X, =Y, = %Z. In this case (Xn,Y,) 4 (0,0) but
I(Xn;Yn) = H(Z) >0=1(0;0).

o Pxy[E; x F}]
Iy = {Eis}li?Fj} %PXY[Ei < Fjllog Px[E;]Py[F;]’
where supremum is over finite partitions of spaces X and y.i
4. (Monotone convergence):
I(X“;Y):Ji_{gloI(X";Y) (3.10)
I(X“;Y""):T}i_)rroloI(X”;Y”) (3.11)

This implies that all mutual information between two-processes X *° and Y *° is contained in
their finite-dimensional projections, leaving nothing for the tail o-algebra.

5To prove this from (3.3) one needs to notice that algebra of measurable rectangles is dense in the product
o-algebra.
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§ 4. EXTREMIZATION OF MUTUAL INFORMATION: CAPACITY SADDLE POINT

4.1 Convexity of information measures

Theorem 4.1. (P, Q) — D(P|Q) is convex.
Proof. First proof: Let X € {0,1}, Px =[A,1 - A]. Select two conditional kernels:

Pyix.o = P, Pyixa=h (4.1)
Qvix=o = Qo, Qyx-1=Q1 (4.2)

Conditioning increases divergence, hence

D(Py x| Qy|x|Px) 2 D(Py|Qy)

Second proof: (p,q) - plog§ is convex on Rz [Verify by computing the Hessian matrix and

showing that it is positive semideﬁnite}i
Third proof: By the Donsker-Varadhan variational representation,

D(P|Q) = S}gng[f(X)] ~log Eq[exp{f(X)}].

where for fixed f, P - Ep[f(X)] is affine (hence convex), @ ~ logEg[exp{f(X)}] is concave.
Therefore (P, Q) » D(P|Q) is pointwise supremum of convex functions, hence convex. O

Remark 4.1. The first proof shows that for an arbitrary measure of similarity D(P|Q) convexity
of (P,Q) ~ D(P|Q) is equivalent to “conditioning increases divergence” property of D. Convexity
can also be understood as “mixing decreases divergence”.

Remark 4.2 (f-divergences). Any f-divergence, cf. (1.15), satisfies all the key properties of the
usual divergence: positivity, monotonicity, data processing (DP), conditioning increases divergence
(CID) and convexity in the pair. Indeed, by previous remark the last two are equivalent. Furthermore,
proof of Theorem 2.2 showed that DP and CID are implied by monotonicity. Thus, consider Pxy
and @ xy and note

D¢(Pxy|Qxy) =EqQyy [f (%)] (4.3)
el
)

where inequality follows by applying Jensen’s inequality to convex function f. Finally, positivity
follows from monotonicity by taking Y to be a constant and recalling that f(1) = 0.

!This is a general phenomenon: for a convex f(-) the perspective function (p,q) — qf (5) is convex too.
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Theorem 4.2 (Entropy). Px — H(Px) is concave.

Proof. If Px is on a finite alphabet, then proof is complete by H(X) = log|X|- D(Px|Ux).
Otherwise, set

P Y=0
Then apply H(X|Y) < H(X). O

Recall that I(X,Y’) is a function of Pxy, or equivalently, (Px, Py|x). Denote I(Px, Py|x) =
I(X:Y).

Theorem 4.3 (Mutual Information).
e For fized Py|x, Px = I(Px, Py|x) is concave.
e For fired Px, Py|x = I(Px, Py|x) is convez.
Proof.

e First proof: Introduce 6 € Bern(\). Define Pxg-o = PY and Pxp-1 = PL. Then § - X - Y.
Then Px = APy + APy, I(X;Y) =I1(X,0;Y) =1(6;Y) + I(X;Y|0) > [(X;Y|0), which is our
desired I(APY + APy, Py|x) > AI(PY, Py|x) + M(PY, Py|x).

Second proof: I(X;Y) = ming D(Py|x|Q|Px) — pointwise minimum of affine functions is
concave.

Third proof: Pick a @ and use the golden formula: I(X;Y’) = D(Pyx|Q|Px) - D(Py|Q),
where Py — D(Py|Q) is convex, as the composition of the Py — Py (affine) and Py ~
D(Py|Q) (convex).

o I(X;Y) = D(Pyx|Py|Px) H

4.2* Local behavior of divergence
Due to smoothness of the function (p,q) — plog§ at (1,1) it is natural to expect that the functional
P~ D(P|Q)

should also be smooth as P — ). Due to non-negativity and convexity, it is then also natural to
expect that this functional decays quadratically. In this section, we show that generally decay is
sublinear and it is quadratic in the special case when x?(P|Q) < oo (see below).

Proposition 4.1. When D(P|Q) < oo, the one-sided derivative in A =0 vanishes:

d _
=], DOP+3QIQ) =0
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Proof.
%D()\P +3Q[0) = Eo [%()\f £ N log(\f + )\)]

where f = 0 As X = 0 the function under expectation decreases to (f —1)loge monotonically.

Indeed, the function B B
A= g(A) = (Af+ ) log(MNf+ )

9()

is convex and equals zero at A = 0. Thus is increasing in A. Moreover, by convexity of z — x logx

1 — — 1 _
X()\f+ A)(log(Af+ X)) < X()\flogf +Allogl) = flog f
and by assumption flog f is Q-integrable. Thus the Monotone Convergence Theorem applies. [

Note: More generally, under suitable technical conditions,

DOP+3QIR) = Ep [10s 52| - D@QIR).

ﬁ‘x dR

and
dPy

D(AP1 + AQ1|APo + A\Qo) = Eq, [log i,

] D(P1|Py) +Ep, [1 - Z%] loge

Db
The message of Proposition 4.1 is that the function
A= D(AP+2Q|Q),

is o(A) as A - 0. In fact, in most cases it is quadratic in A. To state a precise version, we need to
define the concept of x2-divergence — a version of f-divergence (1.15):

C(PIQ) = fd@(——l)z.

This is a very popular measure of distance between P and @), frequently used in statistics. It has
many important properties, but we will only mention that y? dominates KL-divergence:

D(P[Q) <log(1+x*(P|Q))-
Our second result about local properties of KL-divergence is the following:

Proposition 4.2 (KL is locally x?-like). If x*(P||Q) < oo then

< Mloge

DOP+3QIQ) = =225 (PIQ) +0o(N), A=,

Proof. First, notice that
dpP
D(P E
(PIQ) =Eo[9(55)]
where
g(x) 2 xlogx— (x-1)loge.

Note that z — = ﬁ)i{oge = fo x(18d58)+5 is decreasing in z on (0, 00). Therefore

0<g(z) < (z-1)%loge,
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and hence

1 dP dP 2

By the dominated convergence theorem (which is applicable since x?(P||Q) < o) we have

e R Ay R S

4.3* Local behavior of divergence and Fisher information

Consider a parameterized set of distributions {Py, 6 € ©} and assume © is an open subset of R?.
Furthermore, suppose that distribution Py are all given in the form of

Fy(dx) = f(z|0)p(dr),

where 1 is some common dominating measure (e.g. Lebesgue or counting). If for a fixed x functions
0 — f(x|f) are smooth, one can define Fisher information matrix with respect to parameter 6 as

Jp(0) =Ex.p, [VVT], V2vylogf(X]0). (4.6)

Under suitable regularity conditions, Fisher information matrix has several equivalent expressions:

Jr(0) = covx.p, [Volog f(X]0)] (4.7)
= (410ge) [ u(dw) (Vo/T @) (To/F(@l0))” (4.8)
= —(log e) Ey[Hessy (log £(X9))] (4.9)

where the latter is obtained by differentiating

0= [ (o) (216) 53 Tog £ a10)

in 6;.

J

Trace of this matrix is called Fisher information and similarly can be expressed in a variety of
forms:

) [Vef(«10)]

tr Jp(8) = f u(de (4.10)

7G0)

—4 [ w(d) Vo T I (4.11)
d 82

- (loge) -Ex.p, [z s e /X0 (112)

Significance of Fisher information matrix arises from the fact that it gauges the local behaviour
of divergence for smooth parametric families. Namely, we have (again under suitable technical
conditions):

D( Py, | Pogse) = f Jr(00)€+o(|€]?), (4.13)
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which is obtained by integrating the Taylor expansion:

log f (/6o + ) = log f (lfo) + &' Volog f(x100) + %gTHessmog F(@l0))€ + o)

Property (4.13) is of paramount importance in statistics. We should remember it as: Divergence
1s locally quadratic on the parameter space, with Hessian given by the Fisher information matrix.

Remark 4.3. It can be seen that if one introduces another parametrization 6ecO by means of a
smooth invertible map © — ©, then Fisher information matrix changes as

Jr(0) = ATJRp(0)A, (4.14)

where A = % is the Jacobian of the map. So we can see that Jp transforms similarly to the metric

tensor in Riemannian geometry. This idea can be used to define a Riemannian metric on the
space of parameters O, called Fisher-Rao metric. This is explored in a field known as information

geometry [ANOQT].

Example: Consider © to be the interior of a simplex of all distributions on a finite alphabet

{0,...,d}. We will take 61,...,0, as free parameters and set 6y = 1 - Z;-i:l 0;. So all derivatives are
with respect to 61,...,04 only. Then we have

0, r=1,...,d

Py(x) = f(]f) =

1~ Tpsobs, 2=0

and for Fisher information matrix we get
Jr(6) = (o 26){dia U P S 1T} (4.15)
F g gel"”?ed 1—2;1:192' ; .

where 1-17 is the d x d matrix of all ones. For future reference, we also compute determinant of
Jr(0). To that end notice that det(A +zyT) = det A-det(I + A~tayT) = det A- (1 +y? A~ x), where
we used the identity det(I + AB) = det(I + BA). Thus, we have

d 1 1 d 1

det Jp(0) = (loge)* []+ = (log e)* [1

- . (4.16)
z=0 9$ 1- Zgzl 03: z=1 09&

4.4 Extremization of mutual information

Two problems of interest
o Fix Pyx — max I(X;Y) — channel coding
X
Note: This maximum is called “capacity” of a set of distributions { Py|x_,, > € X'}.

e Fix Py — glin I(X;Y) — lossy compression
Y|X

Theorem 4.4 (Saddle point). Let P be a convex set of distributions on X. Suppose there exists
P € P such that

sup I(Px, Pyx)=1(Px, Pyx) = C
PxeP

P
and let Py BN Py.. Then for all Px € P and for all Qy, we have

D(Py|x|Py|Px) < D(Py x| Py|Px) < D(Pyix |Qv|Px)- (4.17)
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Note: Py (resp., Py ) is called a capacity-achieving input (resp., output) distribution, or a caid
(resp., the caod).

Proof. Right inequality: obvious from C = I( Py, Py|x) = ming, D(Py|x|Qy|Px).
Left inequality: If C' = oo, then trivial. In the sequel assume that C < oo, hence I(Px, Py|x) < o0
for all Py € P. Let Px, = APx + AP} € P by convexity of P, and introduce @ ~ Bern(\), so that

PX)\\G:O = P;(, PX)\|9:1 = Px, and 6 — X)\ - Y>\. Then
C2I(Xx;Ya) =1(6,X\;Y)) = 1(6;Y)) + I(Xy; YA|0)
= D(Py, g Py, |Ps) + M (Px, Py|x) + A\C
= AD(Py | Py,) + AD(Py | Py,) + X[(Px, Py|x) + AC
> AD(Py | Py,) + AI(Px, Py|x) + AC.
Since I(Px, Py|x) < 00, we can subtract it to obtain
MC ~I(Px, Py|x)) > AD(Py| Py, ).
Dividing both sides by A, taking the liminf and using lower semicontinuity of D, we have
C - I(Px, Pyjx) 2 lininf D(Py | Py, ) > D(Py[[})
= C>I(Px,Py|x)+D(Py|Py) = D(Py|x|Py|Px) + D(Py|Py) = D(Pyx | Py|Px).
Here is an even shorter proof:
C 2 I(Xx;:Y)) = D(Pyx | Py, |Px,) (4.18)
= AD(Py|x | Pr,|Px) + AD(Py x| P, | Px) (4.19)
> AD(Py|x | Py, | Px) + AC (4.20)
=>\D(PX’yHP)(Py/\)+5\C, ( )

where inequality is by the right part of (4.17) (already shown). Thus, subtracting AC' and dividing
by A we get
D(P)Qy”PXpYA) <C

and the proof is completed by taking liminf)_,¢ and applying lower semincontinuity of divergence. [

Corollary 4.1. In addition to the assumptions of Theorem 4.4, suppose C < oo. Then caod Py is
unique. It satisfies the property that for any Py induced by some Px € P (i.e. Py = Py|x o Px) we
have

D(Py|Py) <C < oo (4.22)

and in particular Py < Py,.
Proof. The statement is: I(Pyx, Py|x)=C = Py = Py.. Indeed:
C = D(Pyx|Py|Px) = D(Pyx | Py|Px) - D(Py | Py)

< D(Py x| Py|Px) - D(Py| Py)
=C-D(Py|Py)= Py =Py

Statement (4.22) follows from the left inequality in (4.17) and “conditioning increases divergence”.
O
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Notes:

e Finiteness of C is necessary. Counterexample: The identity channel Y = X, where X takes
values on integers. Then any distribution with infinite entropy is caid or caod.

e Non-uniqueness of caid. Unlike the caod, caid does not need to be unique. Let Z; ~ Bern(%).
Consider Y] = X1 @ Z; and Y5 = X5. Then maxpy . I(X1,X2;Y1,Ys) = log4, achieved by
Px, x, = Bern(p) xBern(%) for any p. Note that the caod is unique: Py y, = Bern(%) xBern(%).

Review: Minimax and saddlepoint

Suppose we have a bivariate function f. Then we always have the minimax inequality:
inf sup f(x,y) > supinf f(x,y).
Yy =z z Y

When does it hold with equality?

1. It turns out minimax equality is implied by the existence of a saddle point (z*,y*),
ie.,
fla,y™) < f(@™,y") < f(a"y)  Vay

Furthermore, minimax equality also implies existence of saddle point if inf and sup
are achieved c.f. [BNOQ3, Section 2.6]) for all x,y [Straightforward to check. See

proof of corollary below].

2. There are a number of known criteria establishing
infsup f(z,y) = supinf f(z,y)
Y x T Yy

They usually require some continuity of f, compactness of domains and convexity
in z and concavity in y. One of the most general version is due to M. Sion [Sio5§].

3. The mother result of all this minimax theory is a theorem of von Neumann on
bilinear functions: Let A and B have finite alphabets, and g(a,b) be arbitrary, then

minmaxE[g(A, B)] = maxmin Eg(4, B)]

Here (z,y) < (Pa, Pp) and f(z,y) < Yap Pa(a)Ps(b)g(a,b).

4. A more general version is: if X and ) are compact convex domains in R”, f(z,y)
continuous in (x,y), concave in x and convex in y then

maxmin f(x = minma x
nax mi f(x,y) iy nax f(z,y)

Applying Theorem 4.4 to conditional divergence gives the following result.
Corollary 4.2 (Minimax). Under assumptions of Theorem 4.4, we have

I(X:Y) = in D(P P
R IGY) = pagmn Dl @R

min max D (P P
ain max (Pyix |Qy|Px)
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Proof. This follows from saddle-point trivially: Maximizing/minimizing the leftmost/rightmost
sides of (4.17) gives

min m%;gD(PwXHQﬂPX) < ;H%%D(Py\xﬂpﬂpx) < D(Py x| Py|Px)
X

Qy Px

< min D( P, P53) < max min D( P Px).
nin D(Py 1 1Qy1P3) < puas in D(Fy 1@y 1Py)

but by definition min max > max min. O

4.5 Capacity = information radius

Review: Radius and diameter

Let (X,d) be a metric space. Let A be a bounded subset.

1. Radius (aka Chebyshev radius) of A: the radius of the smallest ball that covers A,
ie., rad (A) = infyex supge s d(z,y).

2. Diameter of A: diam (A) =sup, .4 d(z,y).
3. Note that the radius and the diameter both measure how big/rich a set is.

4. From definition and triangle inequality we have

%diam (A) <rad(A) < diam (A)

5. In fact, the rightmost upper bound can frequently be improved. A result of
Bohnenblust [Boh38] shows that in R™ equipped with any norm we always have
rad (A) < -fzdiam(A). For R" with fe-norm the situation is even simpler:

rad (A) = %diam (A) (such spaces are called centrable).

The next simple corollary shows that capacity is just the radius of the set of distributions {Py| Xeg, L €
X'} when distances are measured by divergence (although, we remind, divergence is not a metric).

Corollary 4.3. For fized kernel Py |x, let P = {all dist. on X'} and X is finite, then

max I(X;Y) = max D(Pyx_ | PY)
X X

D(Pyix-,|Pf)  Va:Pi(x)>0.

The last corollary gives a geometric interpretation to capacity: it equals the radius of the smallest
divergence-“ball” that encompasses all distributions {Py|x-, : z € X'}. Moreover, Py is a convex
combination of some Py|x_, and it is equidistant to those.

4.6 Existence of caod (general case)

‘We have shown above that the solution to

C = sup I(X;Y)
PxeP
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can be a) interpreted as a saddle point; b) written in the minimax form and c) that caod Py is
unique. This was all done under the extra assumption that supremum over Px is attainable. It
turns out, properties b) and c) can be shown without that extra assumption.

Theorem 4.5 (Kemperman). For any Py|x and a convez set of distributions P such that

C = sup I(Px,Py|x) <o (4.23)
PxeP

there exists a unique Py with the property that

C = sup D(Pyx|Py|Px). (4.24)
PxeP
Furthermore,

C = sup min D(Pyx|Qy|Px) (4.25)

PXeP QY
= min sup D(Pyx|Qy|Px) (4.26)

QY PxEP
= minsup D(Pyx—,|Qv).  (if P=(all Px)) (4.27)

Y zxe

Note: Condition (4.23) is automatically satisfied if there is any Qy such that

sup D(PY\XHQY|PX) < 00. (4.28)
PxEP

Example: Non-ezistence of caid. Let Z ~N(0,1) and consider the problem

C= sup I(X;X+27). (4.29)
E[X]=0,E[X2%]=P
Px R x)s

If we remove the constraint E[X*] = s the unique caid is Px = N(0, P), see Theorem 4.6. When
s # 3P? then such Py is no longer inside the constraint set 7. However, for s > 3P? the maximum

1
C= 5 log(1+ P)
is still attainable. Indeed, we can add a small “bump” to the gaussian distribution as follows:
Px = (1-p)N(0,P) + pd,,

where p - 0, pz2 - 0 but pz* - s — 3P? > 0. This shows that for the problem (4.29) with s > 3P2
the caid does not exist, the caod Py = N'(0,1 + P) exists and unique as Theorem 4.5 postulates.

Proof of Theorem 4.5. Let P)’(n be a sequence of input distributions achieving C| i.e., I(P)'(n, Py|X) -
C. Let P, be the convex hull of {Pj . , Px.}. Since P, is a finite-dimensional simplex, the
concave function Px = I(Px, Py|x) attains its maximum at some point Px, € Pn, i.e.,

I, = I(Px,, Pyx) = fhax I(Px, Py|x).

Denote by Py, be the sequence of output distributions corresponding to Px,. We have then:

< C-1,, (4.32)
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where in (4.31) we applied Theorem 4.4 to (Py4x, Py,,, ). By the Pinsker-Csiszar inequality (1.14)
and since I, # C, we conclude that the sequence Py, is Cauchy in total variation:

sup TV (Py,, Py, )~ 0, n — 00.
k>1

Since the space of probability distributions is complete in total variation, the sequence must have a
limit point Py, — Py-. By taking a limit as & — oo in (4.32) and applying the lower semi-continuity
of divergence (Theorem 3.6) we get

D(Py, | PY) < lim D(Py, [Py, ,) < C~ I,

and therefore, Py, — Py in the (stronger) sense of D(Py, | Py ) — 0. Therefore,
D(Py x| P§|Px,) = I + D(Py, | P¥) — C. (4.33)
Take any Py € Up>1 Px. Then Px € P, for all sufficiently large n and thus by Theorem 4.4
D(Pyx|Py,|Px) < I, <C, (4.34)
which by lower semi-continuity of divergence implies
D(Py x| P¥IPx) < C. (4.35)

Finally, to prove that (4.35) holds for arbitrary Px € P, we may repeat the -argument above with
P, replaced by P, = = conv(Pyx U P,), denoting the resulting sequences by PXn, Pyn and the limit
point by P{ﬁ we have:

D(Py,| Py,) D(Py (x| Py,|Px,) - D(Pyx| Py,|Px,) (4.36)

C-1,, (4.37)

IN

where (4.37) follows from (4.35) since P, € P,. Hence taking limit as n — oo we have Py = Py and
therefore (4.35) holds.
Finally, to see (4.26), note that by definition capacity as a max-min is at most the min-max, i.e.,

C = sup mmD(PY\XHQY|PX) < %m Sup, D(Pyx|Qy|Px) < Sup, D(Py x| Py|Px)=C

PXe
in view of (4.34). O

Corollary 4.4. Let X be countable and P a convex set of distributions on X. If supp, p H(X) < 00
then

sup H(X) =min sup ) Px(x)log
PyeP 0 Qx PXGP; (@) Qx ()

and the optimizer Q% exist and is unique. If Q% € P then it is also a unique mazimizer of H(X).
Proof. Just apply Kemperman’s result to channel ¥ = X. O
Example: Assume that f:Z — R is such that ¥,z exp{-Af(n)} < oo for all A >0. Then

X:E%l(a))(()]Sa H(X)< }\rig Aa + log ; exp{-Af(n)}.

This follows from taking Q(n) = cexp{-Af(n)}. This bound is often tight and achieved by
Px(n) = cexp{-Af(n)}, known as the Gibbs distribution for energy function f.
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4.7 Gaussian saddle point

For additive noise, there is also a different kind of saddle point between Px and the distribution of
noise:

Theorem 4.6. Let X, ~N(0,0%), Ny ~N(0,0%) , X, 1L Ny. Then:
1. “Gaussian capacity”:

1
C=I1(X, X, +N,) = 51og(1+ Z—X)

2. “Gaussian input is the best”: For all X 1 N4 and varX < cr_%{,
I(X;X + Ng) <I(Xg; Xg+ Nyg),
with equality iff X BXQ.
3. “Gaussian noise is the worst”: For for all N s.t. E[X;N]=0 and EN? < 0%,
I(Xg; Xg+ N) > I(Xg; Xg + Nyg),
with equality iff NQNQ and independent of X,.

Note: Intuitive remarks

1. For AWGN channel, Gaussian input is the most favorable. Indeed, immediately from the
second statement we have

1 0'%(
max I(X;X +N,) = 51og(1 + %)

XwvarX<o?%
which is the capacity formula for the AWGN channel.

2. For Gaussian source, additive Gaussian noise is the worst in the sense that it minimizes the
mutual information provided by the noisy version.

Proof. WLOG, assume all random variables have zero mean. Let Y, = X, + N,. Define

1 o3 loge 22 — o2
2 2 2 X X
() = D(Byxyee Pg) = DG RO, o+ 03)) = log (14 75) #2235 5= 75
| S S —
=C

1. Compute I(Xg4; X,+ Ny) =E[g(X,)]=C
2. Recall the inf-representation I(X;Y") = ming D(Py|x||Q|Px). Then
I(X;X + Ng) < D(Py,x, | Py,|Px) =E[g(X)] < C < o0.
Furthermore, if I(X; X + Ny) then uniqueness of caod, cf. Corollary 4.1, implies Py = Py,. But
Py = Px * N(0,0%). Then it must be that X ~ N'(0,0%) simply by considering characteristic

functions:

Wx(t) 10 L 1C S DL Ux(t) = e 2% — X ~ N(0,0%)
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3. Let Y = X+ N and let Py|y, be the respective kernel. [Note that here we only assume that N
is uncorrelated with Xg, i.e., E[NX,4] = 0, not necessarily independent.] Then

I(Xg; Xg+N) = D(Px,y|Px,|Py)
Px v, (Xg|Y')
= DBy [Py |Py) + Blog =22 25
g g
> Elogw (4.38)
- Px,(Xy) ‘
= Elogw (4.39)
Py, (Y)
1 Y? N2
= O+ B[ - 5] (4.40)
2 ox +toy Oy
loge o% EN?
- o 2 0% +02 (1_ o2 ) (441)
X N N
> C, (4.42)
where
o (4.30) Dpe - By
e (4.41): E[X,N] =0 and E[Y?] = E[N?] + E[X_].

e (4.42): EN2< 012\,.

Finally, the conditions for equality in (4.38) say
D(Px,y || Px,y,|Py) =0

Thus, Px,y = Px,|y, i.e., X4 is conditionally Gaussian: Py y-, = N (by,c?) for some constant
b,c. In other words, under Px_ y, we have

Xy=bY +cZ , Z~Gaussian LY.

But then Y must be Gaussian itself by Cramer’s Theorem or simply by considering characteristic
functions: , , ,
Ty (1) e =et = Ty (t) =e " = Y- Gaussian

Therefore, (X4,Y) must be jointly Gaussian and hence N = Y - X, is Gaussian. Thus we
conclude that it is only possible to attain I(X,; X, + N) = C if N is Gaussian of variance o%
and independent of X,. O
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§ 5. SINGLE-LETTERIZATION. PROBABILITY OF ERROR. ENTROPY RATE.

5.1 Extremization of mutual information for memoryless sources
and channels

Theorem 5.1. (Joint M.I. vs. marginal M.I.)

(]) IfPYn‘Xn = HPYZ|X1 then
I(X™Y™) < Y I(Xi;Y5) (5.1)

with equality iff Pyn =[] Py,. Consequently,

n
ngaXI(Xi;Yz‘)-

i=1 "X

max [(X™";Y") =
Pxn
(2) If Xy L ... 1L X, then
I(X™Y™) > Y I(XiYs) (5.2)
with equality iff Pxnjyn =TI Px,y; Py»-almost surely'. Consequently,

n
min [(X™;Y") =) min I(X;Y]).

Pynixn i=1"Y531X;

Proof. (1) Use I(X™5Y™) = ¥ I(X;:Y;) = D(Pynxn|l [T Py x,|Pxn) = D(Pya | TT Py,)

(2) Reverse therole of X and Y: I(X™;Y™)~¥ I(X;;Y)) = D(Pxnjy=| I Px,)y;|Py=)-D(Px~ | T Px;)
0

Note: The moral of this result is that
1. For product channel, the MI-maximizing input is a product distribution
2. For product source, the MI-minimizing channel is a product channel

This type of result is often known as single-letterization in information theory, which tremendously
simplifies the optimization problem over a large-dimensional (multi-letter) problem to a scalar (single-
letter) problem. For example, in the simplest case where X", Y™ are binary vectors, optimizing
I(X™;Y™) over Pyn and Py xn entails optimizing over 2"-dimensional vectors and 2" x 2" matrices,
whereas optimizing each I(X;;Y;) individually is easy.

Example:

'That is, if Pxn yn = Pyn [] Px,|y, as measures.
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1. (5.1) fails for non-product channels. X1 L X3 ~ Bern(1/2) on {0,1} = Fy:

Yi = X1+X2
Yo = Xy
I(X1;Y1) = I(X9:;Y2)=0 but I(X?Y?)=2bits

2. Strict inequality in (5.1).

VkYp=X,p=U~Bern(1/2) = I(Xy;Yx)=1
I(X™Y™) =1< > I(Xk; Yy)

3. Strict inequality in (5.2). X1 1L ... L X,

Y1=X2,Y2=X3,...,YHZX1 = I(Xk,Yk):O
I(X™Y") =Y H(X;)>0=) I(Xp:Ys)

5.2* Gaussian capacity via orthogonal symmetry

Multi-dimensional case (WLOG assume X; 1 ... 1L X, iid), for a memoryless channel:

n
max I(Xn,Xn-l-Zn)S max ZI(XkanJ"Zk)
E[Y X?]<nP E[¥ X?]<nP 1
Given a distribution Py, --Px,, satisfying the constraint, form the “average of marginals” distribution
Py = % Y7, Px,, which also satisfies the single letter constraint E[X?] = % Y E[X,f] < P. Then
from concavity in Px of I(Px, Py|x)

_ 1o
I(Px; Pyix) 2 - > I(Px,,Py|x)
j=1

So Py gives the same or better MI, which shows that the extremization above ought to have the form
nC(P) where C(P) is the single letter capacity. Now suppose Y = X" + Z where Z ~ N (0,1,,).
Since an isotropic Gaussian is rotationally symmetric, for any orthogonal transformation U € O(n),
the additive noise has the same distribution Zg ~ UZg, so that Pyynjyxn = Pynxn, and

From the “average of marginal” argument above, averaging over many rotations of X™ can only
make the mutual information larger. Therefore, the optimal input distribution Px» can be chosen
to be invariant under orthogonal transformations. Consequently, the (unique!) capacity achieving
output distribution Py, must be rotationally invariant. Furthermore, from the conditions for
equality in (5.1) we conclude that Py, must have independent components. Since the only product
distribution satisfying the power constraints and having rotational symmetry is an isotropic Gaussian,
we conclude that Pyn = (Py)" and Py = N(0, PL,).

For the other direction in the Gaussian saddle point problem:

i I(Xa: Xag+ N
Pl (Xg; X+ N)

This uses the same trick, except here the input distribution is automatically invariant under
orthogonal transformations.
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5.3 Information measures and probability of error

Let W be a random variable and W be our prediction. There are three types of problems:
1. Random guessing: W W.
2. Guessing with data: W - X - W.

3. Guessing with noisy data: W - X =Y - W.

We want to draw converse statements, e.g., if the uncertainty of W is high or if the information
provided by the data is too little, then it is difficult to guess the value of W.

Theorem 5.2. Let |X| = M < oo and Ppax = maxgex Px(x). Then

H(X) < (1= Puay)log(M = 1) + h(Pmax) 2 Far(Paax), (5.3)

with equality iff Px = (Prnax, 1;\53‘1‘"“‘ e 1}5?{“‘ .

M-1

Proof. First proof: Write RHS-LHS as a divergence. Let P = (Ppax, P, ..., Py) and introduce
Q = (Prax, Sgimax . Ibmax)  Then RHS-LHS = D(P|Q) > 0, with inequality iff P = Q.

Second proof: Given any P = (Ppax, P2, ..., Py), apply a random permutation 7 to the last
M -1 atoms to obtain the distribution P;. Then averaging P, over all permutation 7 gives Q).
Then use concavity of entropy or “conditioning reduces entropy”: H(Q) > H(Py|w) = H(P).

Third proof: Directly solve the convex optimization max{H (P) : p; < Pyax,?=1,...,M}.

Fourth proof: Data processing inequality. Later. O

Note: Similar to Shannon entropy H, Ppax is also a reasonable measure for randomness of P. In fact,
log ﬁ is known as the Rényi entropy of order oo, denoted by Hoo(P). Note that He (P) =log M
iff P is uniform; He (P) =0 iff P is a point mass.

Note: The function F; on the RHS of (5.3) looks like

Fu(p)

0 1/M 1
which is concave with maximum log M at maximizer 1/M, but not monotone. However, Pyax > ﬁ
and F)y is decreasing on [%, 1]. Therefore (5.3) gives a lower bound on Pyax in terms of entropy.

Interpretation: Suppose one is trying to guess the value of X without any information. Then
the best bet is obviously the most likely outcome, i.e., the maximal probability of success among all
estimators is

A~

maxP[X = X | = Prax (5.4)
XX

Thus (5.3) means: It is hard to predict something of large entropy.
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Conceptual question: Is it true (for every predictor X L X) that
H(X) < Fy(P[X = X])? (5.5)

This is not obvious from (5.3) and (5.4) since p — Fjs(p) is not monotone. To show (5.5) consider

the data processor (X, X) — l{X:X}:

Pyx = PxPy  PIX=X] = Ps  d(Psld) < D(PyglQyyg)
=
Qyx = UxP; Qx=X] = & 7 = logM - H(X)
where inequality follows by the data-processing for divergence. O

The benefit of this proof is that it trivially generalizes to (possibly randomized) estimators
X (Y), which depend on some observation Y correlated with X:

Theorem 5.3 (Fano’s inequality). Let |X]|= M < oo and X - Y — X. Then

H(X|Y) < Fyy(P[X = X(Y)]) = P[X # X]log(M -1) + h(P[X # X]). (5.6)

Thus, if in addition X is uniform, then
I(X;Y)=logM - H(X|Y) > P[X = X]log M - h(P[X # X]). (5.7)
Proof. Apply data processing to Pxy vs. Ux Py and the data processor (kernel) (X,Y) — 1{X¢X}
(note that Py 1s fixed). O

Remark: We can also derive Fano’s Inequality as follows: Let € = P[X # X]. Apply data
processing for M.I.

I(X;Y)2I(X;X) > min{I(Px, Pyx) : P[X = Z] 21-¢}.
7| X
This minimum will not be zero since if we force X and Z to agree with some probability, then I(X; Z)
cannot be too small. It remains to compute the minimum, which is a nice convex optimization

problem. (Hint: look for invariants that the matrix Pyjy must satisfy under permutations (X,2)~
(m(X),nm(Z)) then apply the convexity of I(Px,-)).

Theorem 5.4 (Fano inequality: general). Let X,Y € X, |X| =M and let Qxy = Px Py, then
I(X;Y) > d(P[X=Y]|Q[X =Y])

> P[X =Y]log - hP[X =Y])

1
QX =Y]
(= P[X=Y]logM - h(P[X =Y]) if Px or Py = uniform)
Proof. Apply data processing to Pxy and Qxy. Note that if Py or Py = uniform, then Q[X =
Y]= % always. O
The following result is useful in providing converses for data transmission.

Corollary 5.1 (Lower bound on average probability of error). Let W - X - Y — W and W is
uniform on [M]£{1,...,M}. Then

I(X:Y) + h(P.)

P.=PW=W] > 1 5.8
[ ] log M (58)
I(X;Y)+1og2
> 1- I(X;Y) +1log2 _ (5.9)
log M
Proof. Apply Theorem 5.3 and the data processing for M.L: I(W;W) < I(X;Y). O
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5.4 Fano, LeCam and minimax risks

In order to show an application to statistical decision theory, consider the following setting:
e Parameter space 6 € [0,1]
e Observation model X; —i.i.d. Bern(#)

e Quadratic loss function: R X
0(0,0) = (0-06)*

e Fundamental limit:

R*(n) + sup infE[(A(X™)-0)%|0 = 6]
60€[0,1] 0

A natural estimator to consider is the empirical mean:
~ n 1
ben(X") = = 32 X,
i

It achieves the loss

0o(1-06o) 1
p——" = —.
n 4n

SUPE[(éemp - 9)2|0 =tp] =su

0o 0o

(5.10)

The question is how close this is to the optimal.

First, recall the Cramer-Rao lower bound: Consider an arbitrary statistical estimation problem
0 - X — 6 with 6 € R and Pxpg(dz|0o) = f(x|0)u(dr) with f(z[0) is differentiable in §. Then for
any 0(z) with E[6(X)|0] = 0 + b(0) and smooth b(f) we have

(1+b'(69))?

E[(0-6)%|0 = 69] > b(6o)* + 7o (00)

(5.11)

where Jp () = Var[%(ex‘e)w =6p] is the Fisher information (4.6). In our case, for any unbiased
estimator (i.e. b(#) = 0) we have

BI(0- 010 = 0] > 2L =00).

and we can see from (5.10) that éemp is optimal in the class of unbiased estimators.
How do we show that biased estimators can not do significantly better? One method is the
following. Suppose some estimator 6 achieves

E[(6-0)%0 = 6] < A2 (5.12)
for all 6y. Then, setup the following probability space:
W-0->X">0->W
o W ~Bern(1/2)
o 0=1/2+r(-1)WA, where £ >0 is to be specified later

e X" isii.d. Bern(f)
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e 0 is the given estimator
e W=0if0>1/2 and W = 1 otherwise

The idea here is that we use our high-quality estimator to distinguish between two hypotheses
0 =1/2+ rA,. Notice that for probability of error we have:

A_ 2
B[W + W] =B[6>1/29 = 1/2 - rAr, ] < SO L
K2AZ K

where the last steps are by Chebyshev and (5.12), respectively. Thus, from Theorem 5.3 we have
I(W;W) 2 (1 - %)logQ —-h(k™?).
On the other hand, from data-processing and golden formula we have
I(W; W) < 1(9; X™) < D(Pyog| Bern(1/2)"|Py)
Computing the last divergence we get
D(Pxnig|Bern(1/2)"|Py) = nd(1/2 - kAn|1/2) = n(log2 - h(1/2 - kA,))

As A,, - 0 we have
h(1/2 - kA,) =log2 - 2loge - (kA,)? +0(A2).

So altogether, we get that for every fixed x we have
(1 - %) log2 - h(k72) < 2nloge- (kA,)? + o(nA?).
In particular, by optimizing over x we get that for some constant ¢ ~ 0.015 > 0 we have
Aiz%+oﬂﬁ0.

Together with (5.10), we have
0.015

+o(1/n) <R*(n) < ﬁ,

and thus the empirical-mean estimator is rate-optimal.

We mention that for this particular problem (estimating mean of Bernoulli samples) the minimax
risk is known exactly: .
)= a7y
but obtaining this requires rather sophisticated methods. In fact, even showing R*(n) = ﬁ +o(1/n)

requires careful priors on 6 (unlike the simple two-point prior we used above).i

We demonstrated here the essense of the Fano method of proving lower (impossibility) bounds
in statistical decision theory. Namely, given an estimation task we select a prior on 6 which on one
hand yields a rather small information I(#; X) and on the other hand has sufficiently separated
points which thus should be distinguishable by a good estimator. For more see |[Yu97]|.

’In fac:c, getting this result is not hard if one accepts the following Bayesian Cramer-Rao lower bound: For any
estimator 6 and for any prior 7(0)df with smooth density © we have

N 2 1
Bon[(OX) =01 > gy T T ()
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5.5 Entropy rate

Definition 5.1. The entropy rate of a process X = (X1, Xo,...) is
1
H(X) £ lim ~H(X™) (5.13)
n—>o00 nN,

provided the limit exists.

Stationarity is a sufficient condition for entropy rate to exist. Essentially, stationarity means

invariance w.r.t. time shift. Formally, X is stationary if (Xy,,... ,th)Q(Xtﬁk, ooy Xy 1k) for any
tl,...,tn,k‘EN.

Theorem 5.5. For any stationary process X = (X1, Xo,...)

1. H(X,| X" ) < H(X,q|X™2)

2. LH(X™) > H(X,|X"")

3. LH(X™) < L H(X")

4. H(X) ezists and H(X) = limy o0 2~ H(X™) = limy 00 H (Xp|X™ ).

5. For double-sided process X = (..., X_1, X0, X1,Xo,...), H(X) = H(X1|X°) provided that
H(X1) < oo.

Proof.
1. Further conditioning + stationarity: H(X,|X" 1) < H(X,|X5™ 1) = H(X,-1|X"?)
2. Using chain rule: 2 H(X™) =1 ¥ H(X;|X") > H(X,|X"™)
3. H(X™) = H(X" 1)+ H(X,|X" ) <H(X" )+ LH(X"™)

4. nw— %H (X™) is a decreasing sequence and lower bounded by zero, hence has a limit H(X).
Moreover by chain rule, 1 H(X™) = % Y H(X;| X1, Then H(X,|X™ 1) - H(X). Indeed,

n
from part 1 lim, H(X,|X" ') = H' exists. Next, recall from calculus: if a,, — a, then the
Cesaro’s mean % »1a; — a as well. Thus, H' = H(X).
5. Assuming H(X7) < oo we have from (3.10):

lim H(X;) - H(X1|X°)) = lim I(X;;X° ) = I(X1; X° ) = H(X1) - H(X1|X°)
n—o0o n—oo

O]

where Jp(0) is as in (5.11), Jp(mw) = [ %d@. Then taking 7 supported on a —--neighborhood surrounding a
— n4
given point 6y we get that E[J¢(0)] = Totey * o(n) and Jr(7) = o(n), yielding

R*(n) 2 700(1 — )

+o(1/n).

This is a rather general phenomenon: Under regularity assumptions in any iid estimation problem 6 - X™ — § with
quadratic loss we have

R*(n) = +o(1/n).

1
infg Jr(6)
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Example: (Stationary processes)
1. X -iid source = H(X) = H(X1)

2. X — mixed sources: Flip a coin with bias p at time ¢ = 0, if head, let X =Y, if tail, let X = Z.
Then H(X) =pH(Y) +pH(Z).

3. X —stationary Markov chain: X; - X9 - X3 — -

H(Xn| X" 1) = H(Xn|Xpo1) = H(X) = H(X2)X1) = Y. i(a) Py, log Pl

a,b bla
where p is an invariant measure (possibly non-unique; unique if the chain is ergodic).
4. X-hidden Markov chain : Let X; - X3 - X3 — -+ be a Markov chain. Fix Py|y. Let X; Y—|X> Y;.

Then Y = (Y1, ...) is a stationary process. Therefore H(Y) exists but it is very difficult to compute
(no closed-form solution to date), even if X is a binary Markov chain and Py|x is a BSC.

5.6 Entropy and symbol (bit) error rate

In this section we show that the entropy rates of two processes X and Y are close whenever they
can be “coupled”. Coupling of two processes means defining them on a common probability space
so that average distance between their realizations is small. In our case, we will require that the
symbol error rate be small, i.e.

SI'—‘

znj P[X; # Y;] (5.14)

Notice that if we define the Hamming distance as

du(a",y") 2 Y Hx; # y;)
j=1

then indeed (5.14) corresponds to requiring
E[ldg(X™,Y")] < ne.

Before showing our main result, we show that Fano’s inequality Theorem 5.3 can be tensorized:

Proposition 5.1. Let X, take values on a finite alphabet X. Then
H(X"Y"™) <nFjy(1-9), (5.15)
where . )
§=~-E[dg(X™,Y™")] =~ Z [X; +Y;]
n n
Proof. For each j € [n] consider X;(Y™) =Y. Then from (5.6) we get

H(X;[Y™) < Fu(P[X; =Yj), (5.16)
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where we denoted M = |X|. Then, upper-bounding joint entropy by the sum of marginals, cf. (1.1),
and combining with (5.16) we get

H(X"Y™) < ﬁ:H(XﬂY”) (5.17)
i Fu(P[X; = Y;]) (5.18)
SnFM(—ZP[Xj:Yj]). (5.19)

n 4

where in the last step we used concavity of Fj; and Jensen’s inequality. Noticing that
n

> PIX;=Yj]=1-0

=1

concludes the proof. ]

S|

Corollary 5.2. Consider two processes X and Y with entropy rates H(X) and H(Y). If
P[X; #Y;] <e
for every j and if X takes values on a finite alphabet of size M, then
H(X)-H(Y)<Fy(l-e).
If both processes have alphabets of size M then
|H(X)-H(Y)|<elogM +h(e) -0 ase€—0
Proof. There is almost nothing to prove:
H(X")<HX™"Y")=HY"™)+H(X"Y")

and apply (5.15). For the last statement just recall the expression for Fj;. O

5.7 Mutual information rate
Definition 5.2 (Mutual information rate).
1
I(X;Y) = lim ~I(X™;Y™)
n—>oo n,
provided the limit exists.

Example: Gaussian processes. Consider X, N two stationary Gaussian processes, independent of
each other. Assume that their auto-covariance functions are absolutely summable and thus there
exist continuous power spectral density functions fx and fy. Without loss of generality, assume all
means are zero. Let cx (k) = E[X1Xg+1]. Then fx is the Fourier transform of the auto-covariance
function cy, i.e., fx(w) = ¥ ., cx(k)ek. Finally, assume fy > & > 0. Then recall from Lecture 2:

det(EXn + ENn)
det ENn

—

I(X"; X"+ N"™)

1
2%
1
24



where o0, \; are the eigenvalues of the covariance matrices Xyn» = X xn + X y» and X yn», which are
all Toeplitz matrices, e.g., (Xxn)ij = E[X;X;] = cx(i— 7). By Szegd’s theorem (see Section 5.8%):

12 1 o
— > logo; > — f log fy (w)dw
niq 2m Jo

Note that cy (k) = E[(X1 + N1)(Xg+1 + Ngs1)] = ex (k) + en (k) and hence fy = fx + fn. Thus, we
have

1 n., yvn ny _, . _L 2 fX(w)"'fN(w)
SI(X" X" N I(X,X+N)—4ﬂf0 log =

(Note: maximizing this over fx(w) leads to the famous water filling solution f%(w) =T - fn(w)|".)

5.8% Toeplitz matrices and Szegd’s theorem

Theorem 5.6 (Szegd). Let f:[0,27) — R be the Fourier transform of a summable sequence {ay},
that is

f(w) = Z e™ay > lak] < o0

Then for any ¢ : R - R continuous on the closure of the range of f, we have

lin =3 6(r) = - [ 07 (w))d

n— 00 n

where {opj,7 =1,...,n} are the eigenvalues of the Toeplitz matriz Ty, = {ar—m }} yey-

Proof sketch. The idea is to approximate ¢ by polynomials, while for polynomials the statement
can be checked directly. An alternative interpretation of the strategy is the following: Roughly
speaking we want to show that the empirical distribution of the eigenvalues % Z;Ll 05, ; cOnverges
weakly to the distribution of f(W), where W is uniformly distributed on [0,27]. To this end, let
us check that all moments converge. Usually this does not imply weak convergence, but in this case
an argument can be made.

For example, for ¢(z) = 22 we have

Zn 2 1 2
Un,j = - tr Tn
j=1 "

S|

= - Z (T)ém(T)

nfml

= _Zalmamf
nfm

= Z (n=|¢))aca-
T y-"n1

= Z (1 _‘xl)anxa—nxv

ze(-1,1)N17Z

Substituting ay = % OQW f(w)e™*t we get

1 n
P %o )2/ F@) (@) (w - ) (5.20)
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where

bu(w)= 3 (L-lal)e™

ze(—l,l)n%Z

is a Fejer kernel and converges to a d-function: 6,(u) — 27d(u) (in the sense of convergence of
Schwartz distributions). Thus from (5.20) we get

n 1 2w
% Z afw- - # [ fw)f(wH2rd(w-w)dwdw' = Py fo A (w)dw

J=1

as claimed. n

61



Part 11

Lossless data compression
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§ 6. VARIABLE-LENGTH LOSSLESS COMPRESSION

The principal engineering goal of compression is to represent a given sequence a1, as, ..., a, produced
by a source as a sequence of bits of minimal possible length. Of course, reducing the number of bits
is generally impossible, unless the source imposes certain restrictions. That is if only a small subset
of all sequences actually occur in practice. Is it so for real world sources?

As a simple demonstration, one may take two English novels and compute empirical frequencies
of each letter. It will turn out to be the same for both novels (approximately). Thus, we can see
that there is some underlying structure in English texts restricting possible output sequences. The
structure goes beyond empirical frequencies of course, as further experimentation (involving digrams,
word frequencies etc) may reveal. Thus, the main reason for the possibility of data compression is
the experimental (empirical) law: real-world sources produce very restricted sets of sequences.

How do we model these restrictions? Further experimentation (with language, music, images)
reveals that frequently, the structure may be well described if we assume that sequences are generated
probabilistically. This is one of the main contributions of Shannon: another empirical law states
that real-world sources may be described probabilistically with increasing precision starting from i.i.d.,
1-st order Markov, 2-nd order Markov etc. Note that sometimes one needs to find an appropriate
basis in which this “law” holds — this is the case of images (i.e. rasterized sequence of pixels won’t
appear to have local probabilistic laws, because of forgetting the 2-D constraints; wavelets and local
Fourier transform provide much better bases).i

So our initial investigation will be about representing one random variable X ~ Py in terms of
bits efficiently. Types of compression:

e Lossy A A
X - W - X s.t. E[(X - X)?] < distortion.

° LosslessA
P(X # X) =0. variable-length code, uniquely decodable codes, prefix codes, Huffman codes

e Almost lessless
P(X # X) <e. fixed-length codes

6.1 Variable-length, lossless, optimal compressor

Coding paradigm:

*
X Compressor {O’ 1} Decompressor X
f: x-{0,1}* g: {0,1}*->X

LOf course, one should not take these “laws” too far. In regards to language modeling, (finite-state) Markov
assumption is too simplistic to truly generate all proper sentences, cf. Chomsky [Cho56].
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Remark 6.1.
e Codeword: f(z)e€{0,1}*; Codebook: {f(z):zeX}c{0,1}*

e Since {0,1}* ={@,0,1,00,01,... } is countable, lossless compression is only possible for discrete
R.V,;

e if we want go f =1y (lossless), then f must be injective;
e relabel X such that X =N ={1,2,...} and order the pmf decreasingly: Px (i) > Px(i+1).
Length function:
1:{0,1}* > N
e.g., 1(01001) = 5.
Objectives: Find the best compressor f to minimize

E[(f(X))]

supl(f(X))
median I(f(X))
It turns out that there is a compressor f* that minimizes all together!
Main idea: Assign longer codewords to less likely symbols, and reserve the shorter codewords

for more probable symbols.
Aside: It is useful to introduce the partial order of stochastic dominance: For real-valued RV X

st.
and Y, we say Y stochastically dominates (or, is stochastically larger than) X, denoted by X < Y,

t.
if P[Y <t]<P[X <t] for all t e R. In other words, X <Y iff the CDF of X is larger than the CDF
of Y pointwise. In particular, if X is dominated by Y stochastically, so are their means, medians,
supremum, etc.

Theorem 6.1 (optimal f*). Consider the compressor f* defined by

'.*‘.123'456

£G) ¢ {0,1} {(0,0),(0,1),(1,0),(1,1)}
Then

1. length of codeword:
1(f*(4)) = [logy ]

2. I(f*(X)) is stochastically the smallest: for any lossless f,

I(F*(X)) € UF(X))
i.e., for any k, P[I(f(X)) <k] <PI(f* (X)) <k].
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Proof. Note that

k .
[ Akl = {2 1(f (2)) < k[ < ;21 =2 1= {2 1(f* (2)) < K| = [ A7)

where the inequality is because of f is lossless and |Ag| exceeds the total number of binary strings
of length less than k. Then

PU(f(X)) <k]= > Px(z)< 3 Px(x)=PI(f"(X)) <k],

zeAy weAy

since |Ag| <|Af| and A contains all 2¥*! — 1 most likely symbols. O

The following lemma is useful in bounding the expected code length of f*. It says if the random
variable is integer-valued, then its entropy can be controlled using its mean.

Lemma 6.1. For any Z €N s.t. E[Z] < oo, H(Z) <E[Z ]h(IE ) where h(-) is the binary entropy
function.

Theorem 6.2 (Optimal average code length: exact expression). Suppose X € N and Px(1) >
Px(2).... Then

E[I(f*(X))] :i [X > 2],

Proof. Recall that expectation of U € Z, can be written as E[U] = Y51 P[U > k]. Then by
Theorem 6.1, E[I(f*(X))] = E[[logy X]] = ¥ps1 P[[logy X | > k] = ¥ps1 P[logy X > k]. O

Theorem 6.3 (Optimal average code length v.s. entropy).

H(X) bits —logy[e(H(X)+1)] <E[(f"(X))] < H(X) bits

Note: Theorem 6.3 is the first example of a coding theorem, which relates the fundamental limit
E[I(f*(X))] (operational quantity) to the entropy H(X) (information measure).

Proof. Define L(X) =I(f*(X))).

RHS: observe that since the pmf are ordered decreasingly by assumption, Px(m) < 1/m, so
L(m) <logym <logy(1/Px(m)), take exp., E[L(X)] < H(X).

LHS:

H(X)=H(X,L)=H(X|L)+H(L)

sIE[L]+h(“+E[L])(1+E[L]) (Lemma 6.1)

“B[L] + logy(1+ E[L ])+E[L]log(1+E[1L])
<E[L] +logy(1+E[L]) +log, e (zlog(l+1/x) <loge,Vx >0)
<E[L] +log(e(1+ H(X))) (by RHS)

where we have used H(X|L = k) < kbits, since given I(f*(X))) = k, X has at most 2¥ choices. [

65



Note: (Memoryless source) If X =.S™ is an i.i.d. sequence, then
nH(S) >E[I(f*(S™))] 2nH(S) -logn+ O(1).

For iid sources, the exact behavior is found in [SV11, Theorem 4] as:
1
E[L(F7(5")] = nH(S) - 5 logn+ O(1),

unless the source is uniform (in which case it is nH(S) + O(1).
Theorem 6.3 relates the mean of I(f*(X)) <k to that of log, ﬁ (entropy). The next result
relates their CDFss.

Theorem 6.4 (Code length distribution of f*). V7 >0,k € Z,,

P[log2 gk] <P[I(f* (X)) <k] S}P’[logQ sk+7]+2”1

1 1
Px(X) Px(X)

Proof. LHS: easy, use Px(m) <1/m. Then similarly as in Theorem 6.3, L(m) = [logy m| <logym <
log, m. Hence L(X) <log, % a.s.
RHS: (truncation)

P[L<k]=P|L<k,logy §k+7]+P[Lsk,log2 >k+7]

b b
Px(X) Px(X)

[ 1
<Pllog, ——— <k Px ()1 1 -
< -ng Pr(X) +T]+m§ X () 15+ () <k) L Py (2)<2%7)

<P|log, <k+ r] +(2M—1) .97k O

1
Py (X)

So far our discussion applies to an arbitrary random variable X. Next we consider the source as
a random process (S1,52,...) and introduce blocklength. We apply our results to X = S™: the first
n symbols. The following corollary states that the limiting behavior of I(f*(S™)) and log 5—ems

T Pgn (S™)
always coincide.

Corollary 6.1. Let (S1,54,...) be some random process and U be some random variable. Then

%mmizf . %l(f*(S”))gU (6.1)
and . . .
n D = * mn _ n 2)
= (100 ey D) BV = - HENEY 62

Proof. The proof is simply logic. First recall: convergence in distribution is equivalent to convergence

of CDF at any continuity point. UngU < P[U, <u] - P[U <] for all u at which point the CDF
of U is continuous (i.e., not an atom of U).
Apply Theorem 6.4 with k = un and 7 = \/n:

1 1 1 1 1 1
— _ * — —/n+l
P[nlog2 < )Su]sp[nl(f (X))Su]éP[nlogQ < )£u+—\/ﬁ +2 .
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Apply Theorem 6.4 with k = H(S™) +/nu and 7 = nt/4:

1

1 1 n 1(f*(5™) - H(S™)
%(logW—H(S ))SU]SP[ NG Su]

< P[% (logﬁ —H(S”)) < u+n1/4] +27"

1/4

+1D

1

Remark 6.2 (Memoryless source). Now let us consider S™ that are i.i.d. Then logpsn—(sn) =

Yicy log %

1.

By the Law of Large Numbers (LLN), we know that %log WE}E log%(s) = H(S).

Therefore in (6.1) the limiting distribution U is degenerate, i.e., U = H(S), and we have

P
L1(f*(S™))—Elog % = H(S). [Note: convergence in distribution to a constant <> conver-
gence in probability to a constant]

. By the Central Limit Theorem (CLT), if V(5) £ Var[log #(S)] < 00,2 then we know that V

in (6.2) is Gaussian, i.e.,

1 1
iV (S) (o g3

Consequently, we have the following Gaussian approximation for the probability law of the
optimal code length

- nH(S)) BN (0,1).

1 D
— (1 * Sn -nH(S —)N 0717
nV(S)( (f7(s™) (8))—N(0,1)

or, in shorthand,
I(f7(S™)) ~nH(S) ++/nV(S)N(0,1) in distribution.

Gaussian approximation tells us the speed of %l( f*(S™)) to entropy and give us a good
approximation at finite n. In the next section we apply our bounds to approximate the
distribution of £(f*(S™)) in a concrete example:

6.1.1 Compressing iid ternary source

Consider the source outputing n ternary letters each independent and distributed as

Px =[445 445 11].

For iid source it can be shown

E[¢(f*(X™)] = nH(X) - %log(ZweVn) +0(1),

where we denoted the varentropy of X by

V(X) = Var [log PXEX)] .

2V is often known as the varentropy of S.
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The Gaussian approximation to £(f*(X)) is defined as
1
nH(X) - 5 log2meVn +VnVZ,

where Z ~ N(0,1).

On Fig. 6.1, 6.2, 6.3 we plot the distribution of the length of the optimal compressor for different
values of n and compare with the Gaussian approximation.

Upper/lower bounds on the expectation:

H(X™)-log(H(X™)+1)-loge <E[{(f*(X"))] < H(X")
Here are the numbers for different n

n =20 216 < 243 < 278
n =100 1304 < 1344 < 139.0
n =500 684.1 < 689.2 < 695.0

In all cases above E[£(f*(X))] is close to a midpoint between the two.
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Optimal compression: COF, n= 20, Px =[0.445 0.445 0.110]

09H

— — — Gaussian approximation

I I T T T T
True CDF

Lower bound
Upper bound
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04~

03

02—

01
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0.08
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Figure 6.1: CDF and PMF of optimal compressor
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Optimal compression: CDF, n = 100, Px =[0.445 0.445 0.110]

1 T T
True CDF
0.9F Lower bound
— Upper bound :
0.8 | — — — Gaussian approximatior

Optimal compression: PMF, n = 100, Px =[0.445 0.445 0.110]

—© True PMF
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Figure 6.2: CDF and PMF, Gaussian is shifted to the true E[¢(f*(X))]
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Optimal compression: CDF, n =500, Px = [0.445 0.445 0.110]

Rate .

Optimal compression: PMF, n = 500, Px =[0.445 0.445 0.110]
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6.2 Uniquely decodable codes, prefix codes and Huffman codes

all lossless codes

uniquely decodable codes

prefix codes

We have studied f*, which achieves the stochastically smallest code length among all variable-
length compressors. Note that f* is obtained by ordering the pmf and assigning shorter codewords to
more likely symbols. In this section we focus on a specific class of compressors with good properties
which lead to low complexity and short delay when decoding from a stream of compressed bits.
This part is more combinatorial in nature.

We start with a few definition. Let A* = U,,»1 A" denotes all non-empty finite-length strings
consisting of symbols from alphabet A

Definition 6.1 (Extension of a code). The extension of f: A — {0,1}* is f: A* - {0,1}* where
flat,...;an) =(f(a1),..., f(ay)) is defined by concatenating the bits.

Definition 6.2 (Uniquely decodable codes). f: A — {0,1}* is uniquely decodable if its extension
f: A" - {0,1}* is injective.

Definition 6.3 (Prefix codes). f: A — {0,1}* is a prefiz codei if no codeword is a prefix of another
(e.g., 010 is a prefix of 0101).

Example:
e f(a)=0,f(b) =1, f(c) =10 — not uniquely decodable, since f(ba) = f(c) = 10.
e f(a)=0,f(b) =10, f(c) =11 — uniquely decodable and prefix.

e f(a)=0,f(b) =01, f(c) =011, f(d) = 0111 — uniquely decodable but not prefix, since as long
as 0 appears, we know that the last codeword has terminated.

Remark 6.3.

1. Prefix codes are uniquely decodable.

3 Also known as prefix-free/comma-free/instantaneous code.
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2. Similar to prefix-free codes, one can define suffix-free codes. Those are also uniquely decodable
(one should start decoding in reverse direction).

3. By definition, any uniquely decodable code does not have the empty string as a codeword.
Hence f: X — {0,1}" in both Definition 6.2 and Definition 6.3.

4. Unique decodability means that one can decode from a stream of bits without ambiguity, but
one might need to look ahead in order to decide the termination of a codeword. (Think of the
last example). In contrast, prefix codes allow the decoder to decode instantaneously without
looking ahead.

5. Prefix code <> binary tree (codewords are leaves) <> strategy to ask “yes/no” questions
Theorem 6.5 (Kraft-McMillan).

1. Let f: A — {0,1}* be uniquely decodable. Set l, = I(f(a)). Then [ satisfies the Kraft

inequality
Mol <. (6.3)
acA

2. Conversely, for any set of code length {l, : a € A} satisfying (6.3), there exists a prefix code f,
such that I, =1(f(a)).

Note: The consequence of Theorem 6.5 is that as far as compression efficiency is concerned, we can
forget about uniquely decodable codes that are not prefix codes.

Proof. We prove the Kraft inequality for prefix codes and uniquely decodable codes separately.
The purpose for doing a separate proof for prefix codes is to illustrate the powerful technique of
probabilistic method. The idea is from [ASQO8, Exercise 1.8, p. 12].

Let f be a prefix code. Let us construct a probability space such that the LHS of (6.3) is the
probability of some event, which cannot exceed one. To this end, consider the following scenario:
Generate independent Bern(%) bits. Stop if a codeword has been written, otherwise continue. This
process terminates with probability > .4 27la The summation makes sense because the events that
a given codeword is written are mutually exclusive, thanks to the prefix condition.

Now let f be a uniquely decodable code. The proof uses generating function as a device for
counting. (The analogy in coding theory is the weight enumerator function.) First assume A is finite.
Then L = maxgealq is finite. Let Gf(2) = Yaea 21 = Nfo Ai(f)7!, where A;(f) denotes the number
of codewords of length I in f. For k > 1, define f*: A* — {0,1}* as the symbol-by-symbol extension
of f. Then G sk (2) = ¥ ke ar PACACONS Yoy Lay, glartHlay - [Gp(2)]F = SFL A (f%)2'. By unique
decodability of f, f¥ is lossless. Hence A;(f*) <2!. Therefore we have G¢(1/2)" = Gpr(1/2) <KL
for all k. Then $qcq27' = G4(1/2) <limy o (kL)% » 1. If A is countably infinite, for any finite
subset A’ c A, repeating the same argument gives Y ,c 4 27la < 1. The proof is complete by the
arbitrariness of A’.

Conversely, given a set of code lengths {l,:a € A} s.t. Y ea 27l < 1, construct a prefix code f
as follows: First relabel A to N and assume that [; <ly <.... For each i, a; = 22—:11 27l < 1 by Kraft
inequality. Thus we define the codeword f(i) € {0,1}* as the first /; bits in the binary expansion of
a;. Prove that f is a prefix code by contradiction: Suppose for some j >4, f(7) is the prefix of f(j),
since [ > [;. Then a; —a; < 27l But aj —a; = 27l polivn 4> 2‘“, which is a contradiction. [

Open problems:
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1. Find a probabilistic proof of Kraft inequality for uniquely decodable codes.

2. There is a conjecture of Ahslwede that for any sets of lengths for which Y 27% < % there exists
a fix-free code (i.e. one which is simultaneously prefix-free and suffix-free). So far, existence
has only been shown when the Kraft sum is < %, cf. [Yek04].

In view of Theorem 6.5, the optimal average code length among all prefix (or uniquely decodable)
codes is given by the following optimization problem

L*(X)2min ) Px(a)l, (6.4)
acA
st Y 27 < ]
acA
loeN

This is an integer programming (IP) problem, which in general is hard to solve computationally.
It is remarkable that this particular IP problem can be solved in near-linear time, thanks to the
Huffman algorithm. Before describing the construction of Huffman codes, let us give bounds to
L*(X) in terms of entropy:

Theorem 6.6.
H(X)<L*(X)<H(X)+1bit. (6.5)

Proof. “<” Consider the following length assignment [, = [logz #@]é which satisfies Kraft since
Yaea27 < Yyea Px(a) = 1. By Theorem 6.5, there exists a prefix code f such that I(f(a)) =
108, s | and EI(£(X)) < H(X) +1.

“>” We give two proofs for the converse. Omne of the commonly used ideas to deal with
combinatorial optimization is relazation. Our first idea is to drop the integer constraints in (6.4)
and relazx it into the following optimization problem, which obviously provides a lower bound T

meémngﬁﬁwa (6.6)
st Y27 <1 (6.7)
aeA

This is a nice convexr programming problem, since the objective function is affine and the feasible set
is convex. Solving (6.6) by Lagrange multipliers (Exercise!) yields the minimum is equal to H(X)
(achieved at I, = log, ﬁ)

Another proof is the %ollowing: For any f satisfying Kraft inequality, define a probability measure
Q(a) = 22# Then

acA 27la

EKf(X?)—ffCY)=IXFWQ)—1W§§;24“

>0 O

Next we describe the Huffman code, which achieves the optimum in (6.4). In view of the fact
that prefix codes and binary trees are one-to-one, the main idea of Huffman code is to build the
binary tree bottom-up: Given a pmf {Px(a):a € A},

4Such a code is called a Shannon code.
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1. Choose the two least-probable symbols in the alphabet

2. Delete the two symbols and add a new symbol (with combined weights). Add the new symbol
as the parent node of the previous two symbols in the binary tree.

The algorithm terminates in |A| — 1 steps. Given the binary tree, the code assignment can be
obtained by assigning 0/1 to the branches. Therefore the time complexity is O(].A|) (sorted pmf) or
O(|A]log|A|) (unsorted pmf).

Example: A= {a,b,c,d, e}, Py = {0.25,0.25,0.2,0.15,0.15}.

Huffman tree: codebook:
0 1
/\ f(a) =00
0.55 0.45 f(b)=10
0 1 0N 1 flc)=11
a 0.3 b c f(d) =010
0/\1 f(e) =011
d e

Theorem 6.7 (Optimality of Huffman codes). The Huffman code achieves the minimal average
code length (6.4) among all prefiz (or uniquely decodable) codes.

Proof. [CT06, Sec. 5.8]. O
Remark 6.4 (Drawbacks of Huffman codes).

1. Does not exploit memory. Solution: block Huffman coding. Shannon’s original idea from
1948 paper: in compressing English text, instead of dealing with letters and exploiting the
nonequiprobability of the English alphabet, working with pairs of letters to achieve more
compression (more generally, n-grams). Indeed, compressing the block (S1,...,S,) using its
Huffman code achieves H(S1,...,S,) within one bit, but the complexity is |.A|"!

2. Non-universal (constructing the Huffman code needs to know the source distribution). This
brings us the question: Is it possible to design universal compressor which achieves entropy
for a class of source distributions? And what is the price to pay? — Homework!

There are much more elegant solutions, e.g.,

1. Arithmetic coding: sequential encoding, linear complexity in compressing (S1,...,5S,) (see
later).

2. Lempel-Ziv algorithm: low-complexity, universal, provably optimal in a very strong sense.

To sum up: Comparison of average code length (in bits):

H(X) —logy[e(H(X) + D] <E[I(f"(X))] < H(X) < E[I(frufiman (X))] < H(X) + 1.
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§ 7. FIXED-LENGTH (ALMOST LOSSLESS) COMPRESSION. SLEPIAN-WOLF PROBLEM.

7.1 Fixed-length code, almost lossless

Coding paradigm:

k
X Compressor {07 1} Decompressor X'u {e}
fr x—>{0,1} g: {0,1}*>xu{e}

Note: If we want go f = 1y, then k > logy |X|. But, the transmission link is erroneous anyway...
and it turns out that by tolerating a little error probability €, we gain a lot in terms of code length!

Indeed, the key idea is to allow errors: Instead of insisting on ¢g(f(z)) = = for all z € X,
consider only lossless decompression for a subset & ¢ X

z xT€S

a(/(@)) = { Ty

and the probability of error: P[g(f(X)) # X]=P[g(f(X)) =e].

Definition 7.1. A compressor-decompressor pair (f,g) is called a (k,€)-code if:
fo X -{0,1}"
g: {0, 1} > X u{e}

such that g(f(x)) € {z,e} and P[g(f(X)) =e] <e.

Fundamental limit:

(X, k) £ inf{e: 3(k,€)-code for X}

The following result connects the respective fundamental limits of fixed-length almost lossless
compression and variable-length lossless compression (Lecture 6):

Theorem 7.1 (Fundamental limit of error probabiliy).

€ (X, k) =P[I(f*(X)) > k] =1 —sum of 2F -1 largest masses of X.

Proof. The proof is essentially tautological. Note 1+ 2 + -+ 2F 1 = 2F _ 1 Let S = {2’“ -
1 most likely realizations of X'}. Then

(X, k)=P[X ¢S]=P[I(f* (X)) >k].
Optimal codes:
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e Variable-length: f* encodes the 2¥~1 symbols with the highest probabilities to {¢,0,1,00,...,1%¥71}.

e Fixed-length: The optimal compressor f maps the elements of S into (00...00),...,(11...10)
and the rest to (11...11). The decompressor g decodes perfectly except for outputting e upon
receipt of (11...11). O

Note: In Definition 7.1 we require that the errors are always detectable, i.e., g(f(x)) = x or e.
Alternatively, we can drop this requirement and allow undetectable errors, in which case we can of
course do better since we have more freedom in designing codes. It turns out that we do not gain
much by this relaxation. Indeed, if we define

E(X, k) =inf{P[g(f(X)) # X]: f: X > {0,1}F,g:{0,1}" > X u{e}},

then & (X, k) = 1-sum of 2* largest masses of X. This follows immediately from P [g(f(X)) = X] =
Yzec Px () where C 2 {z: g(f(x)) = x} satisfies |C| < 2F, because f takes no more than 2 values.
Compared to Theorem 7.1, we see that ¢*(X, k) and € (X, k) do not differ much. In particular,
(X, k+1)<é (X, k) <e' (X, k).

Corollary 7.1 (Shannon). Let S™ be i.i.d. Then

lim (8™, nR) =

n—oo

0 R>H(S)
{ 1 R<H(S)

nh_)no}o e (S",nH(S) +/nV(S)y) =1-2(y).

where ®(+) is the CDF of N'(0,1), H(S) = Elog #(S) — entropy, V(S) = Var log% — varentropy
15 assumed to be finite.

Proof. Combine Theorem 7.1 with Theorem 6.1. O

Theorem 7.2 (Converse).

e*(X,k:)2€*(X,k)2P[log2 >k‘+7’:|—2_T, V7> 0.

1
Px(X)

Proof. Identical to the converse of Theorem 6.4. Let C = {z : g(f(z)) = 2}. Then |C| < 2* and
PX € C]<P[logy ptgy <+ 7|+ P[X € Clogy iy > b+ 7] O

<2-7
Two achievability bounds

Theorem 7.3.

(X, k) sIP’[log2 (7.1)

; > k»:l

Px(X)

and there exists a compressor-decompressor pair that achieves the upper bound.
Proof. Construction: use those 2¥ — 1 symbols with the highest probabilities.

This is essentially the same as the lower bound in Theorem 6.3 from Lecture 6. Note that the
m!" largest mass Px(m) < % Therefore

6*(X,k‘) = Z PX(m) = 21{m22k}PX(m) < 21{;>2k}Px(m) ZE]_{

L )
a2k Py (m) = logs 5y 2k}
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Theorem 7.4.

1
6*(X,]€)S]P> 10g2m>k—’f +2_T, V>0 (72)

and there exists a compressor-decompressor pair that achieves the upper bound.

Note: In fact, Theorem 7.3 is always stronger than Theorem 7.4. Still, we present the proof of
Theorem 7.4 and the technology behind it — random coding — a powerful technique for proving
existence (achievability) which we heavily rely on in this course. To see that Theorem 7.3 gives
a better bound, note that even the first term in (7.2) exceeds (7.1). Nevertheless, the method of

proof for this weaker bound will be useful for generalizations.

Proof. Construction: random coding (Shannon’s magic). For a given compressor f, the optimal
decompressor which minimizes the error probability is the maximum a posteriori (MAP) decoder,
ie.,
9" (w) = argmax Px¢(x)(x|w) = argmax Py (),
z z:f (x)=w

which can be hard to analyze. Instead, let us consider the following (suboptimal) decompressor g:

x, FxeX st f(x)=wand logzﬁ(@sk—ﬂ
g(w) = (exists unique high-probability x that is mapped to w)
e, 0.W.

Denote f(z) = ¢, and the codebook C = {¢, : z € X} c {0,1}*. Tt is instructive to think of C as a
hashing table.

Error probability analysis: There are two ways to make an error = apply union bound. Before
proceeding, define

1
J(x,C)é{x'e/\,’:cx,:cx,x'th,loggm<k:—7'}

to be the set of high-probability inputs whose hashes collide with that of . Then we have the
following estimate for probability of error:

IP’[g(f(X)):e]:IP’[{logz Zk—T}U{J(X,C)qt@}]

1
Px(X)

g[PI:]ogQ >k—¢]+IP’[J(X,C)¢¢]

1
Px(X) ~
The first term does not depend on the codebook C, while the second term does. The idea now
is to randomize over C and show that when we average over all possible choices of codebook, the
second term is smaller than 277. Therefore there exists at least one codebook that achieves the
desired bound. Specifically, let us consider C which is uniformly distributed over all codebooks and
independently of X. Equivalently, since C can be represented by a |X| x k binary matrix, whose
rows correspond to codewords, we choose each entry to be independent fair coin flips.
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Averaging the error probability (over C and over X ), we have

]EC [IP) [J(X’ C) * ¢:|] - EC’X |:1{E|x’¢X:lOg2 ‘pxil(z/) <I€—T7Cxl=CX}]

<E 1 1. - union bound
o [xZ:X {10g2 le(z’)<k_7—} tee CX}:I ( )

-k
=2 EXI: Z 1{PX($/)>2k+7—}:|
'+ X

S 2_k Z 1{PX($/)>2—I€+T}
x'eX
<o7kokT Z 07T, O

Note: Why the proof works: Compressor f(x) = ¢;, hashing x € X to a random k-bit string
cr € {0,1}F.

high prob. s hash to the same ¢,

high-probability z < log, %(x) <k-7 < Px(z)>27%7,

Therefore the cardinality of high-probability z’s is at most 287 <« 2¥ = number of strings. Hence
the chance of collision is small.
Note: The random coding argument is a canonical example of probabilistic method: To prove the
existence of something with certain property, we construct a probability distribution (randomize)
and show that on average the property is satisfied. Hence there exists at least one realization with
the desired property. The downside of this argument is that it is not constructive, i.e., does not give
us an algorithm to find the object.
Note: This is a subtle point: Notice that in the proof we choose the random codebook to be uniform
over all possible codebooks. In other words, C' = {c, : © € X'} consists of iid k-bit strings. In fact,
in the proof we only need pairwise independence, i.e., ¢, I ¢, for any x # 2/ (Why?). Now, why
should we care about this? In fact, having access to external randomness is also a lot of resources.
It is more desirable to use less randomness in the random coding argument. Indeed, if we use zero
randomness, then it is a deterministic construction, which is the best situation! Using pairwise
independent codebook requires significantly less randomness than complete random coding which
needs |X'|k bits. To see this intuitively, note that one can use 2 independent random bits to generate
3 random bits that is pairwise independent but not mutually independent, e.g., {b1,b2,b1 @ ba}.
This observation is related to linear compression studied in the next section, where the codeword
we generated are not iid, but related through a linear mapping.

Remark 7.1 (AEP for memoryless sources). Consider iid S". By WLLN,

1 1 P
—log———H(S). 7.3
og s S H(S) (73)
For any § > 0, define the set
0 ={s": llo H(S)| <6
n In ngn(sn) -




As a consequence of (7.3),

1. P[S"eT?] > 1asn—oo.
2. |T°] < 2UH(S)+)n |5,

In other words, S™ is concentrated on the set T° which is exponentially smaller than the whole
space. In almost compression we can simply encode this set losslessly. Although this is different
than the optimal encoding, Corollary 7.1 indicates that in the large-n limit the optimal compressor
is no better.

The property (7.3) is often referred as the Asymptotic Equipartition Property (AEP). Note
that for any s" € Tg,_its likelihood is concentrated around Pgn(s") € 2~ (H($)*0)n called §-typical
sequences.
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Next we study fixed-blocklength code, fundamental limit of error probability €* (X, k) for the
following coding paradigms:

e Linear Compression
e Compression with Side Information

— side info available at both sides
— side info available only at decompressor

— multi-terminal compressor, single decompressor

7.2 Linear Compression

From Shannon’s theorem:
e"(X,nR)—0Oor1 Rs H(S)

Our goal is to find compressor with structures. The simplest one can think of is probably linear
operation, which is also highly desired for its simplicity (low complexity). But of course, we have to
be on a vector space where we can define linear operations. In this part, we assume X = S™, where
each coordinate takes values in a finite field (Galois Field), i.e., S; € Fy, where ¢ is the cardinality of
IF,. This is only possible if ¢ = p" for some prime p and n € N. So F, = Fjn.

Definition 7.2 (Galois Field). F' is a finite set with operations (+,-) where
e a+ b associative and commutative

e @ -b associative and commutative

0,1eFst.0+a=1-a=a.

Va,3-a,s.t. a+(-a)=0

e Va#0,3a !, st. ata=1

e distributive: a-(b+c¢)=(a-b)+ (a-c)
Example:

e [, = Z/pZ, where p is prime

e Fy={0,1,z,z + 1} with addition and multiplication as polynomials mod (2% + 2 + 1) over
]FQ [.ZC]

Linear Compression Problem: = € F
matrix H € ]F];X”.

n

¢ w=Hz where H : Fj — IF"qC is linear represented by a

w1 h11 hln T
Wy, hii ... hgep Tn

Compression is achieved if k <n, i.e., H is a fat matrix. Of course, we have to tolerate some error
(almost lossless). Otherwise, lossless compression is only possible with k& > n, which not interesting.
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Theorem 7.5 (Achievability). Let X € Fy be a random vector. V7 > 0,3 linear compressor
H:Fy — Flg and decompressor g : IF]; - Fyu{e}, s.t.

Plg(HX)+ X]|<P >k-1|+q"

8a Px(X)

Proof. Fix 7. As pointed in the proof of Shannon’s random coding theorem (Theorem 7.4), given
the compressor H, the optimal decompressor is the MAP decoder, i.e., g(w) = argmax,.p,_,, Px (),
which outputs the most likely symbol that is compatible with the codeword received. Instead, let us
consider the following (suboptimal) decoder for its ease of analysis:

z FreFj:w=Hz, x-hp.
g(w) = .
e otherwise

where we used the short-hand:

x — h.p. (high probability) <k-7< Px(z)2 g

< log, ——

! Px(x)

Note that this decoder is the same as in the proof of Theorem 7.4. The proof is also mostly the
same, except now hash collisions occur under the linear map H. By union bound,

PLg(f(X)) = €] S]P’[logqf(x) > k—T] +P[32' ~hp. o' # X, Ha' = HX]

(union bound) < P [logq f(x) > k- 7':| +> Px(z) ), 1{Ha'=Hz}

Now we use random coding to average the second term over all possible choices of H. Specifically,
choose H as a matrix independent of X where each entry is iid and uniform on F,. For distinct zg
and x1, the collision probability is

z'—h.p.,x'tx

]P)H[H.Z‘lexo]=PH[Hl‘2=0] ($25$1—l’0¢0)
=Py[H, -9 =0]F (iid rows)

where Hy is the first row of the matrix H, and each row of H is independent. This is the probability
that H; is in the orthogonal complement of z2. On Fy, the orthogonal complement of a given
non-zero vector has cardinality ¢"'. So the probability for the first row to lie in this subspace is
q"'/q" = 1/q, hence the collision probability 1/¢*. Averaging over H gives

Ey Y, 1{Hz'=Hz}= ) Py[Ha' = Hy] =|{z' 2’ —hp, o' $2}Y|lg < qF=¢T
z'—h.p.,x'#x z'—h.p.,x'#x
Thus the bound holds. O
Notes:

1. Compared to Theorem 7.4, which is obtained by randomizing over all possible compressors,
Theorem 7.5 is obtained by randomizing over only linear compressors, and the bound we
obtained is identical. Therefore restricting on linear compression almost does not lose anything.
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2. Note that in this case it is not possible to make all errors detectable.

3. Can we loosen the requirement on F, to instead be a commutative ring? In general, no, since
zero divisors in the commutative ring ruin the key proof item of low collision probability in
the random hashing. E.g. in Z/67Z

1 2
P|H ? =0|=6"% but PH 0 =0|=37"
0 0

since 0-2=3-2=0 in Z/6Z.

7.3 Compression with Side Information at both compressor and
decompressor

X {0,1}* X u{e}
Compressor Decompressor

~

Y

Definition 7.3 (Compression wih Side Information). Given Pyxy,
o f:XxY—{0,1}F
e g:{0,1}*xY - X u{e}
e Plg(f(X,Y),Y)+X]<e
e Fundamental Limit: ¢*(X|Y, k) = inf{e: 3(k,e) - S.I. code}

Note: The side information Y need not be discrete. The source X is, of course, discrete.

Note that conditioned on Y =y, the problem reduces to compression without side information
where the source X is distributed according to Px|y-,. Since Y is known to both the compressor
and decompressor, they can use the best code tailored for this distribution. Recall € (X, k) defined
in Definition 7.1, the optimal probability of error for compressing X using k bits, which can also be
denoted by €*(Px, k). Then we have the following relationship

€ (X|Y7 k) = Ey~Py [6*(PX\Y=y7 k)]a

which allows us to apply various bounds developed before.

Theorem 7.6.

Pllog —————>k+7|-27 <" (XY, k) <P|log, >k—-7|+27, Vr>0

1
Pxy (X]Y)
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Corollary 7.2. (X,Y)=(S",T") where (S1,11),(S2,12),... are iid pairs ~ Psp

lim € (S"|T", nR) =

n—oo

0 R>H(S|T)
1 R<H(S|T)

Proof. Using the converse Theorem 7.2 and achievability Theorem 7.4 (or Theorem 7.3) for com-
pression without side information, we have

P|log >k+7|Y = y] =277 <" (Pxly=y,k) <P [log >ElY =y

1
Pxy (Xly) Pxy (Xly)

By taking the average over all y ~ Py, we get the theorem. For the corollary

1 L 1

1
“log —————— ==Y log ————— — H(S|T) (in probability)

as n — oo, using the WLLN. O

7.4 Slepian-Wolf (Compression with Side Information at
Decompressor only)

Consider the compression with side information problem, except now the compressor has no access
to the side information.

X {0,1}* X U {e}
Compressor Decompressor

Definition 7.4 (S.W. code). Given Pxy,
o [:X—{0,1}F
e g:{0,1}*xY - X u{e}
o P[g(f(X),Y)#X] <e
e Fundamental Limit: €&y = inf{e: 3(k,€)-S.W. code}

Now the very surprising result: Even without side information at the compressor, we can still
compress down to the conditional entropy!

Theorem 7.7 (Slepian-Wolf, '73).

¢ (X]Y, k) < chw (X|Y, k) < P|log N

1
Pxy (X]Y)

84



Corollary 7.3.

lim €y (ST, nR) = {0 E>H(SIT)
n—o0 1 R<H(S|IT)

Note: Definition 7.4 does not include the zero-undected-error condition (that is g(f(x),y) ==
or e). In other words, we allow for the possibility of undetected errors. Indeed, if we require this
condition, the side-information savings will be mostly gone. Indeed, assuming Px y (x,y) > 0 for all
(x,y) it is clear that under zero-undetected-error condition, if f(x1) = f(x2) = ¢ then g(¢) = e. Thus
except for ¢ all other elements in {0, 1}’c must have unique preimages. Similarly, one can show that
Slepian-Wolf theorem does not hold if one uses the setting of variable-length lossless compression
(i.e. average length is H(X) not H(X[Y).)

Proof. LHS is obvious, since side information at the compressor and decoder is better than only at
the decoder.

For the RHS, first generate a random codebook with iid uniform codewords: C = {c, € {0,1}*:
x € X} independently of (X,Y"), then define the compressor and decoder as

f(z)=0Cy
g(w,y) = {

z x:Cp=w,z-hply
0

where we used the shorthand x — h.p.|y < log, m < k—7. The error probability of this scheme

is

[ 1

=Pllog 5———< 2 k- X,ClY
E(C) _OgPX|Y(X|Y)_ T or J(X,C| )%@]

[ 1
S[ED10g—2k—7']+IF’JX,C’Y %)

| T Pxpy (X]Y) [J( Y) # 2]
_P—log;>k—7]+2p (l’ y)l

| Py (XTY) L XY Y I @ Ot}

where J(z,Cly) 2 {2’ #x: 2" — h.p.|ly,cs = cor }.
Now averaging over C' and applying the union bound: use |{z’ : 2’ — h.p.|y}| < 27 and
P[Cy = Cp] =27% for any « # 2/,

PclJ(z,Cly) + @] <Ec [ > Ywnpinlic, -c.)

x'+x
=2 TP[C, = O]
= 277-

Hence the theorem follows as usual from two terms in the union bound. O

7.5 Multi-terminal Slepian Wolf

Distributed compression: Two sources are correlated. Compress individually, decompress jointly.
What are those rate pairs that guarantee successful reconstruction?
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X {0,1}k1

Compressor f1

Decompressor g

Y {0,1}k2
Compressor fa

Definition 7.5. Given Pxvy,

° (fl,fg,g) iSA (kl,kg,e)—code if f1 X _: {Q, 1}k1, fQ Y - {O’ 1}k2, g: {07 1}k1 x {07 1}k2 — Xxy7
st. P[(X,¥) £ (X,Y)] < e, where (X,1) = g(f1(X), fo(Y)).

e Fundamental limit: €l (X, Y, k1, ko) = inf{e: I(k1, k2, €)-code}.
Theorem 7.8. (X,Y) = (S",T") - did pairs

0 (Ri1,R2) € Rsw

lim egw (S™,T",nR1,nRs) =
noo SV 1 (Ry, R2) ¢ Rsw

where Rgw denotes the Slepian- Wolf rate region

a>H(S|T)
Rsw =4 (a,b): b>H(T|S)
a+b>H(ST)

Note: The rate region Rgw typically looks like:

Ry

Since H(T) - H(T|S) =H(S) - H(S|T) =1(S;T), the slope is —1.
Proof. Converse: Take (Ri, R2) ¢ Rsw. Then one of three cases must occur:

1. Ry < H(S|T). Then even if encoder and decoder had full 7™, still can’t achieve this (from
compression with side info result — Corollary 7.2).

2. Ry < H(T|S) (same).

3. R1+ Ry < H(S,T). Can’t compress below the joint entropy of the pair (S,T).
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Achievability: First note that we can achieve the two corner points. The point (H(S), H(T|S))
can be approached by almost lossless compressing .S at entropy and compressing T with side informa-
tion S at the decoder. To make this rigorous, let k1 = n(H(S)+0) and ko = n(H(T|S)+§). By Corol-
lary 7.1, there exist fi: 8™ —» {0,1}* and g1 : {0,1}" - 8™ s.t. Pg1(f1(S™)) # S"] < €n —~ 0. By
Theorem 7.7, there exist fo: 7" — {0,1}*2 and g9 : {0, 1} xS™ » T™ s.t. P[ga(fo(T™),S™) # T"] <
€n = 0. Now that S™ is not available, feed the S.W. decompressor with g(f(S™)) and define the
joint decompressor by g(wi,ws) = (g1(w1), g2(w2, g1(w1))) (see below):

Apply union bound:

Plg(f1(S™), fo(T™)) # (S, T™)]
=P[g(f1(S")) # S"]+ Pg2(f2(T"),9(f1(S™))) # T", g(f1(S™)) = S"]
<Plg(f1(S™)) # S"]+ Pga(fo(T7),5™) # T"]
< 2¢, = 0.

Similarly, the point (H(S), H(T|S)) can be approached.

To achieve other points in the region, use the idea of time sharing: If you can achieve with
vanishing error probability any two points (R, R2) and (R}, R}), then you can achieve for A € [0,1],
(AR1 + AR}, ARz + AR}) by dividing the block of length n into two blocks of length An and An and
apply the two codes respectively

/\an
AnRy

3 A
(S;\Ln+17T)th+1) - [ ;Zgll ] uSing (R17Ré) code
2

(S, 1) > [ ] using (R, R2) code

(Exercise: Write down the details rigorously yourself!) Therefore, all convex combinations of points
in the achievable regions are also achievable, so the achievable region must be convex. O

7.6* Source-coding with a helper (Ahlswede-K6rner-Wyner)

Yet another variation of distributed compression problem is compressing X with a helper, see
figure below. Note that the main difference from the previous section is that decompressor is only
required to produce the estimate of X, using rate-limited help from an observer who has access to
Y. Characterization of rate pairs Rj, Ro is harder than in the previous section.

Theorem 7.9 (Ahlswede-Kérner-Wyner). Consider i.i.d. source (X", Y™) ~ Pxy with X discrete.
If rate pair (Ry, R2) is achievable with vanishing probability of error IP’[X" # X"] - 0, then there
exists an auziliary random variable U taking values on alphabet of cardinality |Y|+ 1 such that

Pxyu =PxyPyxy and
Ri > H(X|U),Ry > I(Y;U). (7.4)
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X {0,1}k1

Compressor f1

Decompressor g

Y {0,1}k2
Compressor fa

Furthermore, for every such random variable U the rate pair (H(X|U),I(Y;U)) is achievable with
vanishing error.

Proof. We only sketch some crucial details.
First, note that iterating over all possible random variables U (without cardinality constraint)
the set of pairs (R1, Rg) satisfying (7.4) is convex. Next, consider a compressor Wi = f1(X") and

Wa = fo(Y™). Then from Fano’s inequality (5.7) assuming P[X™ # X™] =o0(1) we have
H(X"|W1, WQ)) = o(n) .

Thus, from chain rule and conditioning-decreases-entropy, we get

nRy > [(X™ Wi [Wa) > H(X"|W2) - o(n) (7.5)
= i H (X Wa, X*¥ 1Y — o(n) (7.6)

k=1
> i H (X[ Wo, X*1 y*1) —o(n) (7.7)

k=1

On the other hand, from (5.2) we have

nRy > I(Way; Y™) = S I(Wa; ViV ) (7.8)
k=1

= > I(Wy, XFH v Y™ (7.9)
k=1

I(Wy, X* 1 Y* L v (7.10)

NgE

k

1l
—

where (7.9) follows from I(Wa, X*71 Yi|Y*1) = I(Wa; Yi | YR + T(X*1 V3 [Wa, Y1) and the fact
that (Wa,Yy) L X*1|Y*~1 and (7.10) from Y*! 1 Y,. Comparing (7.7) and (7.10) we notice that
denoting Uy, = (Wo, X*1,Y*1) we have

(Ri, Ba) 2 3 (XU, 10 i)
k=1

and thus (from convexity) the rate pair must belong to the region spanned by all pairs (H(X|U),I(U;Y)).
To show that without loss of generality the auxiliary random variable U can be taken to be
|V| + 1 valued, one needs to invoke Caratheodory’s theorem on convex hulls. We omit the details.
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Finally, showing that for each U the mentioned rate-pair is achievable, we first notice that if there
were side information at the decompressor in the form of the i.i.d. sequence U" correlated to X",
then Slepian-Wolf theorem implies that only rate Ry = H(X|U) would be sufficient to reconstruct
X™. Thus, the question boils down to creating a correlated sequence U™ at the decompressor by
using the minimal rate Ry. This is the content of the so called covering lemma, see Theorem 24.5
below: It is sufficient to use rate I(U;Y") to do so. We omit further details. t
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§ 8. COMPRESSING STATIONARY ERGODIC SOURCES

We have examined the compression of i.i.d. sequence {S;}, for which

%l(f*(S”)) — H(S) in prob. (8.1)
i snam {575 #2)

In this lecture, we shall examine similar results for ergodic processes and we first state the main
theory as follows:

Theorem 8.1 (Shannon-McMillan). Let {S1,S2,...} be a stationary and ergodic discrete process,
then
1 1

- log WE’H, also a.s. and in Ly (8.3)

where H = lim,, 00 %H(S”) is the entropy rate.

Corollary 8.1. For any stationary and ergodic discrete process {S1,S2,...}, (8.1) — (8.2) hold
with H(S) replaced by H.

Proof. Shannon-McMillan (we only need convergence in probability) + Theorem 6.4 —|— Theorem 7.1
which tie together the respective CDF of the random variable [(f*(S™)) and log Psn(sn) o

In Lecture 7 we learned the asymptotic equipartition property (AEP) for iid sources. Here we
generalize it to stationary ergodic sources thanks to Shannon-McMillan.

Corollary 8.2 (AEP for stationary ergodic sources). Let {S1,S9,...} be a stationary and ergodic
discrete process. For any § >0, define the set
-H| <o } .

1 1

|=log ————
n OgPSn(Sn)

Then
1. IP’[S”GT{E]%I as m — oo.
2. 2MM=0)(1 4 0(1)) < |T9] < 27+ (1 4+ 0(1)).
Note:
e Convergence in probability for stationary ergodic Markov chains [Shannon 1948|

e Convergence in L; for stationary ergodic processes [McMillan 1953]
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e Convergence almost surely for stationary ergodic processes [Breiman 1956] (Either of the last
two results implies the convergence Theorem 8.1 in probability.)

e For a Markov chain, existence of typical sequences can be understood by thinking of Markov
process as sequence of independent decisions regarding which transitions to take. It is then
clear that Markov process’s trajectory is simply a transformation of trajectories of an i.i.d.
process, hence must similarly concentrate similarly on some typical set.

8.1 Bits of ergodic theory

Let’s start with a dynamic system view and introduce a few definitions:

Definition 8.1 (Measure preserving transformation). 7 :  — € is measure preserving (more
precisely, probability preserving) if

VEeF,P(E)=P(r'E).
The set E is called T-invariant if E' = 771 E. The set of all 7-invariant sets forms a o-algrebra (check!)
denoted Fjpy-

Definition 8.2 (stationary process). A process {S,,n =0, ...} is stationary if there exists a measure
preserving transformation 7 : Q — €2 such that:

SjZSj_loTZSOOT]

Therefore a stationary process can be described by the tuple (Q, F,P,7,S) and Sj, = Sp o 7.

Notes:

1. Alternatively, a random process (Sp, S1, .52, ... ) is stationary if its joint distribution is invariant
with respect to shifts in time, i.e., Psm = Psmﬁt, Vn,m,t. Indeed, given such a process we can
define a m.p.t. as follows:

(80,81,...)l>(81,82,...) (84)
So 7 is a shift to the right.

2. An event F € F is shift-invariant if
(81,82,...) el > VSo(So,Sl,SQ,...) ek

or equivalently E = 77'E (check!). Thus 7-invariant events are also called shift-invariant, when
7 is interpreted as (8.4).

3. Some examples of shift-invariant events are {3n : x; = 0Vi > n}, {limsupz; <1} etc. A non
shift-invariant event is A = {9 =z = --- = 0}, since 7(1,0,0,...) € A but (1,0,...) ¢ A.

4. Also recall that the tail o-algebra is defined as

Ftazl = m U{Sn,Sn+1,.. } .

n>1

It is easy to check that all shift-invariant events belong to F;4;. The inclusion is strict, as for

example the event
{In:x; =0,V odd i >n}

is in F;,; but not shift-invariant.
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Proposition 8.1 (Poincare recurrence). Let 7 be measure-preserving for (2, F,P). Then for any
measurable A with P[A] >0 we have

P{{J 7" AJA] = P[r" () € A~ ~infinitely often|A] = 1.
k>1

Proof. Let B =Us; 7 FA. Tt is sufficient to show that P[An B] = P[A] or equivalently
P[AuB]=P[B]. (8.5)
To that end notice that 77'!Au77!B = B and thus
P[r (AU B)] = P[B],
but the left-hand side equals P[A u B] by the measure-preservation of 7, proving (8.5). O

Note: Consider 7 mapping initial state of the conservative (Hamiltonian) mechanical system to its
state after passage of a given unit of time. It is known that 7 preserves Lebesgue measure in phase
space (Liouville’s theorem). Thus Poincare recurrence leads to rather counter-intuitive conclusions.
For example, opening the barrier separating two gases in a cylinder allows them to mix. Poincare
recurrence says that eventually they will return back to the original separated state (with each gas
occupying roughly its half of the cylinder).

Definition 8.3 (Ergodicity). A transformation 7 is ergodic if VE € Fj,, we have P[E]=0or 1. A
process {S;} is ergodic if all shift invariant events are deterministic, i.e., for any shift invariant event
E, P[S;?eE]=0or 1.

Example:
o {5} = k%}: ergodic but not stationary

e {Si =S5p}: stationary but not ergodic (unless Sy is a constant). Note that the singleton set
E ={(s,s,...)} is shift invariant and P[S7° € E] =P[Sp = s] € (0,1) — not deterministic.

o {Si} ii.d. is stationary and ergodic (by Kolmogorov’s 0-1 law, tail events have no randomness)

e (Sliding-window construction of ergodic processes)

If {S;} is ergodic, then {X; = f(S;,S;11,...)} is also ergodic. It is called a B-process if S; is
iid.

Example, S; ~ Bern(%) iid., X, =%2,2""18,,,=2X;; mod 1. The marginal distribution
of X; is uniform on [0,1]. Note that X} ’s behavior is completely deterministic: given Xy,
all the future X}’s are determined exactly. This example shows that certain deterministic
maps exhibit ergodic/chaotic behavior under iterative application: although the trajectory
is completely deterministic, its time-averages converge to expectations and in general “look
random”.

e There are also stronger conditions than ergodicity. Namely, we say that 7 is mixing (or strong
mixing) if
P[AnT"B] - P[A]P[B].
We say that 7 is weakly mixing if

é % IP[A " B] - P[AJP[B]| - 0.

Strong mixing implies weak mixing, which implies ergodicity (check!).
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e {S;}: finite irreducible Markov chain with recurrent states is ergodic (in fact strong mixing),
regardless of initial distribution.
Toy example: kernel P(0[1) = P(1|0) =1 with initial dist. P(Sy=0) =0.5. This process only
has two sample paths: P[S7° = (010101...)] = P[S{° = (101010...)] = % It is easy to verify
this process is ergodic (in the sense defined above!). Note however, that in Markov-chain
literature a chain is called ergodic if it is irreducible, aperiodic and recurrent. This example
does not satisfy this definition (this clash of terminology is a frequent source of confusion).

e (optional) {S;}: stationary zero-mean Gaussian process with autocovariance function R(n) =

E[S0S*].
1 n
lim R[t] =0 < {S;} ergodic <> {S;} weakly mixing
n—oon + 1 b
lim R[n] =0 < {S;} mixing

Intuitively speaking, an ergodic process can have infinite memory in general, but the memory
is weak. Indeed, we see that for a stationary Gaussian process ergodicity means the correlation
dies (in the Cesaro-mean sense).

The spectral measure is defined as the (discrete time) Fourier transform of the autocovariance

sequence {R(n)}, in the sense that there exists a unique probability measure p on [—%, %] such

that R(n) = Eexp(i2nmX) where X ~ u. The spectral criteria can be formulated as follows:
{Si} ergodic < spectral measure has no atoms (CDF is continuous)

{S;} B-process < spectral measure has density

Detailed exposition on stationary Gaussian processes can be found in [Doo53, Theorem 9.3.2,
pp. 474, Theorem 9.7.1, pp. 494-494].1

8.2 Proof of Shannon-McMillan

We shall show the convergence in L;, which implies convergence in probability automatically. In
order to prove Shannon-McMillan, let’s first introduce the Birkhoff-Khintchine’s convergence theorem
for ergodic processes, the proof of which is presented in the next subsection.

Theorem 8.2 (Birkhoff-Khintchine’s Ergodic Theorem). If {S;} stationary and ergodic, ¥ function
f € Ll, z'.e., E|f(51, TN )| < 0o,

lim lZf(Sk,...):Ef(Sl,...). a.s. and in Ly
n_)oonk‘:l

In the special case where f depends on finitely many coordinates, say, f = f(S1,...,5m), we have
n—00

1 n
lim — Z F(Sky.ooySkym-1) =E f(S1,...,9m). a.s. and in L,
T k=1

Interpretation: time average converges to ensemble average.
Example: Consider f = f(S7)

!Thanks Prof. Bruce Hajek for the pointer.
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o {S;} is iid. Then Theorem 8.2 is SLLN (strong LLN).
e {S;} is such that S; = S; for all i — non-ergodic. Then Theorem 8.2 fails unless S is a constant.

Definition 8.4. {S;:i e N} is an m'™ order Markov chain if Pg, st = Ps, ysr  forallt>m. It
is called time homogeneous if Pg, gt = Pg, |-

t-m+1

Remark 8.1. Showing (8.3) for an m™ order time homogeneous Markov chain {S;} is a direct
application of Birkhoff-Khintchine.

1 1 1 1 il 1
—log5———= =—) log
n Psn(S") ni3 P5t|5t—1(St|St_1)
1 1 1 2 1
=—log———+— log
n ~ Psm(S™) n t:nzm:+1 Pg,5i-1 (S1lS1))
1 1 1 & 1
= — log _ 4 — log — ) (86)
n PSl(S{nJ) n t:;;l PSm+1|S{"(St|S€—r1n
————
-0 —H(Sm+1|S7™) by Birkhoff-Khintchine

where we applied Theorem 8.2 with f(s1,s2,...) =log P |sm1(s T
— m+1 1 m+ 1

Now let’s prove (8.3) for a general stationary ergodic process {S;} which might have infinite
memory. The idea is to approximate the distribution of that ergodic process by an m-th order MC
(finite memory) and make use of (8.6); then let m — oo to make the the approximation accurate
(Markov approzimation).

Proof of Theorem 8.1 in Ly. To show that (8.3) converges in L;, we want to show that
1

IE‘— log
n

1
L 4s0 no
Pgn (S™) | e

To this end, fix an m € N. Define the following auxiliary distribution for the process:

QUM(SY) = Pop(ST) T1 Poyjsir (SilSizm,
1

t=m+

Stat- Pon (S1) [T Psypjsy (SelSiZ0)
1

t=m+

Note that under Q™. {S;} is an m™-order time-homogeneous Markov chain.
By triangle inequality,

1 1 1 1 1 1
E|-log ———— - H| <E|~log ———— ~ —log —————
’n ® Pga (57 | |n ®Psa(57) m gQ(gT)(S”)|
2A
+E|llog——Hm‘+|Hm—H|
n Q(ST)(Sn) —

=B

where H,, £ H(Sm+1]S7").
Now
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e C = |H;, -H| - 0 as m - oo by Theorem 5.4 (Recall that for stationary processes:
H(S1+1]57") = H from above).

e As shown in Remark 8.1, for any fixed m, B — 0 in L; as n — oo, as a consequence of
Birkhoff-Khintchine. Hence for any fixed m, EB — 0 as n — oo.

e For term A,

210ge

E[A] = —Ep\log y D(P QY +

where

PS”(Sn)
Psm (S™) [Mizpm+1 P Spme1lSh, (Se|SEZL

—D(Psn 1Q5™)y = ]E log

1
stat- _ (~H(S™) + H(S™) + (n—-m)H,;,)
n
- H,-Hasn—-> o
and the next Lemma 8.1.

Combining all three terms and sending n — oo, we obtain for any m,

1
li E —— - H|<L2(Hp - H).
e
Sending m — oo completes the proof of Li-convergence. O
Lemma 8.1. P 9]
Ep [log ]SD(PHQ)+ﬁ.
dQ e

Proof. |xlogx|—xlogx < 21‘?6, Vax >0, since LHS is zero if x > 1, and otherwise upper bounded by
210ge
28UpPgeyct T log - ]

8.3* Proof of Birkhoff-Khintchine

Proof of Theorem 8.2. ¥V function f e Ly, Ve, there exists a decomposition f = f + h such that f is
bounded, and h € Ly, ||h]; <e.

Let us first focus on the bounded function f. Note that in the bounded domain £q c Lo, thus f € Lo.
Furthermore, Ly is a Hilbert space with inner product (f,g) = E[f(S7°)g(5:°)].

For the measure preserving transformation 7 that generates the stationary process {S;}, define
the operator T'(f) = f o 7. Since T is measure preserving, we know that |Tf[3 = | f|3, thus T is a
unitary and bounded operator.

Define the operator

An(f) = ZfOT

Intuitively:
12 1
Ay==STF==(1-T"(1I-T)"
n k=1 n
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Then, if f 1 ker(I —T') we should have A, f - 0, since only components in the kernel can blow up.
This intuition is formalized in the proof below.
Let’s further decompose f into two parts f = f1 + fo, where f1 e ker(I —T) and fo € ker(I —T)*.
Observations:

o if g e ker(I - T), g must be a constant function. This is due to the ergodicity. Consider
indicator function 14, if 14 =1407=1,-14, then P[A] =0 or 1. For a general case, suppose
g =Tg and g is not constant, then at least some set {g € (a,b)} will be shift-invariant and
have non-trivial measure, violating ergodicity.

e ker(I -T) =ker(I —T*). This is due to the fact that T is unitary:

g=Tg=|g|”=(Tg.9) = (9.T*9) = (T*g,9) = |9 |T*g| = T*g =g

where in the last step we used the fact that Cauchy-Schwarz (f,g) < | f]-|lg| only holds with
equality for g = ¢f for some constant c.

o ker(I -T)* =ker(J -T*)* =[Im(I - T)], where [Im(/ —T)] is an Lo closure.

e geker(/]-T)* <=  E[g] =0. Indeed, only zero-mean functions are orthogonal to
constants.

With these observations, we know that f; = m is a const. Also, fa € [Im(/ —T')] so we further
approximate it by fo = fo + h1, where fo € Im(I —T'), namely fy =g — g o7 for some function g € Lo,
and |hi|1 <|hi]2 < e. Therefore we have

Anfi = f1 =E[f]

Anfo = l(g —go1")—>0a.s. and Ly
n

(since E[Z(&)ﬂ =E[¢*]Y i? <oo = lg o7" >0 a.s.)
n>1 n n

The proof completes by showing

Pllim sup Ay (h + hy) > 6] g%. (8.7)
Indeed, then by taking € - 0 we will have shown

Pllimsup A, (f) >E[f]+d] =0
as required. 0

Proof of (8.7) makes use of the Maximal Ergodic Lemma stated as follows:

Theorem 8.3 (Maximal Ergodic Lemma). Let (P,7) be a probability measure and a measure-
preserving transformation. Then for any f € L1(P) we have

B[ Luup,y duoa] _ 1]
a T oa

P[supAnf > a] <

n>1

where Ap f = %ZZ;& fork.
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Note: This is a so-called “weak L;” estimate for a sublinear operator sup,, A,(-). In fact, this
theorem is exactly equivalent to the following result:

Lemma 8.2 (Estimate for the maximum of averages). Let {Z,,n=1,...} be a stationary process
with E[|Z]] < oo then

Zi+...+ 7 E[|Z
]P’supu>a < [1Z] Ya>0
n>1 n a

Proof. The argument for this Lemma has originally been quite involved, until a dramatically simple
proof (below) was found by A. Garcia.

Define
n
Sp=>2Z (8.8)
k=1
L, =max{0,21,..., 21+ + Zp} (8.9)
Mn:maX{O,Zg,Zg+Z3,...,Z2+---+Zn} (810)
S,
Z* = sup == (8.11)
n>1 N
It is sufficient to show that
E[le{z*>0}] 2 O . (812)

Indeed, applying (8.12) to Z; = Z; — a and noticing that Z* = Z* — a we obtain
E[le{Z*>a}] 2 CLP[Z* >al,

from which Lemma follows by upper-bounding the left-hand side with E[|Z1]].
In order to show (8.12) we first notice that {L,, >0} » {Z* > 0}. Next we notice that

Zl + Mn = maX{Sl, ey Sn}
and furthermore
Z1+ M, =L, on {L, >0}

Thus, we have
Z11p,500 = Ln = Mplip, 50y

where we do not need indicator in the first term since L,, =0 on {L,, > 0}¢. Taking expectation we
get

E[Z11¢1,>01] = E[Ln] = E[Mn11, 503 ] (8.13)
> B[L,] - E[M,] (8.14)
“E[Ln] - E[Ln1] = E[Ly  Ln1] 20, (8.15)

where we used M, > 0, the fact that M, has the same distribution as L, 1, and L, > L,_1,
respectively. Taking limit as n — oo in (8.15) we obtain (8.12). O
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8.4* Sinai’s generator theorem

It turns out there is a way to associate to every probability-preserving transformation 7 a number,
called Kolmogorov-Sinai entropy. This number is invariant to isomorphisms of p.p.t.’s (appropriately
defined).

Definition 8.5. Fix a probability-preserving transformation 7 acting on probability space (€2, F,P).
Kolmogorov-Sinai entropy of 7 is defined as

1
H(7) £ sup lim —H(Xo,Xgo7,...,Xg07" 1),
X PN

where supremum is taken over all random variables X : Q - X with finite range X and measurable
with respect to F.

Note that every random variable X generates a stationary process adapted to 7, that is
X2 Xpo .

In this way, Kolmogorov-Sinai entropy of 7 equals the maximal entropy rate among all stationary
processes adapted to 7. This quantity may be extremely hard to evaluate, however. One help comes
in the form of the famous criterion of Y. Sinai. We need to elaborate on some more concepts before:

e o-algebra G c F is P-dense in F, or sometimes we also say G = F mod P or even G = F mod 0,
if for every E € F there exists E' € G s.t.

P[EAE']=0.

e Partition A ={A4;,i=1,2,...} measurable with respect to F is called generating if

(7 o{t™A}=F modP.

n=0
e Random variable Y : Q — ) with a countable alphabet ) is called a generator of (Q, F,P, 1) if
o{Y,Yor,....,Yor" ..} =F modP
Theorem 8.4 (Sinai’s generator theorem). Let Y be the generator of a p.p.t. (Q,F,P,7). Let H(Y)
be the entropy rate of the process Y = {Y, =Y or* k=0,...}. If H(Y) is finite, then H(7) = H(Y).

Proof. Notice that since H(Y) is finite, we must have H(Y{") < co and thus H(Y) < co. First, we
argue that H(7) > H(Y). If Y has finite alphabet, then it is simply from the definition. Otherwise
let Y be Z,-valued. Define a truncated version Y, = min(Y,m), then since Y, =Y as m — oo we
have from lower semicontinuity of mutual information, cf. (3.9), that

lim I(Y;Y,,) > H(Y),
m—>00
and consequently for arbitrarily small € and sufficiently large m

HY|Y)<e,
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Then, consider the chain
H(Yg") = H(Yg, Yg') = H(Yg") + H(YJ|Yg")
= H(Yg) + , HYYG, Y5 ™)
i=0

<H(TP) + Y HYVIT)
=0
= H(YJ) +nH(Y|Y) < H(YJ") + ne

Thus, entropy rate of Y (which has finite-alphabet) can be made arbitrarily close to the entropy
rate of Y, concluding that H(7) > H(Y).

The main part is showing that for any stationary process X adapted to 7 the entropy rate is
upper bounded by H(Y). To that end, consider X : Q - X with finite X and define as usual the
process X = {X o ¢ k=0,1,.. .}. By generating property of Y we have that X (perhaps after
modification on a set of measure zero) is a function of Y°. So are all Xj. Thus

H(Xo) = I(Xo; ¥57) = lim 1(Xo;¥g"),

where we used the continuity-in-o-algebra property of mutual information, cf. (3.10). Rewriting the
latter limit differently, we have

lim H(Xo|Yy") =0.

n—oo

Fix € > 0 and choose m so that H(X|Y;") <e. Then consider the following chain:
H(Xy) < H(Xg,Yg") = H(Yg") + H(XgYg")

<H(YZ) + Y H(X|Y)
i=0

= H(Yg") + 3 H(Xo[Yg"™)
i=0
<H(YY") +mlog|X|+ (n—m)e,

where we used stationarity of (X, Y;) and the fact that H(Xo|Yg"™") < € for i < n—m. After dividing
by n and passing to the limit our argument implies

H(X) < H(Y) +e.

Taking here ¢ - 0 completes the proof.

Alternative proof: Suppose Xy is taking values on a finite alphabet X and X = f(Yy*°). Then
(this is a measure-theoretic fact) for every e > 0 there exists m = m(¢) and a function f, : Y™ — X
s.t.

PLA(YG") # fe(Yg™)] <.
(This is just another way to say that U, o{Y;'} is P-dense in o(Y;°).) Define a stationary process

X as . ‘
Xj = fe(ijm-'—J) :

Notice that since f({f is a function of YO”“” we have

H(XJ) < HY™™).
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Dividing by m and passing to the limit we obtain that for entropy rates
H(X) < H(Y).
Finally, to relate X to X notice that by construction
P[X; # X,] <e.
Since both processes take values on a fixed finite alphabet, from Corollary 5.2 we infer that
|H(X) - H(X)| < elog|X| + h(e) .
Altogether, we have shown that
H(X) < H(Y) + elog|X| + h(e).
Taking € - 0 we conclude the proof. O
Examples:
e Let Q=10,1], F—Borel o-algebra, P = Leb and

2w, w<1/2

T(w)=2w mod 1=
2w-1, w>1/2

It is easy to show that Y (w) = 1{w < 1/2} is a generator and that Y is an i.i.d. Bernoulli(1/2)
process. Thus, we get that Kolmogorov-Sinai entropy is H(7) = log2.

e Let Q be the unit circle S!, F — Borel o-algebra, P be the normalized length and
T(w)=w+7

i.e. 7 is a rotation by the angle 7. (When - is irrational, this is known to be an ergodic
p.p.t.). Here Y = 1{|w| < 2me} is a generator for arbitrarily small e and hence

H(T) < H(X)<H(Yy) =h(e) =0 ase— 0.
This is an example of a zero-entropy p.p.t.

Remark 8.2. Two p.p.t.’s (1, 71,P1) and (Qo, 70,Py) are called isomorphic if there exists f; : ; -
Qq_; defined P;-almost everywhere and such that 1) 7i_; 0 f; = f1_; o 74; 2) f; o fi—; is identity on
Q; (a.e.); 3) B[ f{LE] =P1_;[E]. Tt is easy to see that Kolmogorov-Sinai entropies of isomorphic
p.p-t.s are equal. This observation was made by Kolmogorov in 1958. It was revoluationary, since it
allowed to show that p.p.t.s corresponding shifts of iid Bern(1/2) and iid Bern(1/3) procceses are
not isomorphic. Before, the only invariants known were those obtained from studying the spectrum
of a unitary operator

UT . LQ(QJP)) - LQ(Q,P) (816)
¢(z) = o(7(2)) - (8.17)

However, the spectrum of 7 corresponding to any non-constant i.i.d. process consists of the entire
unit circle, and thus is unable to distinguish Bern(1/2) from Bern(1/3).>

2To see the statement about the spectrum, let X; be iid with zero mean and unit variance. Then consider ¢(z7")
defined as \/% Y™ e“*r,. This ¢ has unit energy and as m — oo we have |U,¢ — e ¢|L, — 0. Hence every e
belongs to the spectrum of U-.
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§ 9. UNIVERSAL COMPRESSION

In this lecture we will discuss how to produce compression schemes that do not require apriori
knowledge of the distribution. Here, compressor is a map X™ — {0,1}*. Now, however, there is no
one fixed probability distribution Px» on X™. The plan for this lecture is as follows:

1. We will start by discussing the earliest example of a universal compression algorithm (of
Fitingof). It does not talk about probability distributions at all. However, it turns out to be
asymptotically optimal simulatenously for all i.i.d. distributions and with small modifications
for all finite-order Markov chains.

2. Next class of universal compressors is based on assuming that a the true distribution Pxn
belongs to a given class. These methods proceed by choosing a good model distribution ) x»
serving as the minimax approximation to each distribution in the class. The compression
algorithm is designed to work for () xn» is made.

3. Finally, an entirely different idea are algorithms of Lempel-Ziv type. These automatically
adapt to the distribution of the source, without any prior assumptions required.

Throughout this section instead of describing each compression algorithm, we will merely specify
some distribution () x» and apply one of the following constructions:

e Sort all " in the order of decreasing @ x» (z™) and assign values from {0,1}"* as in Theorem 6.1,
this compressor has lengths satisfying

((f (")) < log ﬁ .

e Set lengths to be .
e(f(z")) = [log an—(x")]

and apply Kraft’s inequality Theorem 6.5 to construct a prefix code.
e Use arithmetic coding (see next section).

The important conclusion is that in all these cases we have

((f (")) <log

+ const ,

v
Qxn(2™)

and in this way we may and will always replace lengths with log m In this way, the only job
of a universal compression algorithm is to specify Qxn.
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Remark 9.1. Furthermore, if we only restrict attention to prefix codes, then any code f: X" —
{0,1}* defines a distribution Qxn(z") = 27¢U(@") (we assume the code’s tree is full). In this
way, for prefix-free codes results on redundancy, stated in terms of optimizing the choice of Q xn,
imply tight converses too. For one-shot codes without prefix constraints the optimal answers are
slightly different, however. (For example, the optimal universal code for all i.i.d. sources satisfies

E[4(f(X™)]~H(X™) + @ logn in contrast with # logn for prefix-free codes.)

9.1 Arithmetic coding

Constructing an encoder table from () x» may require a lot of resources if n is large. Arithmetic
coding provides a convenient workaround by allowing to output bits sequentially. Notice that to
do so, it requires that not only Qxn~ but also its marginalizations Q x1,Q x2,-++ be easily computable.
(This is not the case, for example, for Shtarkov distributions (9.8)-(9.9), which are not compatible
for different n.)

Let us agree upon some ordering on the alphabet of X' (e.g. a <b <---<z) and extend this order
lexicographically to X™ (that is for x = (x1,...,2,) and y = (y1,...,Yn), we say x <y if z; <y; for
the first i such that z; # y;, e.g., baba < babb). Then let

F.(z™)= Y Qxn(z").

yn<x™

Associate to each ™ an interval I;n = [F,(z"), F,(2") + Qxn(z™)). These intervals are disjoint
subintervals of [0,1). Now encode

2"+ largest dyadic interval contained in In .

Recall that dyadic intervals are intervals of the type [m27, (m + 1)27%] where @ is an odd integer.
Clearly each dyadic interval can be associated with a binary string in {0,1}*. We set f(z") to be
that string. The resulting code is a prefix code satisfying

1
0(f(z")) < {log —“-f-l.
(This is an exercise.)
Observe that

Fo(2™) = Fpoa (2" ) + Qxn-r (2™71) Y Qx| x7-1 (ylz" ")

Y<Tp,

and thus F),(z"™) can be computed sequentially if Q yn-1 and Qx,|xn-1 are easy to compute. This
method is the method of choice in many modern compression algorithms because it allows to
dynamically incorporate the learned information about the stream, in the form of updating Qx| x»-1
(e.g. if the algorithm detects that an executable file contains a long chunk of English text, it may
temporarily switch to @y, |x»-1 modeling the English language).

9.2 Combinatorial construction of Fitingof

Fitingof suggested that a sequence z" € X™ should be prescribed information ®y(x") equal to
the logarithm of the number of all possible permutations obtainable from z™ (i.e. log-size of the
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type-class containing ™). From Stirling’s approximation this can be shown to be

Oo(z") =nH(zp)+O(logn) T ~Unif[n] (9.1)
=nH(Py) +O(logn) , (9.2)

where P,n is the empirical distribution of the sequence z:
. 10
Ppn(a) 2 => 1{z; =a}. (9.3)
nis
Then Fitingof argues that it should be possible to produce a prefix code with
(f(z™)) = Po(z™) + O(logn) . (9.4)
This can be done in many ways. In the spirit of what we will do next, let us define

Qxn (") = exp{-Po(z")}cn,

where ¢, is a normalization constant c¢,. Counting the number of different possible empirical
distributions (types), we get
n = O(n~ ¥y

and thus, by Kraft inequality, there must exist a prefix code with lengths satisfying (9.4). Now

taking expectation over X ”i'i&d'PX we get
E[(f(X™))] =nH(Px) + (|X| - 1)logn+O(1),

for every i.i.d. source on X.

9.2.1 Universal compressor for all finite-order Markov chains

Fitingof’s idea can be extended as follows. Define now the 1-st order information content ®;(z™)
to be the log of the number of all sequences, obtainable by permuting ™ with extra restriction
that the new sequence should have the same statistics on digrams. Asymptotically, ®; is just the
conditional entropy

Oy (") =nH(zp|xr-1 modn)+O(logn), T ~Unif[n].
Again, it can be shown that there exists a code such that lengths
(f(z™)) =P1(2") + O(logn).
This implies that for every 1-st order stationary Markov chain X; - X5 — --- - X, we have
E[E(f(X™))] =nH(X2|X1) + O(logn).

This can be further continued to define ®9(z™) and build a universal code, asymptotically
optimal for all 2-nd order Markov chains etc.
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9.3 Optimal compressors for a class of sources. Redundancy.

So we have seen that we can construct compressor f: X™ — {0,1}* that achieves
E[(f(X™)] < H(X™) +o0(n),

simultaneously for all i.i.d. sources (or even all r-th order Markov chains). What should we do
next? Krichevsky suggested that the next barrier should be to optimize regret, or redundancy:

E[£(f(X"))] - H(X") - min

simultaneously for a class of sources. We proceed to rigorous definitions.
Given a collection {Pxn|g,0 € ©} of sources, and a compressor f: A" — {0,1}* we define its
redundancy as
sup E[A(/(X"))1p = o] - H(X"10 = 00).
0

Replacing here lengths with log Q_;lm we define redundancy of the distribution @ xn» as
Sup D(Pxnig-g, |Qxn) -
0

Thus, the question of designing the best universal compressor (in the sense of optimizing worst-case
deviation of the average length from the entropy) becomes the question of finding solution of:

Qxn = argminsup D(Pxnjg_g, [Qxn) -
Qxn 0o

We therefore get to the following definition

Definition 9.1 (Redundancy in universal compression). Given a class of sources {PXn|9:90, Oy €
©,n=1,...} we define its minimax redundancy as

Ry, = minsup D(Pxnjgg,[|Qxn) - (9-5)
Qxn 6o

Note that under condition of finiteness of R, Theorem 4.5 gives the maximin and capacity
representation

R;, = supmin D(Pxng|Qxn|Pp) (9.6)
Py Qxn
=supI(0; X"). (9.7)
Py

Thus redundancy is simply the capacity of the channel # — X". This result, obvious in hindsight,
was rather surprising in the early days of universal compression.

Finding exact @ x»-minimizer in (9.5) is a daunting task even for the simple class of all i.i.d.
Bernoulli sources (i.e. © =[0,1], Pxnjg = Bern"(#)). It turns out, however, that frequently the
approximate minimizer has a rather nice structure: it matches the Jeffreys prior.

Remark 9.2. (Shtarkov and Fitingof) There is a connection between the combinatorial method
of Fitingof and the method of optimality for a class. Indeed, following Shtarkov we may want to
choose distribution ngg so as to minimize the worst-case redundancy for each realization z™ (not
average!):
. Pxnjg(2"(60)
min suplog ————

Qxn(z™) g, Qxn(z™)
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This leads to Shtarkov’s distribution:

QS (a™) = esup Prjo(«"[6o) (9.8)
0

where c is the normalization constant. If class { Pxn|g,0 € ©} is chosen to be all i.i.d. distributions

on X then A
iid. Q) (2™ = cexp{-nH(Pm)}, (9.9)

and thus compressing w.r.t. Qg?,? recovers Fitingof’s construction ®¢ up to O(logn) differences
between nH (Pyn) and ®g(z™). If we take Pxnjg to be all 1-st order Markov chains, then we get
construction P; etc.

9.4* Approximate minimax solution: Jeffreys prior

In this section we will only consider the simple setting of a class of sources consisting of all i.i.d.
distributions on a given finite alphabet. We will show that the prior, asymptoticall solving capacity
question (9.7), is given by the Dirichlet-distribution with parameters set to 1/2, namely the pdf

1
VI 0 |

P, = const

First, we give the formal setting as follows:
e Fix X — finite alphabet of size |X|=d + 1, which we will enumerate as X = {0,...,d}.

e O={(0j,j=1,...,d): Z?:1 0 <1,0; >0} — is the collection of all probability distributions on
X. Note that © is a d-dimensional simplex. We will also define

d

Go=1->0;.
j=1

e The source class is

n a - 1
Pxnig(2"10) = [0z, = exp {—n > bqlog — } ,
j=1 acX Pyn(a)

where as before Pyn is the empirical distribution of 2™, cf. (9.3).

In order to derive the caod Q% we first propose a guess that the caid Py in (9.7) is some
distribution with smooth density on © (this can only be justified by an apriori belief that the caid
in such a natural problem should be something that employs all ’s). Then, we define

Qun(") 2 | Pugo ("0 Po(6')d0 (9.10)

Before proceeding further, we recall the following method of approximating exponential integrals
(called Laplace method). Suppose that f(f) has a unique minimum at the interior point 6 of ©
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and that Hessian Hessf is uniformly lower-bounded by a multiple of identity (in particular, f(#) is
strongly convex). Then taking Taylor expansion of m and f we get

0 —nf(@)dezf 0 + O(l1£1)) e~ (f (O3t Hessf (B)t+o([t]*)) g4 9.11
[ ) (7(8) + O(Jt]))e VO3 (9.11)
= w(f)eI fR ) e-xTHessf@f—j?%u +O(n"Y2)) (9.12)
d
_ r(f)eI D) (21) b qiomy (9.13)
n

\/det Hessf(6)

where in the last step we computed Gaussian integral.
Next, we notice that

Pynp(a"]6") = oD (Pyn HPX‘G:Q/)+H(Pmn))loge’

and therefore, denoting R
O(z") £ Pyn
we get from applying (9.13) to (9.10)

+log 2(6) +O(n_%),

\/det Jg(0)

where we used the fact that HeSSQID(PHP)q@:e/) = @J #(0") with Jp — Fisher information matrix,

see (4.13). From here, using the fact that under X" ~ Pxnjg_g the random variable 6=0+0(n?)
we get by linearizing Jp(-) and Py(+)

A d 2
logQxn(z") = -nH() + = log u
2 nloge

Py(0')
St ()

where const is some constant (independent of prior Py or €’). The first term is handled by the next
Lemma.

D(Pxnip-g |Qxn) = n(E[H(0)]-H(X|0=0"))+ g logn —log + const +O(n_%) , (9.14)

Lemma 9.1. Let X""%*P on finite alphabet X and let P be the empirical type of X™ then
. X|-1 1
E[D(P|P)] = —‘ | loge+o(—).
2n n

Proof. Notice that /n(P — P) converges in distribution to A'(0,%), where ¥ = diag(P) - PPT,
where P is an |X|-by-1 column vector. Thus, computing second-order Taylor expansion of D(:||P),
cf. (4.15), we get the result. O

Continuing (9.14) we get in the end

D(P 1Q )_C_Zlogn_longl)
A= IeXT Iy et I (0

under the assumption of smoothness of prior Py and that 6’ is not too close to the boundary.
Consequently, we can see that in order for the prior Py be the saddle point solution, we should have

Py(0') ~/det Jp(07),
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provided that such density is normalizable. Prior proportional to square-root of the determinant of
Fisher information matrix is known as Jeffreys prior. In our case, using the explicit expression for
Fisher information (4.16) we get
1
P; =Beta(1/2,1/2,---,1/2) = ¢gq————, (9.16)
?:0 0

where cg4 is the normalization constant. The corresponding redundancy is then

d
R;L:—logi

5 —logcg+o(1). (9.17)

2Te
Remark 9.3. In statistics Jeffreys prior is justified as being invariant to smooth reparametrization,
as evidenced by (4.14). For example, in answering “will the sun rise tomorrow”, Laplace proposed
to estimate the probability by modeling sunrise as i.i.d. Bernoulli process with a uniform prior on
6 € [0,1]. However, this is clearly not very logical, as one may equally well postulate uniformity of
) _ . N 1 .. . . . . .
a=0" or B=0. Jeffreys prior 6 NGEED] is invariant to reparametrization in the sense that if

one computed y/det Jp(«) under a-parametrization the result would be exactly the pushforward of

the \/6(11__6) along the map 6 —~ 910,

Making the arguments in this subsection rigorous is far from trivial, see [CB90, CB94] for details.

9.5 Sequential probability assignment: Krichevsky-Trofimov

From (9.16) it is not hard to derive the (asymptotically) optimal universal probability assignment
Qxn. For simplicity we consider Bernoulli case, i.e. d =1 and 6 € [0,1] is the 1-dimensional
parameter. Then,i

. 1
TR (9.18)
Qin(amy = Zom D@0 =N - ey = a) (9.19)

2nn!

This assignment can now be used to create a universal compressor via one of the methods outlined
in the beginning of this lecture. However, what is remarkable is that it has a very nice sequential
interpretation (as does any assignment obtained via Qxn» = [ Py Pxnjg with Py not depending on n).

t1 + 1
Qx,xn-1(1a" ") = - 2 h=#{j<n-1:x;=1} (9.20)
-1 t0+% .
Qx,|x»-1(0z"7) = — to=#{j<n-1:2;=0} (9.21)

This is the famous “add 1/2” rule of Krichevsky and Trofimov. Note that this sequential assignment
is very convenient for use in prediction as well as in implementing an arithmetic coder.

a b - E
'This is obtained from identity fol 0706) g - pli(2a_L8-(3b-1)

for integer a,b > 0. This identity can be

Vo(1-6) 2a+b (g+b)!
derived by change of variable z = 1%06 and using the standard keyhole contour on the complex plain.
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Remark 9.4. Notice that attaining the first order term glogn in (9.17) is easy. For example,
taking Qxn to be the result of uniform Py does achieve this redundancy. In the Bernoulli (d =1)
case, the corresponding successive probability is given by

_t1+1

Q-1 (L") = , h=#{j<n-1:2;=1}.
n+1

This is known as Laplace’s “add 1”7 rule.

9.6 Lempel-Ziv compressor

So given a class of sources { Pxn|g,0 € ©} we have shown how to produce an asymptotically optimal
compressors by using Jeffreys’ prior. Although we have done so only for i.i.d. class, it can be
extended to handle a class of all r-th order Markov chains with minimal modifications. However,
the resulting sequential probability becomes rather complex. Can we do something easier at the
expense of losing optimal redundancy?

In principle, the problem is rather straightforward: as we observe a stationary process, we may
estimate with better and better precision the conditional probability an| xn-1 and then use it as

the basis for arithmetic coding. As long as P converges to the actual conditional probability, we
will get to the entropy rate of H(X,|X/"}). Note that Krichevsky-Trofimov assignment (9.21) is
clearly learning the distribution too: as n grows, the estimator @)y, x»-1 converges to the true
Px (provided sequence is i.i.d.). So in some sense the converse is also true: any good universal
compression scheme is inherently learning the true distribution.

The main drawback of the learn-then-compress approach is the following. Once we extend the
class of sources to include those with memory, we invariably are lead to the problem of learning
the joint distribution PX(';—I of r-blocks. However, the number of samples required to obtain a good
estimate of Pyr-1 is exponential in 7. Thus learning may proceed rather slowly. Lempel-Ziv family
of algorithms works around this in an ingeniously elegant way:

e First, estimating probabilities of rare substrings takes longest, but it is also the least useful,
as these substrings almost never appear at the input.

e Second, and most crucial, observation is that a great estimate of the Pxr(z") is given by the
reciprocal of the distance to the last observation of " in the incoming stream.

e Third, there is a prefix codez mapping any integer n to binary string of length roughly log, n:
fint : Zy - {0,1}7, £(fint(n)) =logyn + O(loglogn) . (9.22)

Thus, by encoding the pointer to the last observation of " via such a code we get a string of
length roughly log Px-(z") automatically.

There are a number of variations of these basic ideas, so we will only attempt to give a rough
explanation of why it works, without analyzing any particular algorithm.
We proceed to formal details. First, we need to establish a Kac’s lemma.

2For this just notice that Y., g~ logz k=2loga log(k+1) o o5 and use Kraft’s inequality.
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Lemma 9.2 (Kac). Consider a finite-alphabet stationary ergodic process ..., X_1, X0, X1.... Let
L=inf{t>0:X_;=Xg} be the last appearance of symbol Xy in the sequence X-L . Then for any u
such that P[ Xy = u] >0 we have

BLLXo =) = pre— v

In particular, mean recurrence time E[L] = [suppPx|.

Proof. Note that from stationarity the following probability
P[3t>k: Xy =u]
does not depend on k € Z. Thus by continuity of probability we can take k = —co to get
P[3t>0: Xy =u]=P[3teZ: X;=u].

However, the last event is shift-invariant and thus must have probability zero or one by ergodic
assumption. But since P[ Xy = u] > 0 it cannot be zero. So we conclude

P[3t>0: Xy =u]=1. (9.23)
Next, we have
E[L| Xy =u] = ZIP[L > t|Xo = u] (9.24)
t>1
1
=——— Y P[L>t Xy =u] (9.25)
P[X():U]t;
1
=— Y P X1 #u,...,. Xg#u, Xg=u 9.26
IE”[X():u]; [ t+1 1 0 ] ( )
1
=— Y P Xp+u,....,Xt-2+u, X1 =u 9.27
P[onu]; [Xo -1 = u] (9.27)
1
=——P[I>0:X; = 9.28
o, TP 20 Xe=ul (9.25)
1
T — 9.29
B[Xy <]’ (9.29)

where (9.24) is the standard expression for the expectation of a Z,-valued random variable, (9.27)
is from stationarity, (9.28) is because the events corresponding to different ¢ are disjoint, and (9.29)
is from (9.23). O

The following proposition serves to explain the basic principle behind operation of Lempel-Ziv:

Theorem 9.1. Consider a finite-alphabet stationary ergodic process ..., X_1, Xg, X1 ... with entropy
rate H. Suppose that XL is known to the decoder. Then there exists a sequence of prefiz-codes
fu(zn™t 27L)) with expected length

R (GTX) -
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Proof. Let L,, be the last occurence of the block xg‘l in the string 2~% (recall that the latter is
known to decoder), namely
Lp=inf{t>0:27 "1 = 20711,

Then, by Kac’s lemma applied to the process Y;(n) = X*7~! we have

1

E[Ln’X(T)l_l = xg_l] = ]P)[Xn—l _ xn—l] :
0 -0

We know encode L,, using the code (9.22). Note that there is crucial subtlety: even if L, <n and
thus [~t,~t +n— 1] and [0,n - 1] overlap, the substring #2~! can be decoded from the knowledge of
L.

We have, by applying Jensen’s inequality twice and noticing that %H (X(S‘_l) N H and
Llog H(X§™) - 0 that

B fie(Ln))] < - Ellog J+o(1) > H.

1
PX('r)L—l (X(’S’L—l)
From Kraft’s inequality we know that for any prefix code we must have

H(XyYX-L)=H.

SHE

LRI (L)) 2
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Binary hypothesis testing
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§ 10. BINARY HYPOTHESIS TESTING

10.1 Binary Hypothesis Testing
Two possible distributions on a space X

Hy: X~P
HliXNQ

Where under hypothesis Hy (the null hypothesis) X is distributed according to P, and under H;
(the alternative hypothesis) X is distributed according to Q. A test between two distributions
chooses either Hy or Hy based on an observation of X

e Deterministic test: f: X — {0,1}
e Randomized test: Py x : & — {0,1}, so that Py x(0lz) € [0,1].

Let Z =0 denote that the test chooses P, and Z =1 when the test chooses Q.

Remark: This setting is called “testing simple hypothesis against simple hypothesis”. Simple
here refers to the fact that under each hypothesis there is only one distribution that could generate
the data. Composite hypothesis is when X ~ P and P is only known to belong to some class of
distributions.

10.1.1 Performance Metrics

In order to determine the “effectiveness” of a test, we look at two metrics. Let m;; denote the

probability of the test choosing ¢ when the correct hypothesis is j. With this

li
a=mo = P[Z=0] (Probability of success given Hy true)
B =mop =Q[Z=0] (Probability of error given H; true)

Remark: P[Z = 0] is a slight abuse of notation, more accurately P[Z = 0] = ¥ cx P(2) Pz x(0[z)
Ex.py[1- f(x)]. Also, the choice of these two metrics to judge the test is not unique, we can use
many other pairs from {mo|o, 701, T1j0, T1p1 }-

So for any test Py x there is an associated («a,3). There are a few ways to determine the “best
test”

e Bayesian: Assume prior distributions P[Hy] = mp and P[H;] = 7, minimize the expected error

Py = min momy)g + T
tests
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e Minimax: Assume there is a prior distribution but it is unknown, so choose the test that
preforms the best for the worst case priors

Py, = min max moy|o + 7170
tests 7o

e Neyman-Pearson: Minimize error 5 subject to success probability at least a.

In this course, the Neyman-Pearson formulation will play a vital role.

10.2 Neyman-Pearson formulation
Definition 10.1. Given that we require P[Z = 0] > a,

fa(PQ)2 | inf QL7 =0]

Definition 10.2. Given (P,Q), the region of achievable points for all randomized tests is

R(P,Q) = U {(P[Z=0],Q[Z=0])} c[0,1]° (10.1)

Pz x

Ba(P,Q)

(67

Remark 10.1. This region encodes a lot of useful information about the relationship between P
and @. For example,i

P=Q < R(PQ)= PLQeR(PQ) =

Moreover, TV (P, Q) = maximal length of vertical line intersecting the lower half of R(P,Q) (HW).
Theorem 10.1 (Properties of R(P,Q)).

1. R(P,Q) is a closed, convex subset of [0,1]?.

2. R(P,Q) contains the diagonal.

'Recall that P is mutually singular w.r.t. Q, denoted by P 1 @, if P[E] =0 and Q[E] =1 for some E.
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3. Symmetry: (a,p) e R(P,Q) < (1-a,1-8) e R(P,Q).

Proof. 1. For convexity, suppose (ao, o), (a1, 81) € R(P, Q), then each specifies a test Pz x, Pz, |x
respectively. Randomize between these two test to get the test APz, x + APz |x for A e [0,1],
which achieves the point (Aag + Aag, Ao + AB1) € R(P, Q).

Closedness will follow from the explicit determination of all boundary points via Neyman-
Pearson Lemma — see Remark 10.2. In more complicated situations (e.g. in testing against
composite hypothesis) simple explicit solutions similar to Neyman-Pearson Lemma are not
available but closedness of the region can frequently be argued still. The basic reason is that
the collection of functions {g: X — [0,1]} forms a weakly-compact set and hence its image
under a linear functional g — ([ gdP, [ ¢dQ) is closed.

2. Test by blindly flipping a coin, i.e., let Z ~ Bern(1 - «) 1 X. This achieves the point («, ).

3. If (o, B) € R(P,Q), then form the test that chooses P whenever Pyjy choses @, and chooses
@ whenever Py x choses P, which gives (1-a,1-3) e R(P,Q).
]

The region R(P, Q) consists of the operating points of all randomized tests, which include
deterministic tests as special cases. The achievable region of deterministic tests are denoted by

Raet (P, Q) = %J{(P(ELQ(E)}- (10.2)

One might wonder the relationship between these two regions. It turns out that R(P, Q) is given
by the closed convex hull of Rget (P, Q).
We first recall a couple of notations:

e Closure: cl(E) = the smallest closed set containing E.

e Convex hull: co(E) = the smallest convex set containing £ = {1, a;x; : o > 0, X0 o =
1,2; € E,n € N}. A useful example: if (f(z),g(x)) € E,Vx, then (E[f(X)],E[g(X)]) €
cl(co(E)).

Theorem 10.2 (Randomized test v.s. deterministic tests).

R(Pa Q) = CI(CO(Rdet(P7 Q)))

Consequently, if P and @Q are on a finite alphabet X, then R(P,Q) is a polygon of at most 2l
vertices.

Proof. “5”: Comparing (10.1) and (10.2), by definition, R(P,Q) > Rget(P, Q)). By Theorem 10.1,
R(P,Q) is closed convex, and we are done with the > direction.

W9,

c”: Given any randomized test Py x, put g(x) = P;_gx-,- Then g is a measurable function.
Moreover,

PIZ=0]= ¥ g(x)P() =Erlo(X)] = [ Plo(X)> 1)t

QIZ=0]= £ g(0)Q() =Ealy(0)] = [ QLX) > s
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where we applied the formula E[U] = [ P[U > ¢]dt for U > 0. Therefore the point (P[Z =0],Q[Z =
0]) € R is a mixture of points (P[g(X) >t],Q[g9(X) >t]) € Rqet, averaged according to ¢ uniformly
distributed on the unit interval. Hence R c cl(co(Rget))-

The last claim follows because there are at most 2!l subsets in (10.2). O

Example: Testing Bern(p) versus Bern(q), p < % < q. Using Theorem 10.2, note that there are
22 =4 events E =@,{0},{1},{0,1}. Then

10.3 Likelihood ratio tests

Definition 10.3. The log likelihood ratio (LLR) is F' = log % : X > Ru{+oo}. The likelihood

ratio test (LRT) with threshold 7 € R is 1{log % < 7}. Formally, we assume that dP = p(z)dp and
dQ = q(z)dp (one can take u = P+ @, for example) and set

log 25, p(x) >0,q(z) >0

F(z)= |t P@)>0q(@)=0
%% p(z)=0,q(x) >0
nfa,  p(x)=0,q(z) =0

Notes:
e LRT is a deterministic test. The intuition is that upon observing x, if % exceeds a certain
threshold, suggesting ) is more likely, one should reject the null hypothesis and declare Q.

e The rationale for defining extended values +oo of F(x) are the following observations:
Vo, VreR: (p(x) —exp{7}q(x))1{F(z)>7} >0
(p(z) —exp{7}q(2)) {F(z)>7} >0
(q(z) —exp{-T}p(x))1{F(z) <7} >0
(q(z) —exp{-7}p(2)) {F(x) <7} >0

This leads to the following useful consequence: For any g >0 and any 7 € R (note: 7 = +oo is
excluded) we have

Eplg(X)H{F 2 7}] 2 exp{7} - EQ[g(X)I{F 2 7}] (10.3)
EQlg(X)I{F <7} 2 exp{-7} - Ep[g(X){F < 7}] (10.4)
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Below, these and similar inequalities are only checked for the cases of F' not taking extended
values, but from this remark it should be clear how to treat the general case.

e Another useful observation:
Q[F =+o00] = P[F =-00]=0. (10.5)
Theorem 10.3.
1. F 1is a sufficient statistic for testing Hy vs Hi.
2. For discrete alphabet X and when Q < P we have
QIF = fl=exp(-f)P[F=f]  VfeRu{+oo}
More generally, we have for any g: RuU{to0} > R

EQlg(F)] = g(-00)Q[F = —co] + Ep[exp{-F}g(F)] (10.6)
Eplg(F)] = g(+00) P[F = +oo] + Eq[exp{F}g(F)] (10.7)
Proof. (2)
Qr(f) = Tz 5 = £} = R Q) - Po))
Q(x) ¥
=ef x o) b(z) = =ef
- L@ los G = £} =T Pe()
To prove the general version (10.6), note that
Eolo(F))= [ dira(e)a(F(x)) + g(-00)Q[F = —o0] (10.8)
iy, AP @)(F (@) +g(-)@LF = -] (109)
=Ep[exp{-F}g(F)] +g(-00)Q[F = —oo], (10.10)

where we used (10.5) to justify restriction to finite values of F.
(1) To show F'is a s.s, we need to show Pxr = Qx|r- For the discrete case we have:

Pxir( |f>—PX<w>PF|x<f|:c>_P<w>1{SEﬁ§—e’”} e/ Q{5 = ef}
W RGO Pr(f)
_Qxr(@f) @ Qxr _ el ]

elPp(f)  Qr
The general argument is done similarly to the proof of (10.6).

From Theorem 10.2 we know that to obtain the achievable region R(P,Q), one can iterate over
all subsets and compute the region Rqet (P, Q) first, then take its closed convex hull. But this is a

formidable task if the alphabet is huge or infinite. But we know that the LLR log gg is a sufficient

statistic. Next we give bounds to the region R(P, Q) in terms of the statistics of log dg As usual,

there are two types of statements:
e Converse (outer bounds): any point in R(P, Q) must satisfy ...

e Achievability (inner bounds): the following point belong to R(P,Q)...

116



10.4 Converse bounds on R(P,Q)

Theorem 10.4 (Weak Converse). V(a, ) € R(P,Q),
d(a[B) < D(P[Q)
d(Ble) < D(Q[P)
where d(-||-) is the binary divergence.
Proof. Use data processing with Pz x. O
Lemma 10.1 (Deterministic tests). VE, Vy>0: P[E]-~vQ[FE] < P[log % > log fy]

Proof. (Discrete version)

P[E]-1Q[E] = ZEp(w) -yq(x) < ZE(p(w) =79(2)) L {p(2)>yq(z)}

= P[Iog% >logvy, X € E] —vQ[log% >logvy, X € E] < P[log% > logfy].

(General version) WLOG, suppose P, Q) <« p for some measure p (since we can always take
uw=P+Q). Then dP = p(z)dy, dQ = ¢(x)du. Then

P[E]-~Q[F] = fEd,u(p(x) —vq(z)) < _/Edu(p(:v) = 74(2)) Lip(z)>rq(2)}

= P[logg >logvy, X € E] —Q[log% >logy, X € E] < P[log% > logfy].

d@
G _ dp
; p_ di _dP
where the second line follows from 7 % 10
[So we see that the only difference between the discrete and the general case is that the counting
measure is replaced by some other measure p.] O

Note: In this case, we do not need P « @, since +oo is a reasonable and meaningful value for the
log likelihood ratio.

Lemma 10.2 (Randomized tests). P[Z =0]-~vQ[Z =0] < P|log % > log7].

Proof. Almost identical to the proof of the previous Lemma 10.1:
P[Z =0]-7Q[Z =0] = ) Pyx(0lz)(p(2) = va(x)) < 3 Pzix (0lz) (p(2) = 74(2)) 1 p(2)>rq(x))
dpP dpP
= P[log@ >logv, Z = 0] - Q[logﬁ >logw, Z = 0]
dP
SP[log@>logﬁy]. O
Theorem 10.5 (Strong Converse). V(a, ) € R(P,Q), Vv >0,
P
a—’yBSP[logj—Q >10g’y] (10.11)

B—%aé@[log%<log’y] (10.12)
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Proof. Apply Lemma 10.2 to (P,Q,~) and (Q, P,1/v). O

Note: Theorem 10.5 provides an outer bound for the region R(P, Q) in terms of half-spaces. To
see this, suppose one fixes v > 0 and looks at the line oo — y8 = ¢ and slowing increases ¢ from zero,
there is going to be a maximal c, say ¢*, at which point the line touches the lower boundary of the
region. Then (10.11) says that c* cannot exceed P[log 10 > logv]. Hence R must lie to the left
of the line. Similarly, (10.12) provides bounds for the upper boundary. Altogether Theorem 10.5
states that R(P, Q) is contained in the intersection of a collection of half-spaces indexed by 7.
Note: To apply the strong converse Theorem 10.5, we need to know the CDF of the LLR, whereas
to apply the weak converse Theorem 10.4 we need only to know the expectation of the LLR, i.e.,
divergence.

10.5 Achievability bounds on R(P,Q)

Since we know that the set R(P, Q) is convex, it is natural to try to find all of its supporting lines
(hyperplanes), as it is well known that closed convex set equals the intersection of the halfspaces
correposponding to all supporting hyperplanes. So thus, we are naturally lead to solving the problem

max{a—-tf: (a,B) e R(P,Q)}.

This can be done rather simply:

o —tp" = Juax (@~ 1) =max Y, (P(2) = tQ(2)) Pyzx (0lz) = Y [P(z) —tQ(2)["

ZIX geX reX

where the last equality follows from the fact that we are free to choose Py, x(0]z), and the best
choice is obvious:

Pyx(0lz) =1 {10g ggg > log t} .

Thus, we have shown that all supporting hyperplanes are parameterized by LLR-tests. This
completely recovers the region R(P, Q) except for the points corresponding to the faces (linear
pieces) of the region. To be precise, we state the following result.

Theorem 10.6 (Neyman-Pearson Lemma). “LRT is optimal”: For any «, B, is attained by the
following test:
1 log gg >T
Pzx(0lz) =X log 9t dQ =7 (10.13)

0 logdl a0 <T
where T € R and X € [0,1] are the unique solutions to « = P[log o> Tl AP[log 42 a0 =Tl

Proof of Theorem 10.6. Let t = exp(7). Given any test Py x, let g(x) = Pz x(0[z) € [0,1]. We want
to show that

:P[Z:O]:EP[g(X)]:P[jg {] + )\P[jg {] (10.14)
= B=Q[Z=0]=Eg[g(X)]*> [%n] )\Q[dQ ] (10.15)
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Using the simple fact that EQ[f(X)l{Qq}] > t_lEp[f(X)l{Q<t}] for any f >0 twice, we have
dQ ~ dQ ~

8= EQ[Q(X)l{%St}] +EQ[9(X)1{%>t}]

>

~ | —

EP[Q(X)l{%St}] +EQ[9(X)1{%>,5}]

dpP

B (Bl - 90O r 1+ AP[ G = 1)) + Balo(X) 1z ]

> Eo[(1- 90X ar 1]+ 3Q[ G, =] + Ealo(01pse ]

aQ

_Q[@m]mg}[ O

Remark 10.2. As a consequence of the Neyman-Pearson lemma, all the points on the boundary of
the region R(P,(Q) are attainable. Therefore

R(P7Q) = {(O‘aﬁ) :Ba Sﬁgl_ﬁl—a}'

Since a — B, is convex on [0, 1], hence continuous, the region R(P,Q) is a closed convex set.
Consequently, the infimum in the definition of 3, is in fact a minimum.
Furthermore, the lower half of the region R(P, Q) is the convex hull of the union of the following

two sets: ap
a—P[log ] TeRU{zo0}.
8= Q[log 10 > 7']

i)

and

dpP
{Q_P[longzT] TeRU{+o0}.

B Q[log dP 2 T]

Therefore it does not lose optimality to restrict our attention on tests of the form 1{log g—g >T} or
1{log % > T}

Remark 10.3. The test (10.13) is related to LRTE as follows:

Pllog 4 > ] Pllog 94£ > ]
1 1
o == afF-—--=---
' !
: t t
T T

1. Left figure: If a = P[logg—éD > 7] for some 7, then A = 0, and (10.13) becomes the LRT
Z = 1{

log dg <’T}

2. Right figure: If a # P[log % > 7] for any 7, then we have A € (0,1), and (10.13) is equivalent

to randomize over tests: Z =1 flog 22.<7) with probability A or 1 flog 42 <)} with probability A.
< %

2Note that it so happens that in Definition 10.3 the LRT is defined with an < instead of <.
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Corollary 10.1. V7 e R, there exists (a, ) € R(P,Q) s.t.

Q= [log%>7]

B < exp(—T)P[log % > 7'] <exp(-7)

Proof.
Q[logg—Q >7]= Y Q@ )1{SE”“°§ ¢}
<> P(x)e _Tl{ E ; }—e_TP[log%>T] O

10.6 Asymptotics

Now we have many samples from the underlying distribution

Hy: Xp,.... X, =p
HI:Xlu"'7 lldQ

We're interested in the asymptotics of the error probabilities mg; and 9. There are two main
types of tests, both which the convergence rate to zero error is exponential.

1. Stein Regime: What is the best exponential rate of convergence for mo; when | has to be

<e?
7T1|0 <e
7T0|1 -0
2. Chernoff Regime: What is the trade off between exponents of the convergence rates of my)
and mg;; when we want both errors to go to 07

7T1|0 - 0
mop = 0
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§ 11. HYPOTHESIS TESTING ASYMPTOTICS I

Setup:

Ho: X" ~Pxn  Hp: X" ~Qxn
test PZ|X” 3Xn - {071}

specification 1 —a =y B =
11.1 Stein’s regime

1—0[2771|0§€

B=mop —~ 0 at the rate g Ve

Note: interpretation of this specification, usually a “miss”(0|1) is much worse than a “false alarm”
(1]0).

Definition 11.1 (e-optimal exponent). V¢ is called an e-optimal exponent in Stein’s regime if
Ve =sup{E : Ing, ¥n > ng, 3Pz xn s.t. a>1-¢3< o b Y

1 1
< V. =liminf — log
noo - B (Pxn,Qxn)

where (3, (P, Q) = minPZ‘X,P(Z=O)2a Q(Z =0).

Exercise: Check the equivalence.

Definition 11.2 (Stein’s exponent).

V =1limV..

e—0

Theorem 11.1 (Stein’s lemma). Let Pxn = Py i.i.d. and Qxn» = Q% i.i.d. Then
V.= D(PIQ). Vee(0.1),

Consequently,
V=D(P|Q).

Example: If it is required that o> 1-1072, and 8 < 107%°, what’s the number of samples needed?
log 10740

L . s
Stein’s lemma provides a rule of thumb: n > DPIO) -
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Proof. Denote F = log %, and F), =log jgiz =y, log %(Xi) — iid sum.

Recall Neyman Pearson’s lemma on optimal tests (likelihood ratio test): Vr,
a=P(F>T1), B=Q(F>1)<e”

Also notice that by WLLN, under P, as n — oo,

L, 1&, dP(X) e Py
EF”‘n;bng(Xi) p[long]_D(PHQ). (11.1)

Alternatively, under (Q, we have
1P dr
—F,—Eg[log—]=-D(Q|P 11.2
+ 5 Bollog ] = -D(QIP) (11.2)
1. Show V. > D(P|Q) = D.
Pick 7 =n(D -4), for some small § >0. Then the optimal test achieves:

o= P(Fy>n(D-68)) > 1, by (1L.1)
6 < €_n(D_6)

then pick n large enough (depends on €, ) such that « > 1 ¢, we have the exponent £ =D -§
achievable, V. > E. Further let § - 0, we have that V. > D.

2. Show V. < D(P|Q) = D.

a) (weak converse) V(«, 3) € R(Pxn,Qxn), we have
h(a) + alog% < d(a]B) < D(Pxn|Qxn) (11.3)

where the first inequality is due to

« & 1 1
d(a||8) = alog = + a@log = = -h(a) + alog = + alog =
(o) 5 3 () 5 3

——
>0 and ~ 0 for small 3

and the second is due to the weak converse Theorem 10.4 proved in the last lecture (data
processing inequality for divergence).

V achievable exponent F < V¢, by definition, there exists a sequence of tests Py xn» such
that a,, > 1 - € and 3, < 27"F. Plugging it in (11.3) and using h < log 2, we have

D(PIQ) | log?
l1-¢ n(l-¢)

—_——
—0, as n—>oo

—log2+ (1-e)nE<nD(P|Q) = E <

Therefore
v PPl
1-¢

Notice that this is weaker than what we hoped to prove, and this weak converse result is
tight for € — 0, i.e., for Stein’s exponent we did have the desired result V' =lim._ oV >

D(P|Q).
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b) (strong converse) In proving the weak converse, we only made use of the expectation of
F, in (11.3), we need to make use of the entire distribution (CDF) in order to obtain
stronger results.

Recall the strong converse result which we showed in the last lecture:

V(a, B) e R(P,Q),Yy, a-~B<P(F>logy)

Here, suppose there exists a sequence of tests Py x, which achieve aj, 2 1-€ and 3, < 2k,

Then
1-e-~72"F <ay, — 4B, < Pxn[F, >log~].

Pick log~y =n(D +4), by (11.1) the RHS goes to 0, and we have
1—e—2mMP)gmE ¢ (1)
:>D+5—E2%10g(1—6+0(1))—>0
=E<Dasd—0
=>V. <D
O

Note: [Ergodic] Just like in last section of data compression. Ergodic assumptions on Px» and
@ xn~ allow one to show that

o1
Ve = lim ~D(Pxn[Qxn)
n—oo n

the counterpart of (11.3), which is the key for picking the appropriate 7, for ergodic sequence X" is
the Birkhoff-Khintchine convergence theorem.
Note: The theoretical importance of knowing the Stein’s exponents is that:

VEc X", Pxn[E]>1-¢ = Qxn[E]>2Vero(m)
Thus knowledge of Stein’s exponent V. allows one to prove exponential bounds on probabilities of
arbitrary sets, the technique is known as “change of measure”.
11.2 Chernoff regime
We are still considering i.i.d. sequence X", and binary hypothesis
Hy: X" ~ P} Hy: X"~ Q%

But our objective in this section is to have both types of error probability to vanish exponentially
fast simultaneously. We shall look at the following specification:

l-a=m—>0 at the rate 9-nEo
B=mon —~ 0 at the rate PR

Apparently, Fy (resp. Ej) can be made arbitrarily big at the price of making F; (resp. Ep)
arbitrarily small. So the problem boils down to the optimal tradeoff, i.e., what’s the achievable
region of (Ey, F1)? This problem is solved by [Hoeffding '65], [Blahut '74].
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D(P||Q)

D(Q\|IP) = E¢
D(QAQ) = Ex

space of dist.

characterize the boundary of the achievable region of (Ej. F)

The optimal tests give the explict error probability:
1 1
ap=P|=F,>1|, Bn=Q|—-F,>1
n n

and we are interested in the asymptotics when n — co, in which scenario we know (11.1) and (11.2)
occur.

Stein’s regime corresponds to the corner points. Indeed, Theorem 11.1 tells us that when fixing
ap =1 —¢€, namely Ey =0, picking 7= D(P|Q) -0 (6 - 0) gives the exponential convergence rate
of B, as E1 = D(P|Q). Similarly, exchanging the role of P and (), we can achieves the point
(Eo, E1) = (D(Q|P),0). More generally, to achieve the optimal tradeoff between the two corner
points, we need to introduce a powerful tool — Large Deviation Theory.

Note: Here is a roadmap of the upcoming 2 lectures:

1. basics of large deviation (1 x, %, tilted distribution Py)

2. information projection problem

Q:Egl[i)r(l]mD(QllP) =" (7)

3. use information projection to prove tight Chernoff bound

P [l S X, > 7] _ o () +o(n)
k=1

4. apply the above large deviation theorem to (Fp, E7) to get

(Eo(0) =¢p(0), E1(0)=1¢p(8)-0) characterize the achievable boundary.

11.3 Basics of Large deviation theory

Let X" be an i.i.d. sequence and X; ~ P. Large deviation focuses on the following inequality:

p [i x> m] _ g-nE(3)+o(n)
i=1

what is the rate function F(7v) = —lim,— e %logP [# > 'y]? (Chernoft’s ineq.)
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To motivate, let us recall the usual Chernoff bound: For iid X", for any A > 0,

P [in > nfy] = P [exp (AiXi) > exp(nx\w)]

Markov n
< exp(-nAy)E [exp (/\ > XZ):|
i=1
= exp{-nA\y+nlogE[exp(AX)]}.

Optimizing over A > 0 gives the non-asymptotic upper bound (concentration inequality) which holds
for any n:

P[iXi > n'y] < exp{ - ns}gg()\’y —logE [exp()\X)])}.

log MGF

Of course we still need to show the lower bound.
Let’s first introduce the two key quantities: log MGF (also known as the cumulant generating
function) ¥x (N\) and tilted distribution Py.

11.3.1 log MGF
Definition 11.3 (log MGF).
¥x(\) =log(E[exp(AX)]), AeR.
Per the usual convention, we will also denote ¥p(A) =px(A) if X ~ P.
Assumptions: In this section, we shall restrict to the distribution Px such that
1. MGF exists, i.e., VA€ R,9x () < o0,
2. X #const.
Example:
e Gaussian: X ~N(0,1) = ¢x(\) = 2.

2
e Example of R.V. such that 1x(\) does not exist: X = Z3 with Z ~ Gaussian. Then
by (A) = 00, VA] 0.

Theorem 11.2 (Properties of ¢x).
1. ©¥x s convex;
2. Yx is continuous;
3. Yx is infinitely differentiable and
W) = —EEEE( i;? - X OE[X N,
In particular, ¥x(0) = 0,9 (0) =E[X].
4. Ifa< X <b a.s., then a <Y’y <b;

125



5. Conversely, if
A=inf gy (N), B =suptk(\),
AeR AeR

then A< X <B a.s.;
6. Yx is strictly convex, and consequently, 1’y is strictly increasing.

7. Chernoff bound:
P(X >7) <exp(-A\y+¢¥x (), A>0.

Remark 11.1. The slope of log MGF encodes the range of X. Indeed, 4) and 5) of Theorem 11.2

together show that the smallest closed interval containing the support of Px equals (closure of) the
range of ¢. In other words, A and B coincide with the essential infimum and supremum (min and
max of RV in the probabilistic sense) of X respectively,

A= essinf X 2sup{a: X >a as.}

B = esssup X 2inf{b: X <b a.s.}

Proof. Note: 1-4 can be proved right now. 7 is the usual Chernoff bound. The proof of 5-6 relies
on Theorem 11.4, which can be skipped for now.

1. Fix 6 € (0,1). Recall Holder’s inequality:

1 1
EUVI<|Ulpl Vg forp,g21, 2+ = =1

where the L,-norm of RV is defined by |U], = (E|UP)?. Applying to E[e®1+022)X] with
p=1/0,q=1/0, we get

Efexp((\1/p + A2/a)X)] < | exp(M X /p) ] exp(A2X [q) |y = E[exp(\ X)’E[exp(A2X)7,
ie., e¥x (OM+0X2) ¢ ¥x (A1)0ox (A2)0

2. By our assumptions on X, domain of ¢x is R, and by the fact that convex function must be
continuous on the interior of its domain, we have that ¥ x is continuous on R.

3. Be careful when exchanging the order of differentiation and expectation.

Assume A > 0 (similar for A <0).
First, we show that E[|X e X|] exists. Since

Xl ceX 1 X

XX | < dODX] ¢ (ORDX L =(rDX
by assumption on X, both of the summands are absolutely integrable in X. Therefore by
dominated convergence theorem (DCT), E[|Xe ] exists and is continuous in .

Second, by the existence and continuity of E[|Xe*¥|], u — E[|Xe®¥|] is integrable on [0, \],
we can switch order of integration and differentiation as follows:

A - A
ez/zx()\) _ E[e)\X] _ E[l i A XeuXdu:I Fuglm 1+ A ]E[XEUX] du

= U (e = E[XeM]
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thus 1 (\) = e "X ME[ X e*X] exists and is continuous in A on R.

Furthermore, using similar application of DCT we can extend to A € C and show that
A = E[e*¥] is a holomorphic function. Thus it is infinitely differentiable.

4.
aSXszwg(()\):IEjéE(e—f;? € [a,b].
”(‘,:1““/“3( ()\)
/b
/7
E[X]

5. Suppose Px[X > B] > 0 (for contradiction), then Px[X > B+ 2¢] > 0 for some small € > 0.
But then P\[X < B+¢€] - 0 for A - oo (see Theorem 11.4.3 below). On the other hand, we
know from Theorem 11.4.2 that Ep, [X] =9’ (\) < B. This is not yet a contradiction, since
P, might still have some very small mass at a very negative value. To show that this cannot
happen, we first assume that B —€ > 0 (otherwise just replace X with X —2B). Next note that

B>Ep,[X]=Ep, [X1ixp-}] + Ep, [X1{p_ccx<Bra] + En [X1{xsB1e)]
> Ep, [X1xcp-e}] + Ep [X1{x5B1c}]
> —Ep, [|[X[1{x<p-a}] + (B +€) P\[X > B +¢] (11.4)
—_————

-1

therefore we will obtain a contradiction if we can show that Ep, [|X[1{x<p-] = 0 as A - oo.
To that end, notice that convexity of ¢x implies that ¢, ~ B. Thus, for all A > \g we have
Y (X) 2 B - §. Thus, we have for all A> Xg

Ux(V) 2hx(Ao) + (A= X)(B- ) = e+ A(B-3). (1L5)

for some constant c¢. Then,

Ep, [|X[1{X < B-¢€}] = E[| X[} VM 1{X < B-¢}] (11.6)
<E[|X[eMAMBED1{X < B-¢}] (11.7)
<E[|X|e*B--eAB-3)] (11.8)
—E[|X[]le?2¢ >0 A—oo (11.9)

where the first inequality is from (11.5) and the second from X < B —e. Thus, the first term
in (11.4) goes to 0 implying the desired contradiction.
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6. Suppose Yy is not strictly convex. Since we know that x is convex, then ¥ x must be
“flat” (affine) near some point, i.e., there exists a small neighborhood of some Ay such that
Px (Ao +u) =¥x(Ag) + ur for some r € R. Then ¢p, (u) = ur for all u in small neighborhood
of zero, or equivalently [Ep, [e“(X_T)] = 1 for u small. The following Lemma 11.1 implies
Py\[X =7] =1, but then P[X =r] = 1, contradicting the assumption X # const.

O
Lemma 11.1. E[e*®] =1 for all u € (-, €) then S = 0.

Proof. Expand in Taylor series around u = 0 to obtain E[S] =0, E[S?] = 0. Alternatively, we can
extend the argument we gave for differentiating ¥ x () to show that the function z ~ E[e**] is
holomorphic on the entire complex plane!. Thus by uniqueness, E[¢**] =1 for all w. O

Definition 11.4 (Rate function). The rate function 9% : R - Ru {+o00} is given by the Legendre-
Fenchel transform of the log MGF:

Vx(7) = SAuﬂlgM—wx(A) (11.10)

Note: The maximization (11.10) is a nice convex optimization problem since 1y is strictly convex,
so we are maximizing a strictly concave function. So we can find the maximum by taking the
derivative and finding the stationary point. In fact, 1% is the dual of 1x in the sense of convex
analysis.

tx (A) U (p)

A s ——
£ OC oC

—x(p)

o

Theorem 11.3 (Properties of % ).
1. Let A =essinf X and B =esssup X. Then

Ay = Yx (X)) for some X\ s.t. v =1 (), A<~v<B

P (y) = log prx=s ~v=A or B
+00, y<Aory>B

2. 1% s strictly convex and strictly positive except ¥y (E[X]) = 0.

3. % is decreasing when v € (A,E[X]), and increasing when ~ € [E[X], B)

"More precisely, if we only know that E[¢*®] is finite for |\ < 1 then the function z — E[¢**] is holomorphic in
the vertical strip {z : |Rez| < 1}.
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Proof. By Theorem 11.2.4, since A < X < B a.s., we have A <9’y < B. When v € (4, B), the strictly
concave function A — Ay —1x () has a single stationary point which achieves the unique maximum.
When ~ > B (resp. < A), A = Ay —1x(\) increases (resp. decreases) without bounds. When v = B,
since X < B a.s., we have

¥x (B) = sup AB - log(E[exp(AX)]) = ~log inf E[exp(A(X - B))]
AeR €

- log/\li_)riloE[exp()\(X - B))]=-log P(X = B),

by monotone convergence theorem.

By Theorem 11.2.6, since 1 x is strictly convex, the derivative of 1 x and 1% are inverse to each
other. Hence 9% is strictly convex. Since ¢x(0) =0, we have ¢% () > 0. Moreover, ¢ (E[X]) =0
follows from E[X ] = ¢ (0). O

11.3.2 Tilted distribution

As early as in Lecture 3, we have already introduced tilting in the proof of Donsker-Varadhan’s
variational characterization of divergence (Theorem 3.6). Let us formally define it now.

Definition 11.5 (Tilting). Given X ~ P, the tilted measure Py is defined by

e)\x

E[e)‘X]

In other words, if P has a pdf p, then the pdf of Py is given by py(z) = e’ ¥xMNp(z).

Py(dz) = P(dz) = M ¥xN p(dz) (11.11)

Note: The set of distributions {Py : A € R} parametrized by A is called a standard exponential
family, a very useful model in statistics. See [Bro86, p. 13].

Example:
e Gaussian: P =N (0,1) with den51ty p(z) = exp( 2/2). Then Py has density
xp(Az
eip‘gg\g/g) \/1_exp( ~2?[2) = exp( (x-\)? /2) Hence P\ = N (A, 1).

e Binary: P is uniform on {+1}. Then P\(1) = % which puts more (resp. less) mass on 1 if
A >0 (resp. <0). Moreover, P)\gél if A\ > o0 ord_qif A = —o0.

e Uniform: P is uniform on [0,1]. Then P, is also supported on [0, 1] with pdf p)(z) = )‘e:;;fi‘x).
Therefore as A increases, Py becomes increasingly concentrated near 1, and Py — J; as A — oo.
Similarly, Py = §p as A — —oo.

So we see that Py shifts the mean of P to the right (resp. left) when A >0 (resp. < 0). Indeed, this
is a general property of tilting.

Theorem 11.4 (Properties of Py).

1. Log MGF:
Ypy (u) = Px (A +u) —Px ()

2. Tilting trades mean for divergence:

Ep, [X] = ¢Xx(A) 2Ep[X] if A20. (11.12)
D(Py|P) = ¥k (¥x (V) = ¥k (Ep, [X]). (11.13)
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P(X>b)>0=>VYe>0,P\(X<b-€)>0as A— o
P(X<a)>0=>Ve>0,PA\(X2a+¢) >0 as A > —o0

Therefore if Xy ~ Py, then X)\g essinf X = A as A - —oco and XAg esssup X = B as A — oo.
Proof. 1. By definition. (DIY)

2. Ep, [X] = % =’ (), which is strictly increasing in A, with ¢ (0) = Ep[X].

D(PA|P) = Ep, log %53 = Ep, log 522050 = AEp, [X]-6x (A) = My (W)~ (V) = 05 (0 (W),
where the last equality follows from Theorem 11.3.1.

PA(X <b—¢€) =Ep[eM¥*N1[X <b-€]]
<Ep[ert-97¥xN1[X <b-€]]
< e MeAb-tx (V)

e—)\e

< -
- P[X >0]

—»0as A — o0
where the last inequality is due to the usual Chernoff bound (Theorem 11.2.7): P[X >b] <

exp(—=Ab+1¥x(N)).
O
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§ 12. INFORMATION PROJECTION AND LARGE DEVIATION

12.1 Large-deviation exponents

Large deviations problems make statements about the tail probabilities of a sequence of distri-
butions. We're interested in the speed of decay for probabilities such as P [% Yoy X 2 'y] for iid
X,

In the last lecture we used Chernoff bound to obtain an upper bound on the exponent via the
log-MGF and tilting. Next we use a different method to give a formula for the exponent as a convex
optimization problem involving the KL divergence (information projection). Later in Section 12.3
we shall revisit the Chernoff bound after we have computed the value of the information projection.

Theorem 12.1. Let X""“*P. Then for any v e R,

1 1
lim —1lo = inf D(Q|P 12.1
n—oo n, & P [% ZZ:l Xk > "y] QEQ[X]>y ( H ) ( )
1 1
lim —1lo = inf D(Q|P 12.2
Jim 108 o= D(QP) (12:2)

Proof. We first prove (12.1). Set P[E,] =P [% Yoy Xk > fy].
Lower Bound on P[E,]: Fix a @ such that Eg[X ] >~. Let X" be iid. Then by WLLN,

n

QL] Q| 3 Xi>m] -1-000),
k=1

Now the data processing inequality gives

d(Q[EW]|P[En]) < D(Qxn[Pxn) = nD(Q|P)

And a lower bound for the binary divergence is

AQUEIPIE) 2 ~h(@QLE)) + QLE]log 5
Combining the two bounds on d(Q[E,]|P[E.]) gives
-nD(Q|P) -log2
P[E,] > exp ( QB ) (12.3)

Optimizing over @) to give the best bound:

1
limsup — lo < inf  D(Q|P).
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Upper Bound on P[E,]: The key observation is that given any X and any event E, Px(E) >0
can be expressed via the divergence between the conditional and unconditional distribution as:
log ﬁ(bﬂ) = D(Px|xeg| Px). Define Pxn = Pxn|y x,5ny, under which ¥ X; >n~y holds a.s. Then

= D(Pxn|Pxn) > inf D(Q x| Pxn 12.4
PIE.] (Pxn | Px )_an:IEQlPZXi]mw (Qxn||Pxn) (12.4)

log

We know show that the last problem “single-letterizes”, i.e. need to be solved only for n = 1.
Consider the following two steps:

D(Qxn|Pxe) 2 Y. D(Qx, [P) (12.5)
j=1
>nD(QIP), Q= % i (12.6)

where the first step follows from Corollary 2.1 after noticing that Px» = P", and the second step is
by convexity of divergence Theorem 4.1. From this argument we conclude that

inf D(Qxn|Pxn)=n- _inf  D(Q|P 12.7
QxnalE Ky D ORI 20 i, PECLE) (120
inf D(Qxn|Px»)=n- _inf  D(Q|P 12.8
0 oy D@ [ Pxn) = inf D(QIP) (12.8)

In particular, (12.4) and (12.7) imply the required lower bound in (12.1).
Next we prove (12.2). First, notice that the lower bound argument (12.4) applies equally well,
so that for each n we have

1 1
1o > inf  D(Q|P).
n gP[%z’glekzv] QEq[X]2y @IP)

To get a matching upper bound we consider two cases:

e Case I: P[X >~]=0. If P[X >+v] =0, then both sides of (12.2) are +oco. If P[X =] >0,
then P[Y Xy > ny] = P[X1 = ... = X, =] = P[X = v]". For the right-hand side, since
D(Q|P) <0 = Q <« P = Q(X <#) =1, the only possibility for Eg[X] > ~ is that
Q(X =7)=1,ie, Q=0 Then infg,[x) D(Q||P) log prx=y-

e Case II: P[X >~]>0. Since P[Y, X}, >~v] >P[X X} >~] from (12.1) we know that

1 1
lim sup — log < inf  D(Q|P).
n—oo N P [% ZZ=1 Xk > ’y] QI]EQ[X]>'Y ( H )

We next show that in this case

inf  D(Q|P)= inf D(Q|P 12.9
Jeith D@IP)= it D(QIP) (129)
Indeed, let P = Px|x>, which is well defined since P[X > v] > 0. For any @ such that
Eq[X] 27, set Q = €Q + ¢P Satisﬁes E5[X]>~. Then by convexity, D(Q[P) <eD(Q|P) +

eD(P||P) =eD(Q|P) + elog Py Sending € - 0, we conclude the proof of (12.9).

[X >y
OJ
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12.2 Information Projection

The results of Theorem 12.1 motivate us to study the following general information projection
problem: Let £ be a convex set of distributions on some abstract space €2, then for the distribution
P on ), we want

inf D(Q|P)

Denote the minimizing distribution @ by Q*. The next result shows that intuitively the “line”
between P and optimal @ is “orthogonal” to &£.

‘ Q*
P
Distributions on X

Theorem 12.2. Suppose 3Q* € £ such that D(Q*|P) = mingeg D(Q|P), then VQ € &

D(Q|P) > D(Q|Q") + D(Q™|P)

Proof. If D(Q||P) = oo, then we’re done, so we can assume that D(QHP_) < oo, which also implies
that D(Q*|P) < co. For 0 € [0,1], form the convex combination Q) = 0Q* + 0Q € £. Since Q* is
the minimizer of D(Q|P), then®

0< % D(QV|P) = D(QIP) - D(QIQ") - D(Q| P)
6=0

and we’re done. ]

Remark: If we view the picture above in the Euclidean setting, the “triangle” formed by P,
Q* and Q (for Q*,Q in a convex set, P outside the set) is always obtuse, and is a right triangle
only when the convex set has a “flat face”. In this sense, the divergence is similar to the squared
Fuclidean distance, and the above theorem is sometimes known as a “Pythagorean” theorem.

The interesting set of Q’s that we will particularize to is the “half-space” of distributions
E={Q : Eg[X]>~}, where X : Q2 - R is some fixed function. This is justified by relation (to be
established) with the large deviation exponent in Theorem 12.1. First, we solve this I-projection
problem explicitly.

Theorem 12.3. Given distribution P on Q and X : Q2 - R let

A =inf¢’y = essinf X =sup{a: X >a P-a.s.} (12.10)
B =sup’y = esssup X =inf{b: X <b P-a.s.} (12.11)

!This can be found by taking the derivative and matching terms (Exercise). Be careful with exchanging derivatives
and integrals. Need to use dominated convergence theorem similar as in the “local behavior of divergence” in
Proposition 4.1.

133



1. The information projection problem over £ ={Q : Eg[X] >~} has solution

0 v <Ep[X]
. () Ep[X]<y<B
0.0, P@IP) = log prig; 7= B (12.12)
+00 v>B
=¢" (1) H{y 2 Ep[X]} (12.13)

2. Whenever the minimum is finite, minimizing distribution is unique and equal to tilting of P
along X, namelyz

dPy = exp{\X —=¢(N\)}-dP (12.14)
3. For all v € [Ep[X], B) we have

min D(@QIP) = _

inf D P)= min D P).
Eq[X]>vy [X]>y (@IF) Eq[X]=v (@IF)

Q
Note: An alternative expression is

QE, =S M~ Ux(Y).
Proof. First case: Take ) = P.

Fourth case: If Eg[X] > B, then Q[X > B +¢€] > 0 for some € >0, but P[X > B +¢€] = 0, since
P(X < B) =1, by Theorem 11.2.5. Hence Q « P = D(Q|P) = co.

Third case: If P(X = B) =0, then X < B a.s. under P, and Q <« P for any @ s.t. Eg[X] > B.
Then the minimum is co. Now assume P(X = B) > 0. Since D(Q|P) < 00 — Q@ < P —
Q(X < B) = 1. Therefore the only possibility for EQ[X] > B is that Q(X = B) =1, i.e., Q = 0B.
Then D(Q|P) =log ﬁ.

Second case: Fix Ep[X] <~ < B, and find the unique X such that ¢ (\) =y = Ep, [X] where
dPy = exp(AX —1x(\))dP. This corresponds to tilting P far enough to the right to increase its
mean from EpX to v, in particular X > 0. Moreover, ¢% (7) = Ay —¢x (). Take any @ such that
Eg[X] >, then

D(Q|P) =Eq [log Zgjﬁi] (12.15)
= D(QIP:) + Eqllog & ] (12.16)
- D(QIP) +EQIAX - fx (V)] (12.17)
> D(QPy) + Ay =x(N) (12.18)
=D(Q|Py) + ¥k (7) (12.19)
> x (7), (12.20)

where the last inequality holds with equality if and only if Q = Py. In addition, this shows the
minimizer is unique, proving the second claim. Note that even in the corner case of v = B (assuming
P(X = B) > 0) the minimizer is a point mass () = dp, which is also a tilted measure (Pw ), since
P, - dp as A > oo, c¢f. Theorem 11.4.3.

2Note that unlike previous Lecture, here P and Py are measures on an abstract space 2, not on a real line.
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Another version of the solution, given by expression (12.13), follows from Theorem 11.3.

For the third claim, notice that there is nothing to prove for v < Ep[ X ], while for v > Ep[ X ] we
have just shown

V()= min

D(Q|P
Jmin  D(QIP)

while from the next corollary we have

inf D P) = inf % (7).
gt D(QIP) = inf 3 ()

The final step is to notice that 1% is increasing and continuous by Theorem 11.3, and hence the
right-hand side infimum equalis 9% (7). The case of mingp o[X]= is handled similarly. O

Corollary 12.1. VQ with Eq[X] € (A, B), there exists a unique A € R such that the tilted distribu-
tion Py satisfies

Ep [X]=Eq[X]
D(P5|P) < D(Q|P)

and furthermore the gap in the last inequality equals D(Q|Py) = D(Q|P) — D(P\|P).

Proof. Same as in the proof of Theorem 12.3, find the unique A s.t. Ep, [X] = ¥ (\) = Eg[X].
Then D(Py\||P) = ¥\ (Eg[X]) = AEg[X] —¥x()). Repeat the steps (12.15)-(12.20) obtaining
D(Q[P) = D(Q[Pr) + D(Pr| P). O

Remark: For any @), this allows us to find a tilted measure P, that has the same mean yet
smaller (or equal) divergence.

12.3 Interpretation of Information Projection

The following picture describes many properties of information projections.

/ One Parameter Family

Space of distributions on R

e Each set {Q:Eqg[X] =~} corresponds to a slice. As v varies from A to B, the curves fill the
entire space minus the corner regions.
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e Wheny<Aorvy>DB, Q<K P.

e As v varies, the Py’s trace out a curve via ¥*(vy) = D(Py|P). This set of distributions is
called a one parameter family, or exponential family.

Key Point: The one parameter family curve intersects each v-slice £ = {Q : Eq[X] = ~}
“orthogonally” at the minimizing Q* € £, and the distance from P to Q* is given by *()). To see
this, note that applying Theorem 12.2 to the convex set £ gives us D(Q|P) > D(Q|Q*) + D(Q*|P).
Now thanks to Corollary 12.1, we in fact have equality D(Q|P) = D(Q[Q")+D(Q|P) and Q* = Py
for some tilted measure.

Chernoff bound revisited: The proof of upper bound in Theorem 12.1 is via the definition of
information projection. Theorem 12.3 shows that the value of the information projection coincides
with the rate function (conjugate of log-MGF'). This shows the optimality of the Chernoff bound
(recall Theorem 11.2.7). Indeed, we directly verify this for completeness: For all A > 0,

P [ > X > nfy:| <eMNEp[eM])" = e HMYx ()
k=1

where we used iid X}’s in the expectation. Optimizing over A > 0 to get the best upper bound:

sup Ay —¥x (A) =sup Ay = ¥x (A) = X (7)
A>0 AeR

where the first equality follows since v > Ep[X ], therefore A — Ay — 1 x (\) is increasing when A < 0.
Remark: The Chernoff bound is tight precisely because, from information projection, the lower
bound showed that the best change of measure is to change to the tilted measure Pj.

12.4 Generalization: Sanov’s theorem

Theorem 12.4 (Sanov’s Theorem). Consider observing n samples Xi,...,X,, ~ iid P. Let P be
the empirical distribution, i.e., P = % Z?zl dx;- Let € be a convex set of distributions. Then under
reqularity conditions on € and P we have

P[P ¢ £] = e " mineee D(Q|P)+o(n)

Note: Examples of regularity conditions: space X is finite and £ is closed with non-empty interior;
space X is Polish and the set £ is weakly closed and has non-empty interior.

Proof sketch. The lower bound is proved as in Theorem 12.1: Just take an arbitrary @ € £ and
apply a suitable version of WLLN to conclude Q"[P € £] = 1+ o(1).

For the upper bound we can again adapt the proof from Theorem 12.1. Alternatively, we can
write the convex set £ as an intersection of half spaces. Then we’ve already solved the problem
for half-spaces {Q : Eg[X] > v}. The general case follows by the following consequence of
Theorem 12.2: if @~ is projection of P onto £ and Q** is projection of @* on &, then Q** is also
projection of P onto & n &s:

D(Q"|P) = mingee, D(Q[P)

D(O**|P) = in D(Q|P) <=
(@1P) = min, D(@IP) {D(Q**HQ*)=minQ652D(QQ*)

(Repeated projection property)
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Indeed, by first tilting from P to Q* we find

P[Pe&n&] <2 P @IPIQ P e n&] (12.21)

<2 P@QIP) [P e &] (12.22)

and from here proceed by tilting from Q* to @** and note that D(Q*|P)+D(Q**|Q*) = D(Q**| P).
]

Remark: Sanov’s theorem tells us the probability that, after observing n iid samples of a

distribution, our empirical distribution is still far away from the true distribution, is exponentially
small.
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§ 13. HYPOTHESIS TESTING ASYMPTOTICS 11

Setup:
H():Xn"'PXn HlanNQXn (lld)
test Pyxn: X" - {0,1}
specification: 1 -a = 7r§|76) < 9 ko B = Wéﬁ) <ok
Bounds:

e achievability (Neyman Pearson)

a=1-m=Pxn[Fn>T], B =mop = Qxn[Fn > 7]

e converse (strong)
V (o, B) achievable, a — v < Pxn[F > log~]

where

F=1lo
& 40 xn

(X™),

13.1 (Ey, Ey)-Tradeoff

Goal:
l-a<2 o g<combr

Our goal in the Chernoff regime is to find the best tradeoff, which we formally define as follows
(compare to Stein’s exponent in Lecture 11)

E(Eo) = sup{E1 : 3ng, Yn 2 ng, APz xn s.t. a>1- g ko g < ommEr

el 1
= liminf — log
neee n B gonmo (P, QM)

Define
agQm
dpPm
Log MGF of T under P (again assumed to be finite and also T # const since P # Q):
¥p(\) =logEp[e]
~log Y P(2) Q(x)* = log [ (4P)'(dQ)*

Y5(8) = sup A — ¥p(N)
AeR

d d o
T =log d—g(X), T, = log d—g(xk), thus log S (X™) = 3" T}
k=1

138



Note that since ¥p(0) = ¥»p(1) = 0 from convexity p(A) is finite on 0 < A < 1. Furthermore,
assuming P «< @ and @ < P we also have that A » ¥ p(A) continuous everywhere on [0,1] (
on (0,1) it follows from convexity, but for boundary points we need more detailed arguments).
Consequently, all the results in this section apply under just the conditions of P «< ) and @ «< P.
However, since in previous lecture we were assuming that log-MGF exists for all A, we will only
present proofs under this extra assumption.

Theorem 13.1. Let P < Q, Q < P, then

Bo(0) =vp(0),  Ei(0) = wp(0) -0 (13.1)

parametrized by —D(P|Q) < 0 < D(Q|P) characterizes the best exponents on the boundary of
achievable (Ey, E7).

Note: The geometric interpretation of the above theorem is shown in the following picture, which rely
on the properties of ¥p(X) and 5 (8). Note that ¢p(0) = ¢p(1) = 0. Moreover, by Theorem 11.3
(Properties of 1% ), 6 = Ey(0) is increasing, 0 — E;(6) is decreasing.

Yp(A)

Eo=vp(0)

Ey =¢p(0) —0

slope 6 >~!

Remark 13.1 (Rényi divergence). Rényi defined a family of divergence indexed by A # 1

A
DA(PIQ) =+ logTEq [(ﬁ) ]z 0.

which generalizes Kullback-Leibler divergence since Dy (P|Q) 22, D(P|Q). Note that ¥p(A) =
(A=1)Dx(Q|P) =-AD1-A(P|Q). This provides another explanation that ¢ p is negative between 0

and 1, and the slope at endpoints is: ¢5(0) = -D(P|Q) and ¢'5(1) = D(Q|P).

Corollary 13.1 (Bayesian criterion). Fiz a prior (my,m1) such that mg+m =1 and 0 < mp < 1.
Denote the optimal Bayesian (average) error probability by

* a :
P7(n)= inf momo+mimop

with exponent

Eélimllog ! .
w8 P ()

Then
B = maxmin(Eo(6), E1(6)) = 45(0) =~ inf v (1),

regardless of the prior, and ¥};(0) = C(P,Q) is called the Chernoff exponent.
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Proof of Theorem 13.1. The idea is to apply the large deviation theory to iid sum };'_; T}. Specifi-
cally, let’s rewrite the bounds in terms of T

e Achievability (Neyman Pearson)
let 7 =—-n#, W%T(L))zP[ZTkzne] Wéﬁ)zQ[ZTk<n9:|
k=1 k=1

e Converse (strong)

n
let Y= 2_n9, 7T1|0 + 2_n97T0|1 > P I:Z Tk 2> n@]
k=1

Achievability: Using Neyman Pearson test, for fixed 7 = —n#, apply the large deviation
theorem:

l-a= ﬂf}} =P LEI Ty > ne] =2 WpO)ro(n)  for 9> EpT = ~D(P|Q)

8= wéﬁ) =Q [Z Ty, < n@] = 97O for 9 <EQT = D(Q|P)
k=1
Notice that by the definition of T" we have
U = logEQ[e" (/)] < log Bp [+ D8P ] < (1 +1)
= 15(0) = SAuﬂgw—zﬂp(M 1) =¢p(0) -0
thus (Eo, Eq) in (13.1) is achievable.
Converse: We want to show that any achievable (FEy, E1) pair must be below the curve

(Eo(6),E1(0)) in the above Neyman-Pearson test with parameter 6. Apply the strong converse
bound we have:

2—nE0 n 2—n02—nE1 > 2—nw;(0)+o(n)

=min(Ey, E1 +6) <¢p(0), ¥n,0,-D(P|Q) <0< D(Q|P)
= either Fy <¢p(0) or By <¢p(0) -0

13.2 Equivalent forms of Theorem 13.1

Alternatively, the optimal (Ey, F1)-tradeoff can be stated in the following equivalent forms:

Theorem 13.2. 1. The optimal exponents are given (parametrically) in terms of X € [0,1] as
Ey=D(P\|P),  Ei1=D(R[Q) (13.2)

where the distribution Py is tilting of P along T, cf. (12.14), which moves from Py = P to
Py =Q as X\ ranges from 0 to 1:

dPy = (dP)"™(dQ)* exp{-¥p(\)}
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2. Yet another characterization of the boundary is

Ei(Ey)=,, min  D(@1Q).  0<EsD(@IP) (13.3)

Proof. The first part is verified trivially. Indeed, if we fix A and let (\) £ Ep, [T'], then from (11.13)
we have

D(P\|P) =9¢p(0),
whereas

D(PQ) = Er, loz 531 - B, oz 52 701 = DRAIP) ~En, [T] = i (6) =6.

Also from (11.12) we know that as A ranges in [0, 1] the mean 6 = Ep, [T'] ranges from —D(P|Q) to
D(Q|P).

To prove the second claim (13.3), the key observation is the following: Since @ is itself a tilting
of P along T' (with X = 1), the following two families of distributions

dp)\ = exp{)\T - ¢P(>\)} -dP (13.4)
dQx = exp{\'T —¢pg(\")} - dQ (13.5)

are in fact the same family with Qy = Py41.
Now, suppose that @* achieves the minimum in (13.3) and that Q" # @, Q* # P (these cases
should be verified separately). Note that we have not shown that this minimum is achieved, but it

will be clear that our argument can be extended to the case of when @), is a sequence achieving the
infimum. Then, on one hand, obviously

D|@)= ~—min  D(Q'|Q)<D(P|Q)

Q":D(Q'||P)<Ey
On the other hand, since Ey < D(Q||P) we also have
D(Q"[P) < D(Q[P).
Therefore,

dQ* dQ
&74P dQ*

Eq:[T] =Eq-[lo 1=D(Q7[P)-D(Q"|Q) € [-D(P|Q), D(Q[ P)]. (13.6)

Next, we have from Corollary 12.1 that there exists a unique Py with the following three propertieszi

Ep, [T] =Eq-[T] (13.7)
D(P\|P) < D(Q"|P) (13.8)
D(PA\Q) < D(QY|Q) (13.9)

Thus, we immediately conclude that minimization in (13.3) can be restricted to Q* belonging to the
family of tilted distributions { Py, A € R}. Furthermore, from (13.6) we also conclude that A € [0, 1].
Hence, characterization of Ef (Ep) given by (13.2) coincides with the one given by (13.3). O

!Small subtlety: In Corollary 12.1 we ask Eo+[T] € (A, B). But A, B — the essential range of T' — depend on the
distribution under which the essential range is computed, cf. (12.10). Fortunately, we have @ < P and P < @, so
essential range is the same under both P and Q. And furthermore (13.6) implies that Eq«[T] € (A, B).
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Note: Geometric interpretation of (13.3) is as follows: As X increases from 0 to 1, or equivalently,
6 increases from —D(P|Q) to D(Q|P), the optimal distribution traverses down the curve. This
curve is in essense a geodesic connecting P to ) and exponents Fy,F; measure distances to P and
(. It may initially sound strange that the sum of distances to endpoints actually varies along the
geodesic, but it is a natural phenomenon: just consider the unit circle with metric induced by the
ambient Euclidean metric. Than if p and ¢ are two antipodal points, the distance from intermediate
point to endpoints do not sum up to d(p,q) = 2.

{Q: DQ|P) < Eok]
D(P|Q)

D@ Q) -

D(Q'|P) DQIP)

Non-linearity of the boundary corresponds V distribution @' in the tilted family,
to the scenario when the triangle inequality it minimizes Ey, E; simultaneously.
is not 7=" d a unique optimal path from P to )

space of distrition on X

4

13.3* Sequential Hypothesis Testing

Review: Filtrations, stopping times

e A sequence of nested o-algebras Fyc Fj c Fo--- ¢ Fpe-- ¢ F is called a filtration of
F.

A random variable 7 is called a stopping time of a filtration F, if a) 7 is valued in
Z. and b) for every n > 0 the event {7 <n} e F,.

e The o-algebra F, consists of all events E such that En{r <n} e F, for all n > 0.

e When F, =0{Xj,...,X,} the interpretation is that 7 is a time that can be deter-
mined by causally observing the sequence X;, and random variables measurable
with respect to F, are precisely those whose value can be determined on the basis
of knowing (X1,...,X;).

e Let M, be a martingale adapted to F,, i.e. M, is F,-measurable and E[M,|F\] =
M yin(n,k)- Then M, = M in(n,r) 1s also a martingale. If collection {M,} is uniformly
integrable then

E[MT] = E[M(J] :

e For more details, see [C11, Chapter V].
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Different realizations of X}, are informative to different levels, the total “information” we receive
follows a random process. Therefore, instead of fixing the sample size n, we can make n a stopping
time 7, which gives a “better” (Ey, F1) tradeoff. Solution is the concept of sequential test:

e Informally: Sequential test Z at each step declares either “Hy”, “H;” or “give me one more
sample”.

e Rigorous definition is as follows: A sequential hypothesis test is a stopping time 7 of the
filtration F, = 0{X1,...,X,,} and a random variable Z € {0,1} measurable with respect to
Fr.

e Each sequential test has the following performance metrics:

a=P[Z =0], B=Q[Z=0] (13.10)
lo = Ep[7], li = Eg[7] (13.11)

The easiest way to see why sequential tests may be dramatically superior to fixed-sample size
tests is the following example: Consider P = %50 + %51 and Q = %60 + %6_1. Since P [ @, we also
have P" | Q™. Consequently, no finite-sample-size test can achieve zero error rates under both
hypotheses. However, an obvious sequential test (wait for the first appearance of +1) achieves zero
error probability with finite average number of samples (2) under both hypotheses. This advantage
is also seem very clearly in achievable error exponents.

D(P||Q)

D(Q||P)
Theorem 13.3. Assume bounded LLR:2

P(x)
Q(x)

where cy is some positive constant. If the error probabilities satisfy:

‘log ’Sco,Vac
—loE -1 E
7T1|0S2 0 0, 7T0‘1§2 1=

for large ly, 11, then the following inequality for the exponents holds

EoEr < D(P|Q)D(Q|P).

2This assumption is satisfied for discrete distributions on finite spaces.
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with optimal boundary achieved by the sequential probability ratio test SPRT(A, B) (A, B are large

positive numbers) defined as follows:

T=inf{n:S, > B or S, <-A}

L, [0 iS>B
1L ifS, <-4

where . POXL)
Sp =) log k
1;1 Q(Xk)

is the log likelihood function of the first k observations.

Note: (Intuition on SPRT) Under the usual hypothesis testing setup, we collect n samples, evaluate
the LLR S,,, and compare it to the threshold to give the optimal test. Under the sequential setup
with iid data, {S, : n > 1} is a random walk, which has positive (resp. negative) drift D(P|Q)
(resp. —D(Q|P)) under the null (resp. alternative)! SPRT test simply declare P if the random
walk crosses the upper boundary B, or () if the random walk crosses the upper boundary —A.

Proof. As preparation we show two useful identities:

e For any stopping time with Ep[7] < oo we have
Ep[S:]=Ep[7]D(P|Q)

and similarly, if Eg[7] < co then

Eq[S-] = -EQ[7]D(Q[P).

To prove these, notice that

M, =S, -nD(P|Q)

is clearly a martingale w.r.t. F,. Consequently,

is also a martingale. Thus .
E[M,] =E[My] =0,

or, equivalently,

IE[Srnin(ﬂ',n)] = E[min(Tv TL)]D(P”Q) .

(13.12)

(13.13)

This holds for every n > 0. From boundedness assumption we have |S,| < nc and thus
|Smin(n,7)| < 7, implying that collection {Syin(n,r),7 > 0} is uniformly integrable. Thus, we
can take n — oo in (13.13) and interchange expectation and limit safely to conclude (13.12).

Let 7 be a stopping time. The Radon-Nikodym derivative of P w.r.t. Q on o-algebra F; is

given by
dP|r, _

dQ|z,

Indeed, what we need to verify is that for every event E € F, we have

exp{S-}.

Ep[1p] = Eq[exp{S-}1E] (13.14)
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To that end, consider a decomposition

1g = Z 1Eﬂ{'r:n} .

n>0

By monotone convergence theorem applied to (13.14) it is sufficient to verify that for every n

EP[lEﬁ{T=n}:| =Eq [eXp{ST}lEﬁ{'r:n}] : (13.15)

This, however, follows from the fact that En {r =n} ¢ F, and jg"; n = exp{S,} by the very

definition of .5,,.

We now proceed to the proof. For achievability we apply (13.14) to infer
7Tl|0 = P[ST < _A]
- Eqlexp{$,}1{S, <-A}]
< e 4

Next, we denot 79 = inf{n : S,, > B} and observe that 7 < 7y, whereas expectation of 7y we estimate
from (13.12):
EP[T] < EP[T()] = EP[ST()] <B+c,

where in the last step we used the boundedness assumption to infer
S’T'() < B+

Thus

B+Co B
lo =Ep[7] < Ep[n N
0=Ep[T] <Ep[719] < D(P|Q) D(P|Q)

Similarly we can show o) < e Bandl < W for large A. Take B = gD(P|Q),A=11D(Q|P),
this shows the achievability.

for large B

S/ S —
under P, S,, — nD(P]|Q) is a martingale

Converse: Assume (Ey, F) achievable for large ly,l; and apply data processing inequality of
divergence:

d(P(Z=1)[Q(Z =1)) < D(P|Q)| -,
=Ep[S,] = Ep[r]D(P|Q) from (13.12)
=1y D(P|Q)

notice that for lgEy and [;E; large, we have d(P(Z = 1)|Q(Z = 1)) ~ [ E;, therefore [1E; §
loD(P| Q). Similarly we can show that loEy $ 11 D(Q|P), finally we have

EoE; < D(P|Q)D(Q|P), as I, l1 — oo
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Part 1V

Channel coding
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§ 14. CHANNEL CODING

Objects of study so far:
1. Px - Single distribution, Compression
2. Px vs Qx - Comparing two distributions, Hypothesis testing

3. Now: Py|x : X =) (called a random transformation) - A collection of distributions

14.1 Channel Coding

Definition 14.1. An M-code for Py|x is an encoder/decoder pair (f,g) of (randomized) functionsi
e encoder f:[M]—> X
e decoder g:Y — [M]u{e}
Notation: [M]={1,...,M}.

In most cases f and g are deterministic functions, in which case we think of them (equivalently)
in terms of codewords, codebooks, and decoding regions

o Vie[M]:c¢; = f(i) are codewords, the collection C = {¢q,...,cp} is called a codebook.

o Vie[M],D; =g 1({i}) is the decoding region for i.

Dl/

° CM
.

—— Dy

Figure 14.1: When X =)/, the decoding regions can be pictured as a partition of the space, each
containing one codeword.

Note: The underlying probability space for channel coding problems will always be

Py x

w o x Oy 9w

'For randomized encoder/decoders, we identify f and g as probability transition kernels Pxw and PW\Y-
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When the source alphabet is [M], the joint distribution is given by:

. 1 .
(general) Py cyir(m,a,b,7i0) =~ Py (alm) Pyx (blo) Py ()

1
(deterministic f,g) Py, vy, (M, €, by, 1) = MPY|X(b|Cm)1{b € Dy}

Throughout the notes, these quantities will be called:
e W - Original message
e X - (Induced) Channel input
e Y - Channel output

e W - Decoded message

14.1.1 Performance Metrics
Three ways to judge the quality of a code in terms of error probability:

1. P.=P[W # W] - Average error probability.

2. Pemax = MaXye[ /] P[W # m|W =m] - Maximum error probability.

3. In the special case when M = 2, think of W = S* ¢ IF’Q“ as a length k bit string. Then the
bit error rate is P, = ¢ Zé?:l P[S; # S;], which means the average fraction of errors in a k-bit
block. It is also convenient to introduce in this case the Hamming distance

dg(S*, 8%y 2 #{i:S; # 5;}.
Then, the bit-error rate becomes the normalized expected Hamming distance:
1 ~
Py =1 Bld(5",8")].

To distinguish the bit error rate P, from the previously defined P, and P, max, we will also
call the latter the average (resp. max) block error rate.

The most typical metric is average probability of error, but the others will be used occasionally
in the course as well. By definition, P, < P, max. Therefore maximum error probability is a more
stringent criterion which offers uniform protection for all codewords.

14.1.2 Fundamental Limit of Pyx

Definition 14.2. A code (f,g) is an (M, €)-code for Pyx if f:[M] > X, g: Y - [M]u{e}, and
P, <e. Similarly, an (M, €)max-code must satisfy P max < €.

Then the fundamental limits of channel codes are defined as

M*(e) = max{M : 3(M,e) - code}
Mli;ax(ﬁ) = maX{M : 3(M76)max - COdC}

Remark: log, M™ gives the maximum number of bits that we can pump through a channel Py x
while still having the error probability (in the appropriate sense) at most e.
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Example: The random transformation BSC(n,d) (binary symmetric channel) is defined as

X ={0,1"
y={0,1}"

where the input X" is contaminated by additive noise Z" 1L X™ and the channel outputs
Y'=X"eZ"

where Z"i'i&d'Bern(é ). Pictorially, the BSC(n,d) channel takes a binary sequence length n and flips
the bits independently with probability §:

Loltfofofrfrfofofut]r]

Ll fofufofrjofofofr]

Question: When 6 = .11, n = 1000, what is the max number of bits you can send with P, < 10737
Ideas:

0. Can one send 1000 bits with P. < 1073? No and apparently the probability that at least one
bit is flipped is P. =1 - (1 -9)" ~ 1. This implies that uncoded transmission does not meet
our objective and coding is necessary — tradeoff: reduce number of bits to send, increase
probability of success.

1. Take each bit and repeat it [ times (I-repetition code).

ofor o]
\ I
Ny ~

I -
| \ ~ - - _
f AN ~ ~ - ~

| S ~ ~ - <

-

- -

~ - -

0000000 )J0O0O0OOOOO]} 1111111 0000000|

 E—
l

With majority decoding, the probability of error of this scheme is P, » kP[Binom(l,¢) > /2]
and kl <n = 1000, which for P, <1073 gives [ = 21, k = 47 bits.

2. Reed-Muller Codes (1,7). Interpret a message ao,...,ar—1 € F5 as the polynomial (in this
case, a degree-1 and (r — 1)-variate polynomial) Zrz_ll a;T; + ag, then codewords are formed by
evaluating the polynomial at all possible 2"~ ! € }Fg‘l. This code, which maps r bits to 2!
bits, has minimum distance 2”72, For r = 7, there is a [64, 7, 32] Reed-Muller code and it can
be shown that the MAP decoder of this code passed over the BSC(n =64,5 =0.11) achieves
probability of error < 6-1075. Thus, we can use 16 such blocks (each carrying 7 data bits and
occupying 64 bits on the channel) over the BSC(1024, ), and still have (union bound) overall
P. s 10~%. This allows us to send 7-16 = 112 bits in 1024 channel uses, more than double that
of the repetition code.
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3. Shannon’s theorem (to be shown soon) tells us that over memoryless channel of blocklength n

the fundamental limit satisfies
log M* =nC + o(n) (14.1)

as n — oo and for arbitrary e € (0,1). Here C' = maxyx I(X;;Y1) is the capacity of the
single-letter channel. In our case we have

10X Y) = max (X X + Z) = log2 ~ h() = % bit
X

So Shannon’s expansion (14.1) can be used to predict (non-rigorously, of course) that it should
be possible to send around 500 bits reliably. As it turns out, for this blocklength this is not
quite possible.

4. Even though calculating log M * is not computationally feasible (searching over all codebooks
is doubly exponential in block length n), we can find bounds on log M* that are easy to
compute. We will show later in the course that in fact, for BSC(1000,.11)

414 <log M* < 416

5. The first codes to approach the bounds on log M* are called Turbo codes (after the turbocharger
engine — where exhaust is fed back in to power the engine). This class of codes is known as
sparse graph codes, of which LDPC codes are particularly well studied. As a rule of thumb,
these codes typically approach 80...90% of log M* when n ~ 10%...10%

14.2 Basic Results

Recall that the object of our study is M*(e) = max{M : (M, €) — code}.

14.2.1 Determinism

1. Given any encoder f:[M] — X, the decoder that minimizes P, is the Mazimum A Posteriori
(MAP) decoder, or equivalently, the Mazimal Likelihood (ML) decoder, since the codewords
are equiprobable:

g (y) = argmaxP[W =m|Y =y]
me[M]

= argmaxP[Y = y|[W =m]
me[M]

Furthermore, for a fixed f, the MAP decoder ¢ is deterministic

2. For given M, Py|x, the Pe-minimizing encoder is deterministic.

Proof. Let f:[M] — X be a random transformation. We can always represent randomized
encoder as deterministic encoder with auxiliary randomness. So instead of f(a|m), consider
the deterministic encoder f (m,u), that receives external randomness u. Then looking at all
possible values of the randomness,

P.=P[W # W]=Eu[P[W # W|U] = Ev[P.(U)]

Each u in the expectation gives a deterministic encoder, hence there is a deterministic encoder
that is at least as good as the average of the collection, i.e., Jug s.t. P.(up) <P[W = W] O
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Remark: If instead we use maximal probability of error as our performance criterion, then
these results don’t hold; randomized encoders and decoders may improve performance. Example:
consider M =2 and we are back to the binary hypotheses testing setup. The optimal decoder (test)
that minimizes the maximal Type-I and II error probability, i.e., max{1 - «, 3}, is not deterministic,
if max{1 - «, 8} is not achieved at a vertex of the region R(P, Q).

14.2.2 Bit Error Rate vs Block Error Rate
Now we give a bound on the average probability of error in terms of the bit error probability.
Theorem 14.1. For all (f,g), M =2¥ — P, < P, <kP,

Remark: The most often used direction P, > %Pe is rather loose for large k.

Proof. Recall that M = 2" gives us the interpretation of W = S* sequence of bits.
1 & k4 &k & A
Egl{si%si}il{s #5 }Sgl{si%si}

Where the first inequality is obvious and the second follow from the union bound. Taking expectation
of the above expression gives the theorem. O

Theorem 14.2 (Assouad). If M = 2* then
Py > min{P[W =¢|W =] : ¢, € F5, dy(c,d) =1} .
Proof. Let e; be a length k vector that is 1 in the i-th position, and zero everywhere else. Then

k k
S1{S; # Si} = > 1{S* = §F + ¢;}
i=1 =1

Dividing by k and taking expectation gives

O
Similarly, we can prove the following generalization:
Theorem 14.3. If A, B ¢ IF’; (with arbitrary marginals!) then for every r > 1 we have
1 k-1
Py = 2 E[dp(4,B)] > (T i 1)P,ﬂ,min (14.2)
Prmin 2min{P[B=c|A=c]:c,¢ eF5,dy(c,d) =7} (14.3)
Proof. First, observe that
k
Plan(A,B)=rlA=al= % Pyala) > ()P
bidg (a,b)=r r
Next, notice
dH(‘T’y) 2 Tl{dH(xvy) = T}
and take the expectation with z ~ A, y ~ B. O
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Remark: In statistics, Assouad’s Lemma is a useful tool for obtaining lower bounds on the
minimax risk of an estimator. Say the data X is distributed according to Py parameterized by 6 € R*
and let 6 = A(X) be an estimator for 6. The goal is to minimize the maximal risk suppeq Eq[[0 - 0]1].
A lower bound (Bayesian) to this worst-case risk is the average risk E[|6—6] ], where 6 is distributed
to any prior. Consider # uniformly distributed on the hypercube {0, e}k with side length € embedded
in the space of parameters. Then

inf sup E[)0-0]:]> ke min (1-TV(Fy, Py)). (14.4)
6 0c{0,e}* dr (6,0")=1

This can be proved using similar ideas to Theorem 14.2. WLOG, assume that e =1

@1 . 1 .
E[16~0lh] > SE[16 - baisli] = SE[dn (6, buis)]
>12kj min P[6;  6;] ¥ lzkﬂ TV (Pyx 5,0, Pxjo-1))
25 2,0 P X10:=05 Px10,=1
© k
> - 1-TV(Py, Py
_4(1(9199 ( (P, Pyr)) -

Here 6y is the dlscretlzed Version of é i.e. the closest point on the hypercube to 6 and so
(a) follows from |0; — 6;] > 3 Lig,6is1/2y = =11 (05400101} (b) follows from the optimal binary hy-

pothesis testing for 0; given X, (c) follows from the convexity of TV: TV(Px9,-0, Pxo;-1) =
TV(Q% >.0:0,-0 Px10, Qk—l_l Y0:0,-1 Pxpo) < 2%1 0:0,-0 TV(Px|9, Px|goe,) < maXdH(G,G’):lATVA(P% Pe")-
Alternatively, (c) also follows from by providing the extra information 6\ and allowing 6; = 0;(X, H\Z)
in the second line.

14.3 General (Weak) Converse Bounds
Theorem 14.4 (Weak converse).
1. Any M-code for Py x satisfies

supx I(X;Y) + h(P)

log M <
o8 1-P,
2. When M =2F
log M < supy I(X;Y)
" log2-h(P)

Proof. (1) Since W - X -Y - W, we have the following chain of inequalities, cf. Fano’s inequality
Theorem 5.4:

sup I(X;Y) > I(X;Y) > I(W; W)
X

> d(P[W = W] =)
> —h(P[W # W]) +P[W = W]log M
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Plugging in P, = P[W # W] finishes the first proof. X R
(2) Now S* > X - Y — S*. Recall from Theorem 5.1 that for iid S™, ¥ 1(S;;5;) < I(S*; 5%).
This gives us

k
supI(X;Y) > I(X;Y) > > I(S;,S;)
X i=1

>klzd(1@[5-—§-] 1)
= k 1= (2 2
1 & 1
>kd| - > PLS; —
(£ 2715~

- kd(l - PbH%) = k(log2 - h(F}))

Si]

where the second line used Fano’s inequality (Theorem 5.4) for binary random variable (or divergence
data processing), and the third line used the convexity of divergence. O

14.4 General achievability bounds: Preview

Remark: Regarding differences between information theory and statistics: in statistics, there is
a parametrized set of distributions on a space (determined by the model) from which we try to
estimate the underlying distribution from samples. In data transmission, the challenge is to choose
the structure on the parameter space (channel coding) such that, upon observing a sample, we can
estimate the correct parameter with high probability. With this in mind, it is natural to view

Pyx-s

1
og Py

as an LLR of a binary hypothesis test, where we compare the hypothesis X = x to the distribution
induced by our codebook: Py = Py|x o Px (so compare ¢; to “everything else”). To decode, we
ask M different questions of this form. This motivates importance of the random variable (called
information density):

Pyx (Y]X)

i(X;Y) =log Py (V)

, where Py = Py|x o Px. (Note: I(X;Y) =E[{(X;Y)]).
Shortly, we will show a result (Shannon’s Random Coding Theorem), that states: VP,
V7, 3(M,€) — code with
e<Pli(X;Y)<logM +7]+e "

Details in the next lecture.
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§ 15. CHANNEL CODING: ACHIEVABILITY BOUNDS

Notation: in the following proofs, we shall make use of the independent pairs (X,Y) 1 (X,Y)

X -Y (X: sent codeword)
X -Y (X: unsent codeword)

The joint distribution is given by:

Py (a:0:85) = Px(a) Py (4a) Px (@) Py x (50).

15.1 Information density

Definition 15.1 (Information density). Given joint distribution Pxy we define

Py x (ylz) o dPy|x-(y)
Pr(y) ° dPy(y)

and we define ip,, (z;y) = +oo for all y in the singular set where Py|x-, is not absolutely continuous
w.r.t. Py. We also define ipy, (7;y) = —oo for all y such that dPy|x-,/dPy equals zero. We will
almost always abuse notation and write i(z;y) dropping the subscript Py y, assuming that the
joint distribution defining i(-;-) is clear from the context.

Notice that i(x;y) depends on the underlying Py and Py |x, which should be understood from the
context.

ipyy (7;y) = log (15.1)

Remark 15.1 (Intuition). Information density is a useful concept in understanding decoding. In

discriminating between two codewords, one concerns with (as we learned in binary hypothesis
Py x—c

testing) the LLR, log %. In M-ary hypothesis testing, a similar role is played by information
e

density i(c1;y), which, loosely speaking, evaluates the likelihood of ¢ against the average likelihood,

or “everything else”, which we model by Py .

Remark 15.2 (Joint measurability). There is a measure-theoretic subtlety in (15.1): The so-defined
function i(-;-) may not be a measurable function on the product space X x ). For resolution, see
Section 2.6* and Remark 2.4 in particular.

Remark 15.3 (Alternative definition). Observe that for discrete X, ), (15.1) is equivalently written
as

Pxy(z,y) _ o Pxy (zly)
Px(0)Pr(y) ° Px()
For the continuous case, people often use the alternative definition, which is symmetric in X and Y
and is measurable w.r.t. X x :

i(x;y) =log

dPxy

)

— At 15.2

i(x;y) =log
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Notice a subtle difference between (15.1) and (15.2) for the continuous case: In (15.2) the Radon-
Nikodym derivative is only defined up to sets of measure zero, therefore whenever Px(z) =0 the
value of Py (i(xz,Y’) >t) is undefined. This problem does not occur with definition (15.1), and that
is why we prefer it. In any case, for discrete X, ), or under other regularity conditions, all the
definitions are equivalent.

Proposition 15.1 (Properties of information density).
1. E[i(X;Y)] = I(X;Y). This justifies the name “(mutual) information density”.

2. If there is a bijective transformation (X,Y) — (A,B), then almost surely ip,, (X;Y) =
ip,;(A;B) and in particular, distributions of i((X;Y") and i(A; B) coincide.

3. (Conditioning and unconditioning trick) Suppose that f(y) = 0 and g(x) = 0 whenever
i(z;y) = —oo, then!

E[f(Y)] =E[exp{-i(z;Y)} f(Y)|X =], V& (15.3)
E[g(X)] = E[exp{-i(X;y)}g(X)|Y =y],Vy (15.4)
4. Suppose that f(xz,y) =0 whenever i(x;y) = —oo, then
E[f(X,Y)] = Elexp{~i(X;Y)} f(X,Y)] (15.5)
E[f(X,Y)] = E[exp{~i(X;Y)} f(X,Y)] (15.6)

Proof. The proof is simply change of measure. For example, to see (15.3), note

Ef(Y)= 3 Pr)f() = X Py (ule) =289 f(y)
yey vey Py x (ylz)

notice that by the assumption on f(:), the summation is valid even if for some y we have that
Pyx(ylz) = 0. Similarly, E[f(x,Y)] = E[exp{~i(z;Y)}f(2,Y)|X = z]. Integrating over x ~ Px
gives (15.5). The rest are by interchanging X and Y. O

Corollary 15.1.

Pli(z;Y) > t] < exp(-t) (15.7)
P[i(X;Y) > t] < exp(~t) (15.8)
Proof. Pick f(Y)=1{i(z;Y) >t} in (15.3). O

Remark 15.4. We have used this trick before: For any probability measure P and any measure @,
dP
Q[ log 10 > t] <exp(-t). (15.9)

for example, in hypothesis testing (Corollary 10.1). In data compression, we frequently used the fact
that [{z :log Px(z) > t}| < exp(—t), which is also of the form (15.9) with @ = counting measure.

1Note that (15 3) holds when i(z;y) is defined as i = log - Y'X, and (15.4) holds when i(z;y) is defined as

1= log Px . (15.5) and (15.6) hold under either of the definitions. Since in the following we shall only make use of
(15.3) and (15.5), this is another reason we adopted definition (15.1).
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15.2 Shannon’s achievability bound

Theorem 15.1 (Shannon’s achievability bound). For a given Py|x, VPx, Y7 >0, 3(M,€)-code
with

e<PL(X;Y) <logM + 7] + exp(-7). (15.10)

Proof. Recall that for a given codebook {ci,...,cp}, the optimal decoder is MAP, or equivalently,
ML, since the codewords are equiprobable:

9" (y) = argma]xPX\y(cmly)

me[ M

= argmax Py x (ylcm)
me[

argmax i(Cpm;y).
me[M]

The step of selecting the maximum likelihood can make analyzing the error probability difficult.
Similar to what we did in almost loss compression (e.g., Theorem 7.4), the magic in showing the
following two achievability bounds is to consider a suboptimal decoder. In Shannon’s bound, we
consider a threshold-based suboptimal decoder g(y) as follows:

| m, ey st i(emiy) 2logM + 7
9(y) = { e, 0.W.

Interpretation: i(cy;y) 2 log M + 7 < Pxy(cmly) 2 M exp(7)Px(cm), i.e., the likelihood of ¢y,
being the transmitted codeword conditioned on receiving y exceeds some threshold.
For a given codebook (c,...,cpr), the error probability is:

P.(c1y...,enr) =P{i(ew;Y) <logM + 7} u{3Im + W,i(ci; V) > log M + 7} ]

where W is uniform on [M].
We generate the codebook (ci,...,cpr) randomly with ¢, ~ Px i.i.d. for m € [M]. By symmetry,
the error probability averaging over all possible codebooks is given by:

E[P.(c1,...,c0m)]
E[P.(c1,...,ca)|W =1]
=P[{i(c;Y) <logM + 7} u{Im + 1,i(cm,Y) >log M + 7}W = 1]

M
<Pli(e;Y) <logM +7|W =1]+ > Pli(cm;Y) >logM +7|[W =1]  (union bound)

m=2
=PLi(X;Y) <logM + 7]+ (M -1)P[i(X;Y) >log M + 7] (random codebook)
<Pli(X;Y)<logM + 7]+ (M —1)exp(—(log M + 7)) (by Corollary 15.1)
<Pli(X;Y) <logM + 7] +7) +exp(-7)

Finally, since the error probability averaged over the random codebook satisfies the upper bound,
there must exist some code allocation whose error probability is no larger than the bound. O

Remark 15.5 (Typicality).
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e The property of a pair (x,y) satisfying the condition {i(z;y) >~} can be interpreted as “joint
typicality”. Such version of joint typicality is useful when random coding is done in product
spaces with ¢; ~ P¢ (i.e. coordinates of the codeword are iid).

e A popular alternative to the definition of typicality is to require that the empirical joint
distribution is close to the true joint distribution, i.e., Pyn yn » Pxy, where

~ 1 .
Py yn(a,b) = E-#{j txj=a,y; =b}.

This definition is natural for cases when random coding is done with ¢; ~ uniform on the set

{z": P;n » Px} (type class).

15.3 Dependence-testing bound

Theorem 15.2 (DT bound). VPx, 3(M,¢€)-code with

e<E [eXp {—(i(X; Y) -log M

— 1)+}] (15.11)

where ¥ = max(z,0).
Proof. For a fixed ~y, consider the following suboptimal decoder:

m, for the smallest m s.t. i(cn;y) >
e, o/w

9(y) ={

Note that given a codebook {ci,...,cpr}, we have by union bound

IP’[W £ JIW =j]=Pli(c;;Y) <y[W = 5]+ Pli(c;;Y) >, 3k e [j - 1], s.t. i(ep;Y) > 7]
j-1
<Pli(cj;Y) <A|W = 4]+ kz_:l]?[i(cm Y) > y[W =].

Averaging over the randomly generated codebook, the expected error probability is upper bounded
by:

1M .
E[Pe(cl,...,cM)]:M;P[WatﬂW:j]
<L % (PLCXY) <] +j§ PL(X;Y) > 7])
M & s
- Bi(X:Y) £9]+ T LBli(X:Y) > ]
=PL(X;Y) < 9]+ ——Elexp(=i(X; Y))1{i(X;Y) >93] (by (15:3))
~E[L{(X:Y) <9} + L exp(=i(X5 Y )1 {i(X, V) > 7}

M - -1

Sexp(-i(X V)] (= log ™
-1 )+}] ‘
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To optimize over v, note the simple observation that Ulg + V1{gey > min{U, V'}, with equality iff
U >V on E. Therefore for any x,y, 1[i(z;y) <v]+ %e’i(x;y)l[i(a@;y) >~] > min(1, %e‘i(’“y)),
achieved by v = log % regardless of z,y. O
Note: Dependence-testing: The RHS of (15.11) is equivalent to the minimum error probability of
the following Bayesian hypothesis testing problem:

Hy: XY ~ Pxy versus Hp:X,Y ~PxPy
2 M-1

— T = .

M+1 M+1

prior prob.: mg =

Note that X,Y ~ Pxy and Y,Y ~ Px Py, where X is the sent codeword and X is the unsent
codeword. As we know from binary hypothesis testing, the best threshold for the LRT to minimize
the weighted probability of error is log Z—é.

Note: Here we avoid minimizing over 7 in Shannon’s bound (15.10) to get the minimum upper
bound in Theorem 15.1. Moreover, DT bound is stronger than the best Shannon’s bound (with
optimized 7).

Note: Similar to the random coding achievability bound of almost lossless compression (Theorem
7.4), in Theorem 15.1 and Theorem 15.2 we only need the random codewords to be pairwise
independent.

15.4 Feinstein’s Lemma

The previous achievability results are obtained using probabilistic methods (random coding). In
contrast, the following achievability due to Feinstein uses a greedy construction. Moreover,
Feinstein’s construction holds for maximal probability of error.

Theorem 15.3 (Feinstein’s lemma). VPx, Vv >0, Ve € (0,1), I3(M, €)max-code such that
M >~(e-P[i(X;Y) <logv]) (15.12)

Remark 15.6 (Comparison with Shannon’s bound). We can also interpret (15.12) as for fixed M,
there exists an (M, €)pax-code that achieves the maximal error probability bounded as follows:

M
e<Pli(X;Y) <logvy]+ —
Y

Take log~y = log M + 7, this gives the bound of exactly the same form in (15.10). However, the
two are proved in seemingly quite different ways: Shannon’s bound is by random coding, while
Feinstein’s bound is by greedily selecting the codewords. Nevertheless, Feinstein’s bound is stronger
in the sense that it concerns about the max error probability instead of the average.

Proof. The idea is to construct the codebook of size M in a greedy way.
For every z € X, associate it with a preliminary decode region defined as follows:

E, = {yi(x;y) >logvy}

Notice that the preliminary decoding regions { E, } may be overlapping, and we denote the final
decoding region partition regions by {D,}.

We can assume that P[i(X;Y") <log~v] <, for otherwise the R.H.S. of (15.12) is negative and
there is nothing to prove. We first claim that there exists some ¢ such that Py[E X =c]>1-e.
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Show by contradiction. Assume that Ve e X, P[i(¢;Y) >logv|X =¢] <1 —¢, then pick ¢ ~ Px, we
have P[i(X;Y) >log~v] < 1 - ¢, which is a contradiction.
Then we construct the codebook in the following greedy way:

1. Pick ¢1 to be any codeword such that Py[E.|X =¢1]>1-¢, and set Dy = E,;

2. Pick ¢ to be any codeword such that Py [E.,\D1|X =c2] >1-¢, and set Dy = E.,\Dx;

3. Pick ¢pr to be any codeword such that Py[E,,,\ ué‘fl’l Dj|X =cp] 2 1-€, and set Dy =
Ec,\ Ué\/:[fl D;. We stop if no more codeword can be found, i.e., M is determined by the
stopping condition:

Vag e X, Py[Ey\ Ui, Dj|IX =20] <1-¢

Averaging over zg ~ Py, the stopping condition gives that

P({i(X;Y) > logy}\{Y e U} D;}) < 1-e
by union bound P(A\B) > P(A) - P(B), we have
M
P(i(X;Y) >logvy) - Y Py(Dj)<1-¢
j=1
M
=P>i(X;Y)>logy) - — <1-¢
Y

where the last step makes use of the following key observation:

1
Py (Dj) < Py(E.;) = Py(i(c;;Y) >1logy) < —, (by Corollary 15.1).
~ 192
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§ 16. LINEAR CODES. CHANNEL CAPACITY

Recall that last time we showed the following achievability bounds:
Shannon’s: P, < P[i(X;Y) <log M + 7] + exp{-7}
f
DT: P, SE[exp{—(i(X;Y)—log M2_1)+}]
Feinstein’s:  Pear < P[i(X;Y) <log M + 7] + exp{-7}

This time we shall use a shortcut to prove the above bounds and in which case P, = P 4z

16.1 Linear coding

Definition 16.1 (Linear code). Let X =Y =F;, M = ¢*. Denote the codebook by C = {c, : u € IF];}
A code f: IF’; - 7 is a linear code if Vu € FI(;, cu = uG (row-vector convention), where G € ]Flgxn is
a generator matrix.

Proposition 16.1.
ceC
< ce€ row span of G

< ceKerH, for some H ¢ an_k)xn s.t. HGT = 0.

Note: For linear codes, the codebook is a k-dimensional linear subspace of Fy; (ImG or KerH). The
matrix H is called a parity check matrix.

Example: (Hamming code) The [7,4, 3], Hamming code over Fy is a linear code with G = [I; P]
and H = [-P7;I] is a parity check matrix.

SO O =
[ e )
O = O O
— o O O
_ o = =
= O
— = = O
— = O
— =
oo
O = O
— o O

Parity check: all four bits in the same circle sum up to zero.

\r/a/
\=/

Note: Linear codes are almost always examined with channels of additive noise.
Definition 16.2 (Additive noise). Py|x is additive-noise over Fy if

PY|X(?J|$):PZn(y—$)©Y:X+Z" where Z" 1 X
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Now: Given a linear code and an additive-noise Py|y, what can we say about the decoder?

Theorem 16.1. Any [k,n]p, linear code over an additive-noise Py|x has a mazimum likelihood
decoder g : Iy — Fy such that:

1. g(y) =y —gsynd(HyT), i.e., the decoder is a function of the “syndrome” Hy' only
2. Decoding regions are translates: D, = ¢, + Do, Vu
3. Pe,mam = Ley

where geynd : IE‘Z”LC — Iy, defined by gsyna(s) = argmax,.p,r_s P7(2), is called the “syndrome decoder”,
which decodes the most likely realization of the noise.

Proof. 1. The maximum likelihood decoder for linear code is

g9(y) = argmax Py x (y|c) = argmax Pz(y - ¢) =y - argmax Pz(z),
ceC c:HeT=0 zHzT=HyT

égsynd(I—IyT)
2. For any u, the decoding region

Dy ={y:9(y) = cu} = {y: 9~ gsyna(Hy") = cu} = {y 1y = cu = goyna(H (y = cu)")} = cu + Dy,
where we used Hcl =0 and ¢ = 0.
3. For any u,
P[W # ulW = u] = Plg(cy+Z) # cu] = Plcu+Z ~gegna(HeL + HZT) # ¢,] = Pgeyna(HZT) # Z].
O
Note: The advantages of linear codes include at least
1. Low-complexity encoding
2. Slightly lower complexity ML decoding (syndrome decoding)

3. Under ML decoding, maximum probability of error = average probability of error. This is a
consequence of the symmetry of the codes. Note that this holds as long as the decoder is a
function of the syndrome only. As shown in Theorem 16.1, syndrome is a sufficient statistic
for decoding a linear code.

Theorem 16.2 (DT bounds for linear codes). Let Py|x be additive noise over Fy. Yk, 3 a linear code f :

IE"; — Fy with the error probability:

Pemax = P. < E[q_(n_k_logq ) ] (16.1)
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Proof. Recall that in proving the Shannon’s achievability bounds, we select the code words ¢y, ..., cps
i.i.d ~ Px and showed that

M-1

E[Pe(ct,...,em)] < PLi(X;Y) <v] + PG(X;Y)>7)

As noted after the proof of the DT bound, we only need the random codewords to be pairwise
independent. Here we will adopt a similar approach. Note that M = ¢*.

Let’s first do a quick check of the capacity achieving input distribution for Py|x with additive
noise over Fy:

n})axI(X;Y) = n}lDaXH(Y) -H(Y|X) = II}lDaXH(Y) - H(Z")=nlogq- H(Z") = Py uniform on Fy
X X X

We shall use the uniform distribution Py in the “random coding” trick.
Moreover, the optimal (MAP) decoder with uniform input is the ML decoder, whose decoding
regions are translational invariant by Theorem 16.1, namely D, = ¢, + Dg, Vu, and therefore:

P.naz = Po = P[W # u|W = u], Yu.
Step 1: Random linear coding with dithering:
VueIF];,cu =uG +h

G and h are drawn from the new ensemble, where the k x n entries of G and the 1 xn entries
of h are i.i.d. uniform over IF,. We add the dithering to eliminate the special role that the
all-zero codeword plays (since it is contained in any linear codebook).

Step 2: Claim that the codewords are pairwise independent and uniform: Yu # u’, (¢, cur) ~ (X, X),
where Py (z,7) = 1/¢*". To see this:

¢, ~ uniform on ]FZ
cw =tu'G+h=uG+h+(u -u)G=c,+( -u)G

We claim that ¢, 1L G because conditioned on the generator matrix G = Gog, ¢, ~
uniform on Fy due to the dithering h.

We also claim that ¢, L ¢,/ because conditioned on ¢, (v’ ~u)G ~ uniform on Fy.

Thus random linear coding with dithering indeed gives codewords c,, ¢,/ pairwise indepen-
dent and are uniformly distributed.

Step 3: Repeat the same argument in proving DT bound for the symmetric and pairwise independent
codewords, we have

M-1
2

=P, < E[exp{—(i(X; Y) -log M2_ 1 )+}] = E[q—(i(X;Y)—logq #Y] < E[q—(z’(X;Y)—k)+]

E[P.(c1,...,cp)] < PlI(X;Y) <v] + P(i(X,Y)>7)

where we used M = ¢* and picked the base of log to be g.
Step 4: compute i(X;Y):

. Pyn(b-a) 1
Z(CL; b) = logq q_—n =N - logq m
therefore
P, < E[q‘(”"“‘l"gq ) ] (16.2)
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Step 5: Kill h. We claim that there exists a linear code without dithering such that (16.2) is satisfied.
Indeed shifting a codebook has no impact on its performance. We modify the coding scheme
with G, h which achieves the bound in the following way: modify the decoder input Y’ =Y —h,
then when ¢, is sent, the additive noise Py x becomes then Y'=uG+h+Z"-h=uG+2Z",
which is equivalent to that the linear code generated by G is used. O

Notes:

e The ensemble ¢, = uG + h has the pairwise independence property. The joint entropy
H(ci,...,enmr) = H(G) + H(h) = (nk +n)logq is significantly smaller than Shannon’s “fully
random” ensemble we used in the previous lecture. Recall that in that ensemble each c¢; was
selected independently uniform over Fy, implying H (c1y...,enr) = ¢"nlogq. Question:

min H(cy,...,cpr) =17
where minimum is over all distributions with P[¢; = a,cj = b] = ¢"2" when i # j (pairwise
independent, uniform codewords). Note that H(ci,...,car) > H(cp,c2) = 2nlogg. Similarly,

we may ask for (¢;, ¢;) to be uniform over all pairs of distinct elements. In this case Wozencraft
ensemble for the case of n = 2k achieves H(c1,...,c ) ~ 2nlogq.

e There are many different ensembles of random codebooks:

— Shannon ensemble: C = {cy, ... ,cM}i'iéd'PX — fully random

— Elias ensemble [Eli55]: C={uG:ue IF]; }, with generator matrix G uniformly drawn at
random.

— Gallager ensemble: C = {c: Hc! =0}, with parity-check matrix H uniformly drawn at

random.

e With some non-zero probability G may fail to be full rank [Exercise: Find P [rank(G) < k] as
a function of n, k, ¢!]. In such a case, there are two identical codewords and hence P, yax > 1/2.
There are two alternative ensembles of codes which do not contain such degenerate codebooks:

1. G ~ uniform on all full rank matrices
2. search codeword ¢, € KerH where H ~ uniform on all n x (n — k) full row rank matrices.

(random parity check construction)

Analysis of random coding over such ensemble is similar, except that this time (X, X) have

distribution )

PX,X = q2n _ qn l{X?tX'}

uniform on all pairs of distinct codewords and not pairwise independent.

16.2 Channels and channel capacity

Basic question of data transmission: How many bits can one transmit reliably if one is allowed to
use the channel n times?

e Rate = # of bits per channel use

e Capacity = highest achievable rate
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Next we formalize these concepts.

Definition 16.3 (Channel). A channel is specified by:
e input alphabet A
e output alphabet B
e a sequence of random transformation kernels Pynxn : A" > B",n=1,2,....
e The parameter n is called the blocklength.

Note: we do not insist on Py« xn to have any relation for different n, but it is common that
the conditional distribution of the first k letters of the n-th transformation is in fact a function of
only the first & letters of the input and this function equals Py« x+ — the k-th transformation. Such
channels, in particular, are non-anticipatory: channel outputs are causal functions of channel inputs.

Channel characteristics:

e A channel is discrete if A and B are finite.

e A channel is additive-noise if A =B are abelian group, and

Pyn‘xn = PZn(yn _xn) <~ Yn = Xn +Zn

A channel is memoryless if there exists a sequence {PXk‘yk, k=1,...} of transformations acting
A = B such that Pynxn =IIj_; Py,|x, (in particular, the channels are compatible at different
blocklengths).

A channel is stationary memoryless if Pynxn = Tji_; Pyy|x, -

DMC (discrete memoryless stationary channel)
A DMC can be specified in two ways:

— an |A| x |B]-dimensional matrix Py|x where elements specify the transition probabilities

— a bipartite graph with edge weight specifying the transition probabilities.

Example: -
"3 ’ 5o

0
sso > |5 5]

1< 1

5

.4
BEC 60 0 0
0 65 6

°3 io 10
7 channel 1 ? 1 5 3 }

Definition 16.4 (Fundamental Limits). For any channel,

e An (n,M,e)-code is an (M, €)-code for the n-th random transformation Pyn|xn.
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e An (n, M, €)max-code is analogously defined for maximum probability of error.

The non-asymptotic fundamental limits are

M*(n,e) = max{M : 3 (n, M, e)-code} (16.3)
Mr;ax(nv 6) = ma‘X{M g (n’ M, 6)max‘COde} (164)

Definition 16.5 (Channel capacity). The e-Capacity C. and Shannon Capacity C are

1
C. = liminf — log M ™ (n,¢€)
n—>o0o n
C = lim C,

e—>0"

Notes:

e This operational definition of the capacity represents the maximum achievable rate at which
one can communicate through a channel with probability of error less than e. In other words,
for any R < C, there exists an (n,exp(nR), e, )-code, such that €, — 0.

e Typically, the e-capacity behaves like the plot below on the left-hand side, where Cj is called
the zero-error capacity, which represents the maximal achievable rate with no error. Often
times Cy = 0, meaning without tolerating any error zero information can be transmitted. If C.
is constant for all € (see plot on the right-hand side), then we say that the strong converse
holds (more on this later).

Ce C.

strong converse

/ holds

Zero error ¢
Capacity ~°

Proposition 16.2 (Equivalent definitions of C, and C).

C. =sup{R: V8 >0, 3Ing(8),Yn >ng(8),3(n,2"F ) code}
C =sup{R:Ve>0,Yd>0,3ng(d,€),Vn >ny(d,e),I(n, on(fi=0), €) code}
Proof. This trivially follows from applying the definitions of M*(n,¢) (DIY). O

Question: Why do we define capacity C. and C with respect to average probability of error, say,
Ce(max) and C(M2%)? Why not maximal probability of error? It turns out that these two definitions
are equivalent, as the next theorem shows.

Theorem 16.3. V7€ (0,1),

TM*(n,e(1-7)) < M), (n,e) < M*(n,e)
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Proof. The second inequality is obvious, since any code that achieves a maximum error probability
€ also achieves an average error probability of e.

For the first inequality, take an (n, M, e(1-7))-code, and define the error probability for the ;™
codeword as

Aj 2 P[W #§|W = j]

Then
M(l - T)E > Z)\j = ZAjl{AjSE} + Z)‘jl{ij} > €|{j : >\j > 6}‘
Hence |{j : A\j > €}| < (1 -7)M. [Note that this is exactly Markov inequality!] Now by removing

those codewordsi whose \; exceeds €, we can extract an (n,7M,€)max-code. Finally, take M =
M*(n,e(1-7)) to finish the proof. O

Corollary 16.1 (Capacity under maximal probability of error). Ce(max) = C¢ for all € > 0 such that
Ce =C._. In particular, C/(max) — C’.E

Proof. Using the definition of M* and the previous theorem, for any fixed 7 >0
1
C. > C%) > iminf ~log 7M* (n,e(1-7)) > Ce(1-7)
n—oco N

Sending 7 — 0 yields C¢ > C’E(max) >Ce_. O

16.3 Bounds on C,; Capacity of Stationary Memoryless Channels

Now that we have the basic definitions for C¢, we define another type of capacity, and show that
for a stationary memoryless channels, the two notions (“operational” and “information” capacity)
coincide.

Definition 16.6. The information capacity of a channel is

C; = liminf ! sup I(X"™; Y™)
n—o m py

Remark: This quantity is not the same as the Shannon capacity, and has no direct operational
interpretation as a quantity related to coding. Rather, it is best to think of this only as taking the
n-th random transformation in the channel, maximizing over input distributions, then normalizing
and looking at the limit of this sequence.

Next we give coding theorems to relate information capacity (information measures) to
Shannon capacity (operational quantity).

Theorem 16.4 (Upper Bound for C.). For any channel, Ve € [0,1), Cc < Ci and C < C;.

€= 1-¢

Proof. Recall the general weak converse bound, Theorem 14.4:

supp,.,, [(X™Y™) + h(e)
1-e€

log M*(n,€) <

!This operation is usually referred to as expurgation which yields a smaller code by killing part of the codewords
to reach a desired property.
*Notation: f(z-) 2 limy.. f(y).
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Normalizing this by n the taking the liminf gives

1 1supp,, I(X™;Y") +h ,
C, =liminf — IOgM (n e) < hm 1nf — Ppy ( : ) ( ) 101

Next we give an achievability bound:

Theorem 16.5 (Lower Bound for C¢). For a stationary memoryless channel, C. > C;, for any
ee(0,1].

The following result follows from pairing the upper and lower bounds on C..

Theorem 16.6 (Shannon ’1948). For a stationary memoryless channel,

C=C;=supl(X;Y). (16.5)
Px

Remark 16.1. The above result, known as Shannon’s Noisy Channel Theorem, is perhaps
the most significant result in information theory. For communications engineers, the major surprise
was that C' > 0, i.e. communication over a channel is possible with strictly positive rate for any
arbitrarily small probability of error. This result influenced the evolution of communication systems
to block architectures that used bits as a universal currency for data, along with encoding and
decoding procedures.

Before giving the proof of Theorem 16.5, we show the second equality in (16.5). Notice that
C; for stationary memoryless channels is easy to compute: Rather than solving an optimization
problem for each n and taking the limit of n - oo, computing C; boils down to maximizing mutual
information for n = 1. This type of result is known as “single-letterization” in information theory.

Proposition 16.3 (Memoryless input is optimal for memoryless channels).
For memoryless channels,

n
sup [(X™;Y™) =Y supI(X;;Y;).
Pxn i=1 Px;

For stationary memoryless channels,
C;=supI(X;Y).
Px

Proof. Recall that for product kernels Pyn xn =] Py x,, we have I(X";Y™) < 371 I(Xg;Yy), with
equality when X;’s are independent. Then

Ci —hmlnf—supI(X” Y™ —hmlnfsupI(X Y)=supI(X; YD

n—eo N po, Px

Proof of Theorem 16.5. ¥ Px, and let Py» = P} (iid product). Recall Shannon’s (or Feinstein’s)
achievability bound: For any n, M and any v > 0, there exists (n, M, €,)-code, s.t.

€n <PL(X™Y™) <log M + 7] +exp(—7)

Here the information density is defined as

n

dP
(V"X = 21 08~ (Yl Xi) = 3 i(Xi; V),
k=1

dPyn|xn

(X", Y™) =log P
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which is a sum of iid r.v.’s with mean I(X;Y"). Set logM =n(I(X;Y)—26) for § >0, and taking
~ = dn in Shannon’s bound, we have

n
€n < IP’[ Y (X3 Vi) <nl(X;Y) - 5n] +exp(—0n) —=5 0
k=1
The second terms goes to zero since § > 0, and the first terms goes to zero by WLLN.
Therefore, YPx, V6 > 0, there exists a sequence of (n,M,,€,)-codes with ¢, - 0 (where
log M, =n(I(X;Y) —2§)). Hence, for all n such that €, <€

log M™*(n,e) >n(I(X;Y) —26)

And so
1
Ce =liminf —log M*(n,e) > I(X;Y)-20 VPx,Vd
n—oco n
Since this holds for all Px and all §, we conclude C, > supp, I(X;Y) = C;. O

Remark 16.2. Shannon’s noisy channel theorem (Theorem 16.6) shows that by employing codes
of large blocklength, we can approach the channel capacity arbitrarily close. Given the asymptotic
nature of this result (or any other asymptotic result), two natural questions are in order dealing
with the different aspects of the price to reach capacity:

1. The complexity of achieving capacity: Is it possible to find low-complexity encoders and
decoders with polynomial number of operations in the blocklength n which achieve the
capacity? This question is resolved by Forney in 1966 who showed that this is possible in
linear time with exponentially small error probability. His main idea is concatenated codes.
We will study the complexity question in detail later.

Note that if we are content with polynomially small probability of error, e.g., P, = O(n~'09)

then we can construct polynomially decodable codes as follows. First, it can be shown that
with rate strictly below capacity, the error probability of optimal codes decays exponentially
w.r.t. the blocklenth. Now divide the block of length n into shorter block of length C'logn
and apply the optimal code for blocklength Clogn with error probability n %!, The by the
union bound, the whole block is has error with probability at most n71%. The encoding and
exhaustive-search decoding are obviously polynomial time.

)

2. The speed of achieving capacity: Suppose we want to achieve 90% of the capacity, we want
to know how long do we need wait? The blocklength is a good proxy for delay. In other
words, we want to know how fast the gap to capacity vanish as blocklength grows. Shannon’s
theorem shows that the gap C — % log M*(n,€) = o(1). Next theorem shows that under proper
conditions, the o(1) term is in fact O(ﬁ)

The main tool in the proof of Theorem 16.5 is the WLLN. The lower bound C. > C; in
Theorem 16.5 shows that log M*(n,€) > nC + o(n) (since normalizing by n and taking the liminf
must result in something > C'). If instead we do a more refined analysis using the CLT, we find

Theorem 16.7. For any stationary memoryless channel with C = maxp, I(X;Y) (i.e. 3Pg =
argmaxp, I(X;Y)) such that V = Var[i(X*;Y*)] < co, then

log M*(n,€) > nC —VnVQ (e) + o(v/n),

where Q(-) is the complementary Gaussian CDF and Q71(-) is its functional inverse.
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Proof. Writing the little-o notation in terms of liminf, our goal is
log M'* -
lim inf o8 (n,e) - nC
n—oo vnV

where ®(t) is the standard normal CDF.
Recall Feinstein’s bound

>-Q7'(e) =7 (e),

3(n, M, €)max s M 2 B (e-P[i(X™;Y") <log B])
Take log 6 = nC +v/nVt, then applying the CLT gives

logM2nC+\/Wt+log(e—IP’[Zi(Xk;Yk) SnC’+\/Wt])

= logM >nC +vVnVt+log(e—®(t)) VI(t)<e
log M - nC i log(e — ®(t))
N/ vnV

Where ®(¢) is the standard normal CDF. Taking the liminf of both sides

.. JdogM*(n,e)-nC
lim inf
n—oo vVnV

Taking t # ®~!(¢), and writing the liminf in little o form completes the proof

log M*(n,€) > nC —vVnVQ () + o(v/n)

>t Vist O(t)<e

O
16.4 Examples of DMC
Binary symmetric channels
) C
0 S 0 1 bit
Y
)
5 -0
1
1 0 1 0 1 1
Y=X+2Z, Z~Bern(d) 1L X
Capacity of BSC:
C=supl(X;Y)=1-h(5)
X
Proof. (X;X+Z)=H(X+Z)-H(X+Z|X)=H(X+Z)-H(Z)<1-h(d), with equality iff
X ~Bern(1/2). O

Note: More generally, for all additive-noise channel over a finite abelian group G, C = supp, I(X; X+
Z) =log|G| - H(Z), achieved by uniform X.
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Binary erasure channels

0 |
1 bit

0— 9
\
e
/
s E
BEC is a multiplicative channel: If we think about the

input X € {£1}, and output Y € {£1,0}. Then equivalently
we can write Y = XZ with Z ~ Bern(d) L X.

Capacity of BEC:

C=supl(X;Y)=1-0 bits
Px

Proof. Note that P(X = 0]Y = e) = PE=0% - p(X = 0). Therefore I(X;Y) = H(X) - H(X[Y) =
H(X)-H(X|Y =e)<(1-0)H(X) <1-4, with equality iff X ~ Bern(1/2). O

16.5* Information Stability

We saw that C' = C; for stationary memoryless channels, but what other channels does this hold
for? And what about non-stationary channels? To answer this question, we introduce the notion of
information stability.

Definition 16.7. A channel is called information stable if there exists a sequence of input distribu-
tion {Pxn,n=1,2,...} such that

1. 0 on . .

—i(X";Y"™) — C; in probability

n

For example, we can pick Pxn» = (P )" for stationary memoryless channels. Therefore stationary
memoryless channels are information stable.
The purpose for defining information stability is the following theorem.

Theorem 16.8. For an information stable channel, C' = C;.

Proof. Like the stationary, memoryless case, the upper bound comes from the general converse Theo-
rem 14.4, and the lower bound uses a similar strategy as Theorem 16.5, except utilizing the definition
of information stability in place of WLLN. 0

The next theorem gives conditions to check for information stability in memoryless channels
which are not necessarily stationary.
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Theorem 16.9. A memoryless channel is information stable if either of there exists { X, k=1,...}
such that both of the following hold:

1 n
= 2 I(X5Y) ~ G (16.6)
T g=1
|
>, = Varli(X;;Y,)] < oco. (16.7)
n=1T
In particular, this is satisfied if
|A] < 0o or |B| < oo (16.8)

Proof. To show the first part, it is sufficient to prove

1
P [_
n
So that %Z(X " Y"™) - C; in probability. We bound this by Chebyshev’s inequality

]P’[l . 5] < #ZZﬂ Var[i(X}; Y]
" <

52
where convergence to 0 follows from Kronecker lemma (Lemma 16.1 to follow) applied with
by =n?, x, = Var[i(X; Y,5)]/n?

n) n

The second part follows from the first. Indeed, notice that

n
> (XG5 V) - I(XE, YY)
k=1

>(5:|—>0

n
> (XY - I(XGL YY)
k=1

-0,

1 n
C; =liminf — > sup I(Xy; Yy).
n—oo

k=1Px,
Now select PXI: such that
I(X55 V) 2 supI(Xy; Vi) —27F

Px,

(Note that each Supp, I(Xk; Yr) <logmin{|A|,|B|} < o0.) Then, we have
n n
> I(XGY) 2 Yy sup I(Xy; Vi) - 1,
k=1 k=1 Px,

and hence normalizing by n we get (16.6). We next show that for any joint distribution Pxy we
have

Var[i(X;Y)] < 2log?(min(|A],|B])). (16.9)
The argument is symmetric in X and Y, so assume for concreteness that |B| < co. Then

E[i*(X;Y)] (16.10)

= fAdPx(w) > P;qx(ylx)[log2 Py x (ylz) +log® Py (y) - 2log Py x (y|z) -logPy(yI}ﬁ.ll)
yeBB

< [ dPx(@) ¥, Pyix(yle) [log” Prix (yi) +1og? Py ()] (16.12)
yeB

- fAdPx(x) > Pyix (yle) log? PY|X(?J|95)] +[ 2 Py (y)log® Py (y) (16.13)

yeB yeB
< [ aPx(@)g(1B])+9(8) (16.14)
= 29(18)), (16.15)
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where (16.12) is because 2log Py|x (y|z) - log Py (y) is always non-negative, and (16.14) follows
because each term in square-brackets can be upper-bounded using the following optimization
problem:

n
gn)=  sup Y ajlog’a;. (16.16)
aj20:37 1 aj=1 ;=1

Since the zlog? 2 has unbounded derivative at the origin, the solution of (16.16) is always in the
interior of [0,1]". Then it is straightforward to show that for n > e the solution is actually a; = 1.
For n = 2 it can be found directly that g(2) = 0.56291log?2 < log? 2. In any case,

29(|B]) < 21og? 5.
Finally, because of the symmetry, a similar argument can be made with |B| replaced by |.A]|. O

Lemma 16.1 (Kronecker Lemma). Let a sequence 0 < b, # co and a non-negative sequence {x,}
such that Y.5"q xy < 00, then

1 n
b 2"
Proof. Since b,’s are strictly increasing, we can split up the summation and bound them from above

Zbk$k<b Z:L’k+ Z brxk

k=m+1
Now throw in the rest of the z’s in the summation
b [ee] oo
— Ebk:nk<—2xk+ Z —$k<—mz TE + 2 Tk
bn k=1 bn k=1 k=m+1 b" b k=1 k=m+1
= lim —Zbkazk< Z x>0
=0 b 31 k=m+1
Since this holds for any m, we can make the last term arbitrarily small. O

Important example: For jointly Gaussian (X,Y’) we always have bounded variance:

cov[X,Y]
Var[X] Var[Y]

Var[i(X;Y)] = p*(X,Y)log?e <log’e,  p(X,Y)= (16.17)

Indeed, first notice that we can always represent Y = X + Z with X =aX L Z. On the other hand,
we have

loge 72+ 232 o . -
i(T;y) = PR gl Z2E2y—17.
Y Y9z

From here by using Var[-] = Var[E[-|X 1] + Var[|X] we need to compute two terms separately:

5o g?(
5 | -
E[i(X;Y)|X] = =5 | — 72|,
Oy
and hence )
s ~ 2log®e 4
Var[E[i(X;Y)|X]] = Iol o5 -

172



On the other hand,

. o 2log?
Var[i(X; V)| X] = %[4&(0; +20%].
g
Y

Putting it all together we get (16.17). Inequality (16.17) justifies information stability of all sorts of
Gaussian channels (memoryless and with memory), as we will see shortly.
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§ 17. CHANNELS WITH INPUT CONSTRAINTS. (GAUSSIAN CHANNELS.

17.1 Channel coding with input constraints

Motivations: Let us look at the additive Gaussian noise. Then the Shannon capacity is infinite,
since supp, I(X; X + Z) = oo achieved by X ~ N (0, P) and P — co. But this is at the price of
infinite second moment. In reality, limitation of transmission power = constraints on the encoding
operations = constraints on input distribution.

Definition 17.1. An (n, M, ¢)-code satisfies the input constraint F,, ¢ A" if the encoder is f :
[M] - F,. (Without constraint, the encoder maps into A").

An

Codewords all land in a subset of A™

Definition 17.2 (Separable cost constraint). A channel with separable cost constraint is specified
as follows:

1. A, B: input/output spaces
2. PYn|Xn :ATL_)B’R, n = 1,27...
3. Cost c: A—>R

Input constraint: average per-letter cost of a codeword z™ (with slight abuse of notation)

1 n
c(z™)==> c(zy) <P
T k=1
Example: A=B=R

e Average power constraint (separable):

Z|%’|2§P < |z"||2 < VnP

nix1

e Peak power constraint (non-separable):

max |z;| <A < 2" <A
1<i<n
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Definition 17.3. Some basic definitions in parallel with the channel capacity without input
constraint.

e A code is an (n, M, e, P)-code if it is an (n, M, €)-code satisfying input constraint F,, = {z" :
LS c(ag) < P}

e Finite-n fundamental limits:

M*(n,e, P) = max{M : 3(n, M, e, P)-code}
M ..(n,e, P) = max{M : 3(n, M, €, P)pas-code}

e c-capacity and Shannon capacity

Ce(P) = liminfllogM*(n,e,P)
n—-oco n
C(P) = 11%106(13)

e Information capacity

1
C;(P) = liminf — sup I(X™ym")
N0 N PynE[XR_, o(Xg)]<nP

e Information stability: Channel is information stable if for all (admissible) P, there exists a
sequence of channel input distributions Pxn» such that the following two properties hold:

1. n < ns i-P.
ipn yn (X YT) S Gi(P) (17.1)

Ple(X")>P+4d] >0 Vo>0. (17.2)
Note: These are the usual definitions, except that in C;(P), we are permitted to maximize

I(X™Y™) using input distributions from the constraint set { Pxn» : E[X}_; ¢(Xk)] < nP} instead of
the distributions supported on F,.

Definition 17.4 (Admissible constraint). P is an admissible constraint if 3z¢ € A s.t. c(zg) <
P < 3Px :E[c(X)] < P. The set of admissible P’s is denoted by D, and can be either in the form
(Py,00) or [Py, 00), where Py = inf 4 c(x).

Clearly, if P ¢ D¢, then there is no code (even a useless one, with 1 codeword) satisfying the
input constraint. So in the remaining we always assume P € D..

Proposition 17.1. Define f(P) = supp, mie(x)jcp L(X;Y). Then
1. f is concave and non-decreasing. The domain of f, dom f = {xz: f(x) > —c0o} = D,.
2. One of the following is true: f(P) is continuous and finite on (Py,00), or f =00 on (Py,c0).

Furthermore, both properties hold for the function P — C;(P).
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Proof. In (1) all statements are obvious, except for concavity, which follows from the concavity
of Px = I(X;Y). For any P, such that E[c(X;)] < P,,i = 0,1, let X ~ APy, + APx,. Then
E[c(X)] < APy+ APy and I(X;Y) > M (Xo; Yo)+ M (X1;Y1). Hence f(APy+APy) 2 Af(Po)+Af(Py).
The second claim follows from concavity of f(-).

To extend these results to C;(P) observe that for every n

1
P~ — sup I(X"™Y™)
N Pyn:E[c(X™)]<P
is concave. Then taking liminf, ., the same holds for C;(P). O

An immediate consequence is that memoryless input is optimal for memoryless channel with
separable cost, which gives us the single-letter formula of the information capacity:

Corollary 17.1 (Single-letterization). Information capacity of stationary memoryless channel with
separable cost:

Ci(P)=f(P) = - ?;1(1)>1<PI(X;Y)~

Proof. C;(P) > f(P) is obvious by using Pxn» = (Px)". For “<”, use the concavity of f(-), we have
that for any Pxn,

XY™ € 31X Y7) € 3 PRI e (- 3. Ble(X)]) < nf(P).

7=1 7=1 7=1

17.2 Capacity under input constraint C(P) : Ci(P)

Theorem 17.1 (General weak converse).

Proof. The argument is the same as before: Take any (n,M, e, P)-code, W - X" - Y — W.
Apply Fano’s inequality, we have

~h(e)+(1-€)logM < I(W; W) < I(X™;Y™) < sup I(X™Y™) <nf(P)
Pxn:E[c(X™)]<P

O]

Theorem 17.2 (Extended Feinstein’s Lemma). Fiz a random transformation Py x. VPx,VF c
X, Yy >0,YM, there exists an (M, €)max-code with:

e Encoder satisfies the input constraint: f:[M] - F c X;

e Probability of error bound:

ePx(F) <Pli(X;Y) <logv] + —
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Note: when F = X, it reduces to the original Feinstein’s Lemma.

Proof. Similar to the proof of the original Feinstein’s Lemma, define the preliminary decoding
regions E. = {y :i(c;y) > log~} for all c € X. Sequentially pick codewords {ci,...,cp} from the
set I' and the final decoding region {D1,..., Dy} where D; = E.;\ Ui;} Dy,. The stopping criterion
is that M is maximal, i.e.,

Vg € F, Py[Eqy,\ Uil Dj|X = 29] <1-¢
< Vg e X, Py[Ey\ UM, Dj|X =20] < (1-€)1[zg € F]+1[zg € F°]
= average over g ~ Px, P[{i(X;Y) 2 logy}\U}l; D;] < (1 - €)Px(F) + Px(F®) = 1-€Px(F)

From here, we can complete the proof by following the same steps as in the proof of Feinstein’s
lemma (Theorem 15.3). O

Theorem 17.3 (Achievability). For any information stable channel with input constraints and
P > Py we have
C(P) > Cy(P) (17.3)

Proof. Let us consider a special case of the stationary memoryless channel (the proof for general
information stable channel follows similarly). So we assume Py xn = (Pyx)".

Fix n > 1. Since the channel is stationary memoryless, we have Pyn|xn = (Py|x)". Choose a Px
such that E[c(X)] < P, Pick logM =n(I(X;Y)-26) and logy = n(I(X;Y) -9).

With the input constraint set F,, = {a" : % > c(xy) < P}, and iid input distribution Px» = P¥,
we apply the extended Feinstein’s Lemma, there exists an (n, M, €,, P)max-code with the encoder
satisfying input constraint ' and the error probability

en Px(F) < PO(X™Y™")<n(I(X;Y)=-0)) +exp(-nd)
— [ —
-1 —0 as n—>oo by WLLN and stationary memoryless assumption -0

Also, since E[c(X)] < P, by WLLN, we have Pxn(F,) = P(: Y c(a;) < P) > 1.

en(1+0(1)) <o(1)
= ¢, >0asn—- o0

= Ve, Ing, s.t. Vn >ng,I(n, M, €,, P)max-code, with €, < e
Therefore

C.(P)> 2 log M = [(X:Y) =25, ¥6>0,¥Py st. E[c(X)] <P
n
= Ce(P) > sup lm(I(X;Y) -26)
Px:E[c(X)]<P 90
= C(P)>  sup  I(X;Y)=Ci(P-)=Ci(P)
PxiE[c(X)]<P

where the last equality is from the continuity of C; on (P, o0) by Proposition 17.1. Notice
that for general information stable channel, we just need to use the definition to show that
PGU(X™:Y"™) <n(C;-0)) - 0, and all the rest follows. O
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Theorem 17.4 (Shannon capacity). For an information stable channel with cost constraint and
for any admissible constraint P we have

C(P) = C;(P).

Proof. The case of P = Py is treated in the homework. So assume P > Py. Theorem 17.1 shows
C(P) <Y P) | thus C(P) < Ci(P). On the other hand, from Theorem 17.3 we have C'(P) >

1-€
Cy(P). O

Note: In homework, you will show that C'(Py) = C;(P) also holds, even though C;(P) may be
discontinuous at Fj.

17.3 Applications

17.3.1 Stationary AWGN channel

Z ~ N(0,0%)

X * Y

(N

Definition 17.5 (AWGN). The additive Gaussian noise (AWGN) channel is a stationary memoryless
additive-noise channel with separable cost constraint: A = B = R, c(z) = 22, Py|x is given by
Y = X + Z, where Z ~ N(0,02) 1L X, and average power constraint EX? < P.

In other words, Y™ = X" + Z™, where Z" ~ N'(0, I,,).

. Gaussian .
Note: Here “white” = uncorrelated = " independent.

Note: Complex AWGN channel is similarly defined: A =B =C, c(x) = |z|?, and Z" ~ CN(0, I,,)

Theorem 17.5. For stationary (C)-AWGN channel, the channel capacity is equal to information
capacity, and is given by:

1 P
C(P)=Cy(P) = 51og (1 + ?) for AWGN

C(P)=Cy(P) =log(1+£) for C-AWGN

Proof. By Corollary 17.1,

Ci= sup I(X;X+2)
PxEX2<P

Then use Theorem 4.6 (Gaussian saddlepoint) to conclude X ~ N(0, P) (or CN(0, P)) is the unique
caid. O
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Note: Since Z" ~ N(0,0?), then with high probability,
|Z"|2 concentrates around V/no2. Similarly, due the power
constraint and the fact that Z™ 1 X", the received vector
Y lies in an #3-ball of radius \/n(P + ¢2). Since the noise
can at most perturb the codeword by Vno? in Euclidean
distance, if we can pack M balls of radius Vno? into the
{o-ball of radius \/n(P + 0?) centered at the origin, then this
gives a good codebook and decision regions. The packing
number is related to the volume ratio. Note that the volume
of an fs-ball of radius r in R" is given by c¢,r" for some

) (1 + %)np. Take the log

constant ¢,. Then %
‘s 1 P
and divide by n, we get 5 log (1 + p).

Theorem 17.5 applies to Gaussian noise. What if the noise is non-Gaussian and how sensitive is
the capacity formula %log(l +SNR) to the Gaussian assumption? Recall the Gaussian saddlepoint
result we have studied in Lecture 4 where we showed that for the same variance, Gaussian noise
is the worst which shows that the capacity of any non-Gaussian noise is at least %log(l +SNR).
Conversely, it turns out the increase of the capacity can be controlled by how non-Gaussian the
noise is (in terms of KL divergence). The following result is due to Ihara.

Theorem 17.6 (Additive Non-Gaussian noise). Let Z be a real-valued random variable independent
of X and EZ? < . Let 0® =VarZ. Then

1 P 1 P
—log(1+—) < sup I(X:X+7)< —log(1+—)+D(PZHN(IEZ,02)).
2 02" pyEX2<P 2 o?

Proof. Homework. O

Note: The quantity D(Pz|N(EZ,c?)) is sometimes called the non-Gaussianness of Z, where
N(EZ,0?) is a Gaussian with the same mean and variance as Z. So if Z has a non-Gaussian density,
say, Z is uniform on [0, 1], then the capacity can only differ by a constant compared to AWGN,
which still scales as %log SNR in the high-SNR regime. On the other hand, if Z is discrete, then
D(Pz|N(EZ,0?%)) = 0o and indeed in this case one can show that the capacity is infinite because
the noise is “too weak”.

17.3.2 Parallel AWGN channel

Definition 17.6 (Parallel AWGN). A parallel AWGN channel with L branches is defined as follows:
A=B=R" c(x) = iy lowl®s Pyrpxe : Yo = Xi + Z, for k= 1,...,L, and Zj, ~ N(0,07) are
independent for each branch.
Theorem 17.7 (Waterfilling). The capacity of L-parallel AWGN channel is given by
1 & T
C ==Y log" =
2 ]; UJQ.

where log*(z) £ max(logx,0), and T >0 is determined by

L
P =Y|T-0oj*
j=1
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Proof.

C;i(P) sup  I(xL;vh)
P, Y E[X2]<P

L

sup . sup  J(Xp;Yy)

2 Pp<P, P20 k=1 E[X2]<P;,

L

1 P

= sup Z —log(1+ —g)
¥ PL<P,P20 =] 2 O

IN

with equality if X ~ N (0, P;) are independent. So the question boils down to the last maximization

problem — power allocation: Denote the Lagragian multipliers for the constraint Y. P, < P by A

and for the constraint Py > 0 by pr. We want to solve max Y, % log(1 + %) - upPp + A\(P =Y Py).
k

First-order condition on Py gives that

1 1

20‘]%+P],C

=A— g, ppPr=0

therefore the optimal solution is

L
Py =|T -op|*, T is chosen such that P =Y |T - 7|
k=1
O

Note: The figure illustrates the power allocation via water-filling. In this particular case, the second
branch is too noisy (o2 too big) such that it is better be discarded, i.e., the assigned power is zero.

T

. I

. T

waterfilling across 3 parallel channels

Note: [Significance of the waterfilling theorem| In the high SNR regime, the capacity for 1 AWGN
channel is approximately %log P, while the capacity for L parallel AWGN channel is approximately
%log(%) N %bgP for large P. This L-fold increase in capacity at high SNR regime leads to the
powerful technique of spatial multiplexing in MIMO.

Also notice that this gain does not come from multipath diversity. Consider the scheme that a
single stream of data is sent through every parallel channel simultaneously, with multipath diversity,
the effective noise level is reduced to %, and the capacity is approximately log(LP), which is much

smaller than %log(%) for P large.

17.4* Non-stationary AWGN

Definition 17.7 (Non-stationary AWGN). A non-stationary AWGN channel is defined as follows:
A=B=R, c(z) =22, Py, x;:Yj=X;+Z;j, where Z; ~./\/’(0,a]2~ )
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Theorem 17.8. Assume that for every T the following limits exist:

then the capacity of the non-stationary AWGN channel is given by the parameterized form: c(T) =
Ci(T) with input power constraint P(T).

Proof. Fix T > 0. Then it is clear from the waterfilling solution that

T

sup I(X™;Y™) = Z log™ gt (17.4)
Jj= 12 9;
where supremum is over all Px» such that
n 1 & 2|+
Elc(X™)] < — Z T -o3|". (17.5)
n :

Now, by assumption, the LHS of (17.5) converges to ]5(T ). Thus, we have that for every § >0

Ci(P(T) -06) <
Ci(P(T) +06) >

Ci(T) (17.6)
Ci(T) (17.7)
Taking ¢ - 0 and invoking continuity of P~ C;(P), we get that the information capacity satisfies
Ci(P(T)) = Cy(T).
The channel is information stable. Indeed, from (16.17)
logZe P; < logZe

2 Pj+o} 2

Var(i(X;;Y;)) =
and thus

iniVar(z i3Yj)) < 0.

From here information stability follows via Theorem 16.9. O
Note: Non-stationary AWGN is primarily interesting due to its relationship to the stationary
Additive Colored Gaussian noise channel in the following discussion.

17.5*% Stationary Additive Colored Gaussian noise channel

Definition 17.8 (Additive colored Gaussian noise channel ). An Additive Colored Gaussian noise
channel is defined as follows: A = B =R, c(z) = 22, Py x,:Y; = Xj+ Z;, where Zj is a stationary
Gaussian process with spectral density fz(w) > 0,w € [-m,7].
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Theorem 17.9. The capacity of stationary ACGN channel is given by the parameterized form:

1 27 ] T
CT:—f ~ Jog* d
D=5 )0 2% ™

P(T) = % /02F|T—fz(w)|+dw

power allocation

/ fz(w)

waterfilling across spectrum for stationary ACGN channel
Proof. Take n > 1, consider the diagonalization of the covariance matrix of Z™:
Cov(Z™) =% = U*SU, such that ¥ = diag(o1,...,0n)

Since Cov(Z™) is positive semi-definite, U is a unitary matrix. Define X"=UX" and Y"=UY",
the channel between X™ and Y is thus

yr=X"+uz",
Cov(UZ™) =UCou(Z™)U* =%

Therefore we have the equivalent channel as follows:
yr=X"+27", Z]" ~ N(O,U]Z) indep across j

By Theorem 17.8, we have that

~ 12 T 1 2m ] T
C=lim - ) log" — = — f —log™ dw. ( by Szegd, Theorem 5.6)
0 2.0

n—com ajz 27 2 fz(w)
1 & 2|+
JLIQOE;IT—%I = P(T)

Finally since U is unitary, C = C.
Z":Cov(Z™) =%

~ multiply by * multiply by ~
X—7-1 X N Y U — Y
stationary additive Gausian noise channel O

Note: Noise is born white, the colored noise is essentially due to some filtering.
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17.6* Additive White Gaussian Noise channel with Intersymbol
Interference

Definition 17.9 (AWGN with ISI). An AWGN channel with ISI is defined as follows: A =B =R,
c(z) = 2, and the channel law Py xn is given by

Yk:th_ij+Zk, k)=1,...,n
j=1

where Z ~ N(0,1) is white Gaussian noise, {hy,k = —00,...,00} are coefficients of a discrete-time
channel filter.

Theorem 17.10. Suppose that the sequence {hy} is an inverse Fourier transform of a frequency
response H(w):

1 m iwk
= —f e"“"H(w)dw .

2w Jo
Assume also that H(w) is a continuous function on [0,27]. Then the capacity of the AWGN channel
with ISI is given by

iy,

1 27 1 .
C(T) = 5 [ Slog™(T1H (w))dw
1

1 27
P =52 fo T TP

Proof. (Sketch) At the decoder apply the inverse filter with frequency response w ﬁ The
equivalent channel then becomes a stationary colored-noise Gaussian channel:

+

Yj=X;+2j,
where Zj is a stationary Gaussian process with spectral density

1

P T

Then apply Theorem 17.9 to the resulting channel.
Remark: to make the above argument rigorous one must simply carefully analyze the non-zero
error introduced by truncating the deconvolution filter to finite n. O

17.7% Gaussian channels with amplitude constraints

We have examined some classical results of additive Gaussian noise channels. In the following, we
will list some more recent results without proof.

Theorem 17.11 (Amplitude-constrained capacity of AWGN channel). For an AWGN channel
Yi = X; + Z; with amplitude constraint |X;| < A and energy constraint Yi-, XZ2 <nP, we denote the
capacity by:

C(A,P) = max I(X; X +27).
Px:|X|<AE|X|]?<P

Capacity achieving input distribution Py is discrete, with finitely many atoms on [-A, A]. Moreover,
the convergence speed of lim 4o, C'(A, P) = %log(l + P) is of the order e 0(A%)

For details, see [Smi71] and [PW14, Section III].
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17.8* Gaussian channels with fading

Fading channels are often used to model the urban signal propagation with multipath or shadowing.
The received signal Y; is modeled to be affected by multiplicative fading coefficient H; and additive
noise Z;:

EZHZ'XZ‘-FZZ', ZZ‘NN(O,l)

In the coherent case (also known as CSIR — for channel state information at the receiver), the
receiver has access to the channel state information of H;, i.e. the channel output is effectively
(Yi, H;). Whenever H; is a stationary ergodic process, we have the channel capacity given by:

C(P) =L log(1 + PIH)]

and the capacity achieving input distribution is the usual Px = N (0, P). Note that the capacity
C(P) is in the order of log(P) and we call the channel “energy efficient”.

In the non-coherent case where the receiver does not have the information of H;, no simple
expression for the channel capacity is known. It is known, however, that the capacity achieving
input distribution is discrete, and the capacity

C(P) =O(loglog P), P - o (17.8)

This channel is said to be “energy inefficient”.

E[X?] < P) H; Z;

X; é é Y—> Receiver

Fading channel

Cmmmmmmmms

With introduction of multiple antenna channels, there are endless variations, theoretical open
problems and practically unresolved issues in the topic of fading channels. We recommend consulting
textbook [TV05] for details.
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§ 18. LATTICE CODES (BY O. ORDENTLICH)

Consider the n-dimensional additive white Gaussian noise (AWGN) channel
Y=X+7Z

where Z ~ N(0,1,x,) is statistically independent of the input X. Our goal is to communicate
reliably over this channel, under the power constraint

1
~|X|* <SNR
n
where SNR is the signal-to-noise-ratio. The capacity of the AWGN channel is

C= %log(l + SNR) bits/channel use,

and is achieved with high probability by a codebook drawn at random from the Gaussian i.i.d.
ensemble. However, a typical codebook from this ensemble has very little structure, and is therefore
not applicable for practical systems. A similar problem occurs in discrete additive memoryless
stationary channels, e.g., BSC, where most members of the capacity achieving i.i.d. uniform
codebook ensemble have no structure. In the discrete case, engineers resort to linear codes to
circumvent the lack of structure. Lattice codes are the Euclidean space counterpart of linear codes,
and as we shall see, enable to achieve the capacity of the AWGN channel with much more structure
than random codes. In fact, we will construct a lattice code with rate that approaches % log(1+SNR)
that is guaranteed to achieve small error probability for essentially all additive noise channels with
the same noise second moment. More precisely, our scheme will work if the noise vector Z is semz
norm-ergodic.

Definition 18.1. We say that a sequence in n of random noise vectors Z(™ of length n with (finite)

a

effective variance o3 = %]EHZ(”) |2, is semi norm-ergodic if for any €,6 >0 and n large enough

Pr(z<"> ¢ B/ +5)na§) < (18.1)

where B(r) is an n-dimensional ball of radius r.

18.1 Lattice Definitions

A lattice A is a discrete subgroup of R™ which is closed under reflection and real addition. Any
lattice A in R"™ is spanned by some n x n matrix G such that

A={t=Ga:aecZ"}.
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We will assume G is full-rank. Denote the nearest neighbor quantizer associated with the lattice A
by

Qa(x) éargr&ijy |x -t (18.2)
where ties are broken in a systematic manner. We define the modulo operation w.r.t. a lattice A as
[x] mod A £ x - Q (x),

and note that it satisfies the distributive law,
[[x] mod A +y] mod A = [x +y] mod A.

The basic Voronoi region of A, denoted by V), is the set of all points in R™ which are quantized
to the zero vector. The systematic tie-breaking in (18.2) ensures that

lJ (V+t) =R",
teA

where ) denotes disjoint union. Thus, V is a fundamental cell of A.

Definition 18.2. A measurable set S € R” is called a fundamental cell of A if

) (S+t)=R"
teA

We denote the volume of a set S € R™ by Vol(.5).
Proposition 18.1. If S is a fundamental cell of A, then Vol(S) = Vol(V). Furthermore

SmodA={[s]modA : seS}=V.

Proof ([Zam14]). For any t € A define
Ae=2Sn(t+V); De=Vn(t+5S5).

Note that
Di=[(-t+V)nS]+t
= .A_t +t.
Thus
Vol(S) = > Vol(Ag) = . Vol(A_g +t) = > Vol(Dy) = Vol (V).
teA teA teA
Moreover

SZUAt:UA_t:UDt—t,

teA teA teA

and therefore

[S]mod A =) Dy = V.
teA
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Corollary 18.1. If S is a fundamental cell of a lattice A with generating matriz G, then Vol(S) =
|det(G)|. In Particular, Vol(V) =|det(G)|.

Proof. Let P =G-[0,1)" and note that it is a fundamental cell of A as R"” = Z™ +[0,1)". The claim
now follows from Proposition 18.1 since Vol(P) = |det(G)|- Vol([0,1)") =|det(G)]. O

Definition 18.3 (Lattice decoder). A lattice decoder w.r.t. the lattice A returns for every y € R"
the point Qx(y).

Remark 18.1. Recall that for linear codes, the ML decoder merely consisted of mapping syndromes
to shifts. Similarly, it can be shown that a lattice decoder can be expressed as

QA(y) =Y — Gsynd ([G_ly] mod 1) ) (18'3)

for some ggynq : [0,1)" = R", where the mod 1 operation above is to be understood as componentwise
modulo reduction. Thus, a lattice decoder is indeed much more “structured” than ML decoder for a
random code.

Note that for an additive channel Y = X + Z, if X € A we have that
P.=Pr(Qa(Y)#X)=Pr(Z¢V). (18.4)

We therefore see that the resilience of a lattice to additive noise is dictated by its Voronoi region.
Since we know that Z will be inside a ball of radius \/n(1 + §) with high probability, we would like
the Voronoi region to be as close as possible to a ball. We define the effective radius of a lattice,
denoted reg(A) as the radius of a ball with the same volume as V, namely Vol (B (reg(A))) = Vol(V).

Definition 18.4 (Goodness for coding). A sequence of lattices A with growing dimension,
satisfying

2 (A(R)
lim Teﬂ'( ) _

n—o00 n

o

for some ® > 0, is called good for channel coding if for any additive semi norm-ergodic noise sequence
Z(™ with effective variance o3 = 1E|Z[? < ®

T n

lim Pr(Z(”) ¢ v(")) - 0.

n—oo

An alternative interpretation of this property, is that for a sequence A that is good for coding,
for any 0 <6 <1 holds

Vol (B((1-8)rea(A™)) n V(™)
neo Vol (B((1-0)reg(AM)))

Roughly speaking, the Voronoi region of a lattice that is good for coding is as resilient to semi
norm-ergodic noise as a ball with the same volume.
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Figure 18.1: (a) shows a lattice in R?, and (b) shows its Voronoi region and the corresponding
effective ball.

18.2 First Attempt at AWGN Capacity

Assume we have a lattice A ¢ R™ with reg(A) = /n(1+0) that is good for coding, and we would like
to use it for communicating over an additive noise channel. In order to meet the power constraint,
we must first intersect A, or a shifted version of A, with some compact set S that enforces the power
constraint. The most obvious choice is taking S to be a ball with radius vVnSNR, and take some
shift v € R", such that the codebook

C=(v+A)B(VnSNR) (18.5)
satisfies the power constraint. Moreover [Loe97|, there exist a shift v such that
1
| > Vol (5)
Vol(V)
) (\/nSNR)n
Tef(A)
_ 975 (log(SNR)-log(1+6))

To see this, let V ~ Uniform(V), and write the expected size of |C| as

EC|=E) 1((t+V)eS)
teA

1
= Vol() vevg{%]l((t +v)eS)dv
1
~ Vol(V) Jxern
_ Vol(S)
- Vol(V)'
For decoding, we will simply apply the lattice decoder QA (Y —v) on the shifted output. Since
Y - v =t+Z for some t € A, the error probability is

P.=Pr(Qa(Y -v)#t)=Pr(Z¢V).

T(x e S)dx

(18.6)
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Since A is good for coding and @ =(1+6) > iE|Z|?, the error probability of this scheme over
an additive semi norm-ergodic noise channel will vanish with n. Taking § - 0 we see that any rate
R< %log(SNR) can be achieved reliably. Note that for this coding scheme (encoder+decoder) the
average error probability and the maximal error probability are the same.

The construction above gets us close to the AWGN channel capacity. We note that a possible
reason for the loss of +1 in the achievable rate is the suboptimality of the lattice decoder for the
codebook C. The lattice decoder assumes all points of A were equally likely to be transmitted.
However, in C only lattice points inside the ball can be transmitted. Indeed, it was shown [UURIS]
that if one replaces the lattice decoder with a decoder that takes the shaping region into account,
there exist lattices and shifts for which the codebook (v + A) N B(v/nSNR) is capacity achieving.
The main drawback of this approach is that the decoder no longer exploits the full structure of the
lattice, so the advantages of using a lattice code w.r.t. some typical member of the Gaussian i.i.d.
ensemble are not so clear anymore.

18.3 Nested Lattice Codes/Voronoi Constellations

A lattice A. is said to be nested in Ay if A. c Ay. The lattice A, is referred to as the coarse lattice
and Ay as the fine lattice. The nesting ratio is defined as

Vol (V) \'"
Vol(Vf))

A nested lattice code (sometimes also called “Voronoi constellation”) based on the nested lattice

pair A c Ay is defined as [CS83, For89, EZ04]
[,éAfﬂVc. (18.8)

T(As,Ag) 2 ( (18.7)

Proposition 18.2.
] - Vol(V,)
Vol(Vy)'
Thus, the codebook L has rate R = %log|ﬁ| =logT'(Af, Ae).
Proof. First note that

Ap= [t +Ae).
tel

Let

S=J(t+Vy),
tel

and note that
R"= ) (b+Vy)

beAy

= J Ya+t+Vy)
aelA. tel

= (a+(U(t+Vf)))
acA, tel

= (a+9).
ael.
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Thus, S is a fundamental cell of A., and we have
Vol(V.) = Vol(S) = |L]- Vol(Vy).
O

We will use the codebook £ with a standard lattice decoder, ignoring the fact that only points
in V. were transmitted. Therefore, the resilience to noise will be dictated mainly by Ay. The role of
the coarse lattice A. is to perform shaping. In order to maximize the rate of the codebook £ without
violating the power constraint, we would like V., to have the maximal possible volume, under the
constraint that the average power of a transmitted codeword is no more than nSNR.

The average transmission power of the codebook L is related to a quantity called the second
moment of a lattice. Let U ~ Uniform(V). The second moment of A is defined as o*(A) = LE|U|?.
Let W ~ Uniform(B(reg(A)). By the isoperimetric inequality [Zam14]

1 ren(A)
o?(A) > —E|W|? = =2
n n+2

A lattice A exhibits a good tradeoff between average power and volume if its second moment is close
to that of B(reg(A).

Definition 18.5 (Goodness for MSE quantization). A sequence of lattices A™ with growing
dimension, is called good for MSE quantization if
no? (A)
neee reﬁ (A " )
Remark 18.2. Note that both “goodness for coding” and “goodness for quantization” are scale
invariant properties: if A satisfy them, so does aA for any « € R.

Theorem 18.1 ([OELS)). If A is good for MSE quantization and U ~ Uniform(V), then U is semi
norm-ergodic. Furthermore, if Z is semi norm-ergodic and statistically independent of U, then for
any a, B € R the random vector U + BZ is semi norm-ergodic.

Theorem 18.2 ([ELZQ5, |). For any finite nesting ratio I'(As, Ac), there exist a nested lattice
pair A. ¢ Ay where the coarse lattice A, is good for MSE quantization and the fine lattice Ay is good
for coding.

We now describe the Mod-A coding scheme introduced by Erez and Zamir [EZ04]. Let A, c Ay
be a nested lattice pair, where the coarse lattice is good for MSE quantization and has 02(A.) =
SNR(1 - €), whereas the fine lattice is good for coding and has 7%;(A) = nlfgﬁR 1+¢€). The rate is
therefore

1
n ~\Vol(Vy)

21 Tg (Ae)

"2 IOg(vf:(Af))

- %log( SNR(1 - ¢) ) (18.9)

SNR
T7snR (L +€)

1
- §log(1+SNR),

190



Figure 18.2: An example of a nested lattice code. The points and Voronoi region of A. are plotted
in blue, and the points of the fine lattice in black.

Z
t ——P—|mod-A X éY

VA

Y. t
Yot (0 O —fmoda o

0

Figure 18.3: Schematic illustration of the Mod-A scheme.

2
where in (18.9) we have used the goodness of A, for MSE quantization, that implies % - o2(A,).
The scheme also uses common randomness, namely a dither vector U ~ Uniform(),) statistically
independent of everything, known to both the transmitter and the receiver. In order to transmit a

message w € [1,... ,2"R] the encoder maps it to the corresponding point t = t(w) € £ and transmits
X =[t+ U] mod A. (18.10)

Lemma 18.1 (Crypto Lemma). Let A be a lattice in R™, let U ~ Uniform(V) and let V be a
random vector in R", statistically independent of U. The random vector X = [V + U] mod A is
uniformly distributed over V and statistically independent of V.

Proof. For any v € R” the set v +V is a fundamental cell of A. Thus, by Proposition 18.1 we have
that [v+ V] mod A =V and Vol(v + V) = Vol(V). Thus, for any v € R”

X|V =v ~[v+U]mod A ~ Uniform(V).
O

The Crypto Lemma ensures that ZE|X|? = (1 - €)SNR, but our power constraint was |X|? <
nSNR. Since X is uniformly distributed over V, and A, is good for MSE quantization, Theorem 18.1
implies that |X||* < nSNR with high probability. Thus, whenever the power constraint is violated
we can just transmit 0 instead of X, and this will have a negligible effect on the error probability of
the scheme.
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The receiver scales its observation by a factor a > 0 to be specified later, subtracts the dither U
and reduces the result modulo the coarse lattice

Yeff

oY - U] mod A,

X-U+(a-1)X+aZ]mod A,

t+(a-1)X+aZ]mod A, (18.11)
t + Zeg] mod A, (18.12)

Il
— o o/

where we have used the modulo distributive law in (18.11), and
Zg=(a-1)X+aZ (18.13)

is effective noise, that is statistically independent of t, with effective variance
1
o2s(a) 2 “E|Zeg|? < * + (1 - @)*SNR. (18.14)
n

Since Z is semi norm-ergodic, and X is uniformly distributed over the Voronoi region of a lattice that
is good for MSE quantization, Theorem 18.1 implies that Z.g is semi norm-ergodic with effective
variance o%(a). Setting v = SNR/(1+SNR), such as to minimize the upper bound on o%¢(«) results
in effective variance o3 < SNR/(1 + SNR).

The receiver next computes

t= [QAf (Yegr)] mod A,
= [QAf (t+ Zeﬁ‘)] mod A, (18.15)

and outputs the message corresponding to t as its estimate. Since A 1 is good for coding, Z.g is
semi norm-ergodic, and

2
reg(Ay) B SNR 2
n - HITgNR > e

we have that Pr(t # t) — 0 as the lattice dimension tends to infinity. Thus, we have proved the
following.

Theorem 18.3. There exist a coding scheme based on a nested lattice pair, that reliably achieves
any rate below %log(l +SNR) with lattice decoding for all additive semi norm-ergodic channels. In
particular, if the additive noise is AWGN, this scheme is capacity achieving.

Remark 18.3. In the Mod-A scheme the error probability does not depend on the chosen message,
such that P, yax = Peavg. However, this required common randomness in the form of the dither U.
By a standard averaging argument it follows that there exist some fixed shift u that achieves the
same, or better, P .vs. However, for a fixed shift the error probability is no longer independent of
the chosen message.

18.4 Dirty Paper Coding

Assume now that the channel is

Y=X+S+7Z,
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where Z is a unit variance semi norm-ergodic noise, X is subject to the same power constraint
|X|? < nSNR as before, and S is some arbitrary interference vector, known to the transmitter but
not to the receiver.

Naively, one can think that the encoder can handle the interference S just by subtracting it
from the transmitted codeword. However, if the codebook is designed to exactly meet the power
constraint, after subtracting S the power constraint will be violated. Moreover, if |S||? > nSNR, this
approach is just not feasible.

Using the Mod-A scheme, S can be cancelled out with no cost in performance. Specifically,
instead of transmitting X = [t + U] mod A., the transmitted signal in the presence of known
interference will be

X =[t+U-aS] mod A..

Clearly, the power constraint is not violated as X ~ Uniform(V,) due to the Crypto Lemma (now,
U should also be independent of S). The decoder is exactly the same as in the Mod-A scheme with
no interference. It is easy to verify that the interference is completely cancelled out, and any rate
below %log(l +SNR) can still be achieved.

Remark 18.4. When Z is Gaussian and S is Gaussian there is a scheme based on random codes
that can reliably achieve %log(l +SNR). For arbitrary S, to date, only lattice based coding schemes
are known to achieve the interference free capacity. There are many more scenarios where lattice
codes can reliably achieve better rates than the best known random coding schemes.

18.5 Construction of Good Nested Lattice Pairs

We now briefly describe a method for constructing nested lattice pairs. Our construction is based
on starting with a linear code over a prime finite field, and embedding it periodically in R™ to form
a lattice.

Definition 18.6 (p-ary Construction A). Let p be a prime number, and let F ¢ Z’Ijxn be a kxn
matrix whose entries are all members of the finite field Z,. The matrix F generates a linear p-ary
code

C(F)= {XEZZ : x = [w!F] mod p WEZ];}.
The p-ary Construction A lattice induced by the matrix F is defined as

A(F) 2 p7'C(F) + 2"

Note that any point in A(F) can be decomposed as x = p~'c + a for some c € C(F) (where we
identify the elements of Z, with the integers [0,1,...,p—1]) and a € Z". Thus, for any x1,xs € A(F)
we have

X1 + X9 :p_l(cl +Cg) +a; +ag
=p_1([cl +co] mod p +pa) +a; + ag
=ple+a
e A(F)
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where € = [c; + c2] mod p € C(F) due to the linearity of C(F), and a and a are some vectors in
Z™. It can be verified similarly that for any x € A(F) it holds that —x € A(F), and that if all
codewords in C(F) are distinct, then A(F) has a finite minimum distance. Thus, A(F) is indeed
a lattice. Moreover, if F is full-rank over Z,, then the number of distinct codewords in C(F) is
p¥. Consequently, the number of lattice points in every integer shift of the unit cube is p*, so the
corresponding Voronoi region must satisfy Vol(V) = pF.

Similarly, we can construct a nested lattice pair from a linear code. Let 0 < k' < k and let F' be
the sub-matrix obtained by taking only the first & rows of F. The matrix F’ generates a linear
code C'(F') that is nested in C(F), i.e., C'(F’) c C(F). Consequently we have that A(F’) c A(F),
and the nesting ratio is

!

T(A(F),A(F')) =p' 7.

An advantage of this nested lattice construction for Voronoi constellations is that there is a very
simple mapping between messages and codewords in £ = Ay nV.. Namely, we can index our set
of 2nF = ph-k messages by all vectors in Zlg’k‘/. Then, for each message vector w € Z’;’k/, the
corresponding codeword in £ = A(F) nV(A(F’)) is obtained by constructing the vector

wi=[0-0w']eZy, (18.16)
—
k' zeros

and taking t = t(w) = [[VVTF] mod p] mod A(F’). Also, in order to specify the codebook L, only
the (finite field) generating matrix F is needed.

If we take the elements of F to be i.i.d. and uniform over Z,, we get a random ensemble of
nested lattice codes. It can be shown that if p grows fast enough with the dimension n (taking
p= O(n(1+ﬁ)/ 2) suffices) almost all pairs in the ensemble have the property that both the fine and
coarse lattice are good for both coding and for MSE quantization [QE15].

Disclaimer: This text is a very brief and non-exhaustive survey of the applications of lattices
in information theory. For a comprehensive treatment, see [Zamli).
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§ 19. CHANNEL CODING: ENERGY-PER-BIT, CONTINUOUS-TIME CHANNELS

19.1 Energy per bit

Consider the additive Gaussian noise channel:
N,
Yi=X;+%;, ZZ-~/\/(0,70 . (19.1)

In the last lecture, we analyzed the maximum number of information bits (M*(n,e¢, P)) that can be
pumped through for given n time use of the channel under the energy constraint P. Today we shall
study the counterpart of it: without any time constraint, in order to send k information bits, what
is the minimum energy needed? (E*(k,€))

Definition 19.1 ( (E,2* ¢) code). For a channel W - X® - Y*® - W, where Y® = X® + Z*® a
(E,2%,€) code is a pair of encoder-decoder:

fi[2F] - R®, g:R™ - [2%],

such that 1). Vm, | f(m)|3 < E,

2). Plg(f(W)+Z>)+W]<e.

Definition 19.2 (Fundamental limit).
E*(k,€) = min{E : 3(E, 2", ¢) code}

Note: Operational meaning of limeo E*(k,€): it suggests the smallest battery one needs in order
to send k bits without any time constraints, below that level reliable communication is impossible.

Theorem 19.1 ((Ep/No)min = —1.6dB).

limlimsupE (k.e) _ _No L

= ) =-1.6dB 19.2
0 poo k logoe” logye ( )

Proof.
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1. (“>” converse part)

() + ek <d((1- qnﬁ) (Fano)

<I(W;W) (data processing for divergence)
<I(X;7V%) (data processing for M.I.)

SZI(XZ;}/@) (lim I(Xn;U):](XDO;U))
=1 n—»o0o
1 EX?2
< ; B log(1 + NO/ZQ (Gaussian)
© EX?
< o8e : (linearization)
2 = No/2
< £10 e
A NO g
:>E (kve) > NO _ h(G))
k loge k

2. (“<” achievability part)
Notice that a (n,2* €, P) code for AWGN channel is also a (nP,2* €) code for the energy
problem without time constraint. Therefore,

logy M,y o(n €, P) >k = E*(k,e) <nP.

axr

VP, take ky, = |log M}, ,.(n, €, P)|, we have %ﬂ"g) < %, Vn, and take the limit:

. E*(kp,e) . nP
limsup ——= < limsup -
n—o00 kn n—oo log Mmam(TL’E?P)
B P
liminf, o %1og M . (n, €, P)
B P
1 P
3 log(1 + _No/2)
Choose P for the lowest upper bound:
E*(k P
lim sup M <inf 7————5—
n—oo kn P>0 3 log(l + m)
) P
= lim 7
P-0 Elog(l + m)
- log, e

O]

Note: [Remark] In order to send information reliably at E,/Ny = —1.6dB, infinitely many time
slots are needed, and the information rate (spectral efficiency) is thus 0. In order to have non-zero
spectral efficiency, one necessarily has to step back from -1.6 dB.
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Note: [PPM code] The following code, pulse-position modulation (PPM), is very efficient in terms
of Eb/N().

PPM encoder: Ym, f(m) =(0,0,..., VE ,...) (19.3)
——
m-th location

It is not hard to derive an upper bound on the probability of error that this code achieves [PPV11,

Theorem 2:
. 2F
esE[mm{MQ(\/F-FZ),l}], Z ~N(0,1).
0

In fact, the code can be further slightly optimized by subtracting the common center of gravity
(2‘k\/E L 27RE .) and rescaling each codeword to satisfy the power constraint. The resulting
constellation (simplex code) is conjectured to be non-asymptotic optimum in terms of Ej/Ny for
small € (“simplex conjecture”).

19.2 What is Ny?

In the above discussion, we have assumed Z; ~ N (0, Ny/2), but how do we determine Ny?
In reality the signals are continuous time (CT) process, the continuous time AWGN channel for
the RF signals is modeled as:

Y(t) = X(t) + N(t) (19.4)

where noise N () (added at the receiver antenna) is a real stationary ergodic process and is assumed
to be “white Gaussian noise” with single-sided PSD Ny. Figure 19.1 at the end illustrates the
communication architecture. In the following discussion, we shall find the equivalent discrete
time (DT) AWGN model for the continuous time (CT) AWGN model in (19.4), and identify the
relationship between Ny in the DT model and N (¢) in the CT model.

e Goal: communication in f. + B/2 band.
(the (possibly complex) baseband signal lies in [-W,+W], where W = B/2)

e observations:

1. Any signal band limited to f.+ B/2 can be produced by this architecture

2. At the step of C/D conversion, the LPF followed by sampling at B samples/sec is
sufficient statistics for estimating X (¢), Xp(t), as well as { X, }.

First of all, what is N(¢) in (19.4)?

Engineers’ definition of N(t)
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Band pass

mi il B

B 0 B w 19

Testing whether a process N (¢) is “white noise”

Estimate the average power dissipation at the resistor:

1 T i *
T Jiso F2at " B[F?) Y Ny B

If for some constant Ny, (*) holds for any narrow band with center frequency f. and bandwidth B,
then N (%) is called a “white noise” with one-sided PSD Nj.
Typically, white noise comes from thermal noise at the receiver antenna. Thus:

Ny~ kT (19.5)

where k =1.38 x 10723 is the Boltzmann constant, and T is the absolute temperature. The unit of
No is (Watt/Hz = J).

An intuitive explanation to (19.5) is as follows: the thermal energy carried by each microscopic
degree of freedom (dof) is approximately ]%T; for bandwidth B and duration 7', there are in total
2BT dof; by “white noise” definition we have the total energy of the noise to be:

NoBT = %TQBT = Ny=kT.

Mathematicians’ definition of N (t)

Denote the set of all real finite energy signals f(¢) by L2(R), it is a vector space with the inner
product of two signals f(t),g(t) defined by

<tg>= [ 10ty

Definition 19.3 (White noise). N(t) is a white noise with two-sided PSD being constant Ny/2 if
Vf,g€La(R) such that [7 f2(t)dt = [7 g*(t)dt = 1, we have that

1.

< [T f(t)N(t)dt~/\/’(0,% . (19.6)

2. The joint distribution of (< f, N >,< g, N >) is jointly Gaussian with covariance equal to inner
product < f, g >.

Note: By this definition, N () is not a stochastic process, rather it is a collection of linear mappings
that map any f € Lo(R) to a Gaussian random variable.
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Note: Informally, we write:

N
N(t) is white noise with one-sided PSD Ny(or two-sided PSD Ny/2) <= E[N(t)N(s)] = 705(75 -5)

(19.7)
]\/YU N()/2
0 w 0 w
Engineers’ white noise Mathematicians’ white noise

Note: The concept of one-sided PSD arises when N () is necessarily real, since in that case power
spectrum density is symmetric around 0, and thus to get the noise power in band [a,b] one can get

b b -a
noise power = l Fone—sided(f)df = L +[b Ftwo—sided(f)dfa

where Fypesided(f) = 2Ftwo-sided (f)- In theory of stochastic processes it is uncommon to talk about
one-sided PSD, but in engineering it is.

Verify the equivalence between CT /DT models

First, consider the relation between RF signals and baseband signals.

X(t) = Re(Xp(1)V2e7"),
Ya(t) = V2LPEy(Y (t)e?™t),

where w, = 2nf.. The LPF, with high cutoff frequency ~ % fe serves to kill the high frequency
component after demodulation, and the amplifier of magnitude \/2 serves to preserve the total
energy of the signal, so that in the absence of noise we have that Yz(t) = Xp(t). Therefore,

Yp(t) = Xp(t) + N(t) ~C
where N(t) is a complex Gaussian white noise and
E[N(t)N(s)*] = Nod(t - s).

Notice that after demodulation, the PSD of the noise is Ny/2 with Np/4 in the real part and No/4
in the imaginary part, and after the \/2 amplifier the PSD of the noise is restored to Np/2 in both
real and imaginary part.

Next, consider the equivalent discrete time signals.

Xp(t) = i X;sincg(t - é)

1=—00

Y, = f Yp(t)sincg(t - i)alt
t=—o00 B
Y;' = X,L + Z@
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where the additive noise Z; is given by:

zi= " N(t)sincB(t—%)dt~z’.i.d CN(0,No).  (by (19.6))

if we focus on the real part of all signals, it is consistent with the real AWGN channel model in

(19.1).

Finally, the energy of the signal is preserved:

3 X = X013 - X0

1=—00

Note: [Punchline]
CT AWGN (band limited) <= DT C-AWGN

N,
two-sided PSD 70 — Z; ~CN(0, Np)

energy:/ X (t)*dt < energy=)Y | X;|?

19.3 Capacity of the continuous-time band-limited AWGN
channel

Theorem 19.2. Let M} (T, €, P) the maximum number of waveforms that can be sent through the
channel

Y(t)=X(t)+N(t), EN(t)N(s):%é(t—s)
such that:
1. in the duration [0,T];
2. band limited to [ f. - g, fe+ g] for some large carrier frequency
3. input energy constrained to ft::Fo 22(t) < TP;
4. error probability P[W + W] <e.
Then

e—»0 n—ooo

lim lim inf % log M (T, €, P) = Blog(1 + %) , (19.8)
Proof. Consider the DT equivalent C-AWGN channel of this CT model, we have that
108 Mo (T, P) = 7 log My (BT . P/B)
This is because:
e in time T we get to choose BT complex samples

e The power constraint in the DT model changed because for blocklength BT we have

BI ,
Xl = | X(1)|z < PT,
i=1

P

thus per-letter power constraint is %.
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Calculate the rate of the equivalent DT AWGN channel and we are done. O

Note the above “theorem” is not rigorous, since conditions 1 and 2 are mutually exclusive:
any time limited non-trivial signal cannot be band limited. Rigorously, one should relax 2 by
constraining the signal to have a vanishing out-of-band energy as T — oo. Rigorous approach to
this question lead to the theory of prolate spheroidal functions.

19.4 Capacity of the continuous-time band-unlimited AWGN
channel

In the limit of large bandwidth B the capacity formula (19.8) yields

P
)= Fologe.

P
Cp-w(P) = Bli_r)rgoBlog(l + NoB

It turns out that this result is easy to prove rigorously.

Theorem 19.3. Let M*(T,¢, P) the mazimum number of waveforms that can be sent through the
channel

N
Y(t)=X({t)+N(t), EN(#)N(s)= 705(75 _)

such that each waveform x(t)

1. is non-zero only on [0,T'];

2. input energy constrained to ftzo z2(t) <TP;

3. error probability P[W + W] <e.
Then . N

limliminf —log M™*(T,¢e, P) = — loge (19.9)
T Ny

e—=0 T—oo

Proof. Note that the space of all square-integrable functions on [0, 7'], denoted Ly[0,7'] has countable
basis (e.g. sinusoids). Thus, by changing to that basis we may assume that equivalent channel
model

L . N,
Y;=X;+Z2j, ZjNN(O,yo),

and energy constraint (dependent upon duration 7T'):
> X< PT.
j=1

But then the problem is equivalent to energy-per-bit one and hence

logo M*(T,¢, P) =k < E*(k,e)=PT.

Thus,
1 P
limlim inf — logy, M* (T, ¢, P) = - = —logye,
e—»0 n—oo T ]im€_)0 limsupk_)oo w N()
where the last step is by Theorem 19.1. O
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impulse traiy [_H/’ +”/’] > —> 3 3 \/5 > —> —>
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X, Xp(t) X Y (¢) Yi(t) Y;
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Y (t) Y (t) after demodulation Yi(t)

Figure 19.1: DT / CT AWGN model



19.5 Capacity per unit cost

Generalizing the energy-per-bit setting of Theorem 19.1 we get the problem of capacity per unit
cost:

1. Given a random transformation Pye|xe~ and cost function c: X - R, we let
M*(E,e) =max{M : (E, M,e)-code},

where (E, M, e)-code is defined as a map [M] — X* with every codeword z* satisfying

[ee)

;c(xt) <E. (19.10)

C = 0 E ¥ ( )

3. Let C'(P) be the capacity-cost function of the channel (in the usual sense of capacity, as
defined in (17.1). Assuming Py =0 and C(0) =0 it is not hard to show that:

o) C)d

li

pP).
P-0 P dP P:()C( )

Cpuc =sup
P

4. The surprising discovery of Verdu is that one can avoid computing C'(P) and derive the
Cpuc directly. This is a significant help, as for many practical channels C'(P) is unknown.
Additionally, this gives a yet another fundamental meaning to KL-divergence.

Theorem 19.4. For a stationary memoryless channel Py e xe =[] Py|x with Py = c(zo) =0 (i.e.
there is a symbol of zero cost), we have

D(Py x| Py|x=z)
Cpuc = su .
TFTQ C(x)

In particular, Cpye = oo if there exists x1 # xo with c(z1) = 0.
Proof. Let
D(Py x| Py|x=z)
CV = su .
T#To C(:E)

Converse: Consider a (FE,M,e) code W - X*° - Y - WW. Introduce an auxiliary distribution
Quy x e y 1ir» Where a channel is a useless one

Qyo|x= = Qy= = ;\JX:xo-

That is, the overall factorization is

QW,X‘”,Y“,VV = PWPX""\WQY“PWWW :
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Then, as usual we have from the data-processing for divergence
1
(1-€)logM + h(e) <d(1- e||M)

< D(By xoo yoo 3 |Qup xo= yo= 1)
= D(Pye|xe |Qy=|Px=)
:E[Z d(Xt)] )

t=1

where we denoted for convenience

d(l‘) = D(PY|X=JZ||PY|X:JCO) :
By the definition of Cy we have
d(z) <c(x)Cy .
Thus, continuing (19.14) we obtain

o0

(1-€)logM + h(e) < CVE[ZC(Xt)] <Cy-FE,
t=1

(19.11)

(19.12)
(19.13)

(19.14)

where the last step is by the cost constraint (19.10). Thus, dividing by E and taking limits we get

Cpuc <Cy.

Achievability: We generalize the PPM code (19.3). For each x1 € X and n € Z, we define the

encoder f as follows:

f(]-):(thl)"'vxlv Zo,..-,20 )

n-times  n(M-1)-times

f(2):($07$07"'a$07$17"'7$17 ZOy.--yZ0 )

n-times n-times n(M-2)-times

f(M):( TQy.--5LQ ,xl,xl,...,xl)

n(M-1)-times  n-times

Now, by Stein’s lemma there exists a subset S ¢ ) with the property that

P[Yn€S|Xn= (acl,...,xl)] >1-¢

PIY™ € SIX™ = (20, 70)] < exp{-nD(Py 1o, | Pr|xoay) + 0(n)}

Therefore, we propose the following (suboptimal!) decoder:
YheS = W-=1
YeS — W=2

From the union bound we find that the overall probability of error is bounded by

e <1+ Mexp{-nD(Py|x-z, | Py|x=2,) +0(n)}.
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At the same time the total cost of each codeword is given by nc(z1). Thus, taking n - co and after
straightforward manipulations, we conclude that

D(PY|X:a:1 HPY|X:w0)
c(x1) '

This holds for any symbol z1 € X, and so we are free to take supremum over x to obtain Cpy. > Cy,
as required. ]

19.5.1 Energy-per-bit for AWGN channel subject to fading
Consider a stationary memoryless Gaussian channel with fading H; (unknown at the receiver).
Namely,
N,
Y;=H;X;+Z;,  Hj~N(0,1) L Z ~/\/(0,70 :
The cost function is the usual quadratic one c(z) = z2. As we discussed previously, cf. (17.8), the
capacity-cost function C'(P) is unknown in closed form, but is known to behave drastically different

from the case of non-fading AWGN (i.e. when H; =1). So here previous theorem comes handy, as
we cannot just compute C’(0). Let us perform a simple computation required, cf. (1.16):

DN (0,2% + 52) [N(0, 1))

Chuc = 19.24
puc = SUD 2 (19.24)
2
1 log(1 + 22
= —sup|loge - M (19.25)
No 220 QNLO
1
- 08¢ (19.26)
No

Comparing with Theorem 19.1 we discover that surprisingly, the capacity-per-unit-cost is unaffected
by the presence of fading. In other words, the random multiplicative noise which is so detrimental
at high SNR, appears to be much more benign at low SNR (recall that Cpy,. = C'(0)). There is one
important difference, however. It should be noted that the supremization over x in (19.25) is solved
at x = co. Following the proof of the converse bound, we conclude that any code hoping to achieve
optimal Cp,. must satisfy a strange constraint:

SN af1{|m] > Ay~ Y 2} VA>0
? 7

Le. the total energy expended by each codeword must be almost entirely concentrated in very large
spikes. Such a coding method is called “flash signalling”. Thus, we can see that unlike non-fading
AWGN (for which due to rotational symmetry all codewords can be made “mellow”), the only hope
of achieving full Cp,. in the presence of fading is by signalling in huge bursts of energy.

This effect manifests itself in the speed of convergence to C,,. with increasing constellation sizes.

Namely, the energy-per-bit % behaves as
E*
% ~ (~1.59 dB) + COEStQ‘l(e) (AWGN) (19.27)
E* 1
# = (-1.59 dB) + i/ olf FO1(e))?  (fading) (19.28)

Fig. 19.2 shows numerical details.
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Achievability

Converse

Rayleigh fading, noCSI

fading+CSIR, non-fading AWGN

—1.59.dB
-2 Lol Lol Lol Lol Lol Lol Lol Lol

10° 10! 10? 10 10 10° 106 107 108
Information bits, k

Figure 19.2: Comparing the energy-per-bit required to send a packet of k-bits for different channel
models (curves represent upper and lower bounds on the unknown optimal value %) As a
comparison: to get to —1.5 dB one has to code over 6-10* data bits when the channel is non-fading
AWGN or fading AWGN with H; known perfectly at the receiver. For fading AWGN without
knowledge of H; (noCSI), one has to code over at least 7- 107 data bits to get to the same —1.5 dB.
Plot generated via [Spel5].
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§ 20. ADVANCED CHANNEL CODING. SOURCE-CHANNEL SEPARATION.

Topics: Strong Converse, Channel Dispersion, Joint Source Channel Coding (JSCC)

20.1 Strong Converse

We begin by stating the main theorem.

Theorem 20.1. For any stationary memoryless channel with either |A| < oo or |B| < oo we have
Ce=C for0<e<1.

Remark: In Theorem 16.4, we showed that C' < C, < % Now we are asserting that equality
holds for every e. Our previous converse arguments showed that communication with an arbitrarily
small error probability is possible only when using rate R < C'; the strong converse shows that when
you try to communicate with any rate above capacity R > C, then the probability of error will go to
1 (typically with exponential speed in n). In other words,

0 R<C

e*(n,exp(nR)) -
(n,exp(nf)) {1 g
where €*(n, M) is the inverse of M*(n,€) defined in (16.3).

In practice, engineers observe this effect in the form of waterfall plots, which depict the dependence
of a given communication system (code+modulation) on the SNR.

Pe

1 |
1071 :
10—2
10-3
10~4 I
1075 :

SNR

Below a certain SNR, the probability of error shoots up to 1, so that the receiver will only see
garbage.

Proof. We will give a sketch of the proof. Take an (n, M, €)-code for channel Py|x. The main trick

is to consider an auxiliary channel Qy|x which is easier to analyze.
Pyn xn

%% Xn yn W

N

QY""'X""
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Sketch 1: Here, we take Qyn|x» = (Py-)", where Py is the capacity-achieving output distribution
(caod) of the channel Py .1 Note that for communication purposes, Qyn|xn is a useless channel; it
ignores the input and randomly picks a member of the output space according to (Py )", so that
X™ and Y™ are decoupled (independent). Consider the probability of error under each channel:

A 1
QW =Ww]= i (Blindly guessing the sent codeword)
P[W=W]=1-¢

Since the random variable 1 (W=w) has a huge mass under P and small mass under Q, this looks
like a great binary hypothesis test to distinguish the two distributions, Py, vnynyy and Quy xnynyis-
Since any hypothesis test can’t beat the optimal Neyman-Pearson test, we get the upper bound

1

/81—6(PWXnYnW; QWX"Y”W) < M (201)

(Recall that B, (P,Q) = infp[g]sq Q[E]). Since the likelihood ratio is a sufficient statistic for this
hypothesis test, we can test only between

Py nyniy  IWExnw Pynix, Byyn Pwixn PxrynPym Pyayn

Quw xnymiv Py Py (P5)™ Py - Py xn Pxen (P )™ Py  Pyxn(PE)"

Therefore, inequality above becomes

ﬂl_e(Pxnyn,Pxn (P;})n) < % (20.2)
Computing the LHS of this bound need not be easy, since generally we know Py x and Py, but
can’t assume anything about Py~ which depends on the code. (Note that X" is the output of the
encoder and uniformly distributed on the codebook for deterministic encoders). Certain tricks are
needed to remove the dependency on codebook. However, in case the channel is “symmetric” the
dependence on the codebook disappears: this is shown in the following example for the BSC. To
treat the general case one simply decomposes the channel into symmetric subchannels (for example,
by considering constant composition subcodes).
Example. For a BSC(9)", recall that

Pynxn(y*la"™) = Pz(y" -2"), Z" ~Bern(4)"
(Py)"(y")=27"
From the Neyman Pearson test, the optimal HT takes the form

Pxn (Py)"

BQ(PX”Y"L;PX”(P{;)”):Q IOg *\n 2
P Q

For the BSC, this becomes

] where a =P [log

Pxnyn 1 Pzn(y" —z™)

log ——m¥"
B P (Pr)yn BT 2

'Recall from Theorem 4.5 that the caod of a random transformation always exists and is unique, whereas a caid
may not exist.
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So under each hypothesis P and Q, the difference Y™ — X™ takes the form

Q:Y"-X"~ Bern(%)"
P:Y" - X" ~Bern(d)"

Now all the relevant distributions are known, so we can compute S,

Bo(Pxnyn, Pxn(Py)")

Ba(Bern(0)", Bern(%)")

= g nD(Ben(8)[Bern(3))+o(n) (Stein’s Lemma Theorem 11.1)
_ zfnd(éH%)Jro(n)

Putting this all together, we see that any (n, M, €) code for the BSC satisfies
9-nd(d]3)+e(n) RN log M < nd(éHl) +o(n)
M - 2

Since this is satisfied for all codes, it is also satisfied for the optimal code, so we get the converse
bound

1 1
liminf —log M*(n,€) < d((5H§) =log2 - h(9)
n—oco n,
For a general channel, this computation can be much more difficult. The expression for £ in this
case is
1
<

Bl—e(PX"PYn\Xn,PX"(P{;)n) _ 2—nD(PY\X||P§|13X)+o(n) Vi

(20.3)

where Py is unknown (depending on the code).
Explanation of (20.3): A statistician observes sequences of (X", Y"):

xm 400l 1 2[0o o]1 2 2]

Y*g[d b bla clc a b]
On the marked three blocks, test between iid samples of Pyx_o vs Py, which has exponent
D(Pyx-o| Py-). Thus, intuitively averaging over the composition of the codeword we get that the
exponent of 3 is given by (20.3).

Recall that from the saddle point characterization of capacity (Theorem 4.4) for any distribution
Px we have

D(Pyix|PyIPx) < C. (20.4)
Thus from (20.3) and (20.1):

log M < nD(Py x| Py|Px) +o(n) <nC +o(n)

Sketch 2: (More formal) Again, we will choose a dummy auxiliary channel Qy» x» = (Qy)".
However, choice of )y will depend on one of the two cases:
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1. If |B| < oo we take Qy = Py (the caod) and note that from (16.16) we have

Z PY‘X(y|J/‘0) 10g2 PY‘X(y|J/‘0) < log2 |B| Vage A
Yy

and since min, Py (y) > 0 (without loss of generality), we conclude that for any distribution of

X on A we have
Pyx (Y]X)

Qy(Y)
Furthermore, we also have from (20.4) that

Py x (YX)
g [log Qy(Y)

Var [1og |X] <K<oo VPx . (20.5)

|X] <C  VPx. (20.6)

2. If | A| < oo, then for each codeword c € A™ we define its composition as

P.(z) =

SRS

il{cj =x}.

By simple counting it is clear that from any (n, M, €) code, it is possible to select an (n, M, ¢)
subcode, such that a) all codeword have the same composition Py; and b) M’ > %. Note
that, log M =log M’ + O(logn) and thus we may replace M with M’ and focus on the analysis
of the chosen subcode. Then we set Qy = Py|x o Fo. In this case, from (16.9) we have

Py x(Y]X) ]
Var|log———|X | < K< X~PF. 20.7
o 220 0 (20,7
Furthermore, we also have
Py x (Y]X)

Now, proceed as in (20.2) to get

. (20.9)

Sis

Br-e(Pxnyn, Pxn(Qy)") <

We next apply the lower bound on 3 from Theorem 10.5:
dI1Qy (Y3)

Set logy =nC + K'\/n with K’ to be chosen shortly and denote for convenience

YB1-e(Pxnyn, Pxn(Qy)") > ]P’[ log < log ’y] —€

dPyn|Xn(Y”|Xn) ) ilog dpy|X(}/j|Xj)
dIT1Qy(Y7) - dQy (Y;)

J=1

Sy, = log

Conditioning on X" and using (20.6) and (20.8) we get

P[S, <nC +K'\/n|X"] >P[S, <nE[S,|X"]+ K'V/n|X"]
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From here, we apply Chebyshev inequality and (20.5) or (20.7) to get

2
P[S, < nE[Sa|X"] + K"/l X"] > 1 - I;{

If we set K’ so large that 1 - K?/Q > 2e then overall we get that
log B1-¢(Pxnyn, Pxn(Qy)") 2 —nC - K'\/n - loge.
Consequently, from (20.9) we conclude that
log M*(n,¢e) <nC +O(y/n),

implying the strong converse. O

In summary, the take-away points for the strong converse are

1. Strong converse can be proven by using binary hypothesis testing.

2. The capacity saddle point (20.4) is key.

In the homework, we will explore in detail proofs of the strong converse for the BSC and the AWGN
channel.

20.2 Stationary memoryless channel without strong converse

It may seem that the strong converse should hold for an arbitrary stationary memoryless channel (it
was only showed for the discrete ones above). However, it turns out that there exist counterexamples.
We construct one next.
Let output alphabet be B =[0,1]. The input .4 is going to be countable, it will be convenient to
define it as
A= {(jvm) :j,m€Z+,OSj Sm}'

The single-letter channel Py |y is defined in terms of probability density function as

< i+l

J
Ams Egy m )

by, otherwise,

pY\X(ij»m)) ={

where a,,, b,, are chosen to satisfy

1 1
(1= —)b =1 (20.10)
m m
1 1
—amlogay, + (1 - —)bylogh, =C, (20.11)
m m

where C > 0 is an arbitary fixed constant. Note that for large m we have

mC 1

am = (1+0( ), (20.12)
logm logm
1
by =1- ¢ +O0(—5—) (20.13)
logm log®m
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It is easy to see that Py = Unif[0, 1] is the capacity-achieving output distribution and

supI(X;Y)=C.
Px

Thus by Theorem 16.6 the capacity of the corresponding stationary memoryless channel is C'. We
next show that nevertheless the e-capacity can be strictly greater than C.

Indeed, fix blocklength n and consider a single letter distribution Py assigning equal weights
to all atoms (j,m) with m = exp{2nC'}. It can be shown that in this case, the distribution of a
single-letter information density is given by

2nC, w.p.5

0, w.p.1 - %

Thus, for blocklength-n density we have
1
—i(X™;Y"™) - 2CPoisson(1/2) .
n

Therefore, from Theorem 15.1 we get that for € > 1 — e™'/2 there exist (n, M, ¢)-codes with
log M > 2nC'.

In particular,
Cc>2C Ve>1 —e 12

20.3 Channel Dispersion

The strong converse tells us that log M*(n,e) =nC +o(n) Ve e (0,1). An engineer sees this, and
estimates log M* ~ nC. However, this doesn’t give any information about the dependence of log M*
on the error probability e, which is hidden in the o(n) term. We unravel this in the following
theorem.

Theorem 20.2. Consider one of the following channels:
1. DMC
2. DMC with cost constraint
3. AWGN or parallel AWGN
The following expansion holds for a fized 0 < e < 1/2 and n — oo
log M*(n,€) = nC —/nVQ (e) + O(logn)

where Q' is the inverse of the complementary standard normal CDF, the channel capacity is
C=I(X*Y*")=E[i(X*;Y*)], and the channel dispersion®is V = Var[i(X*;Y*)|X*].

2There could be multiple capacity-achieving input distributions, in which case Px» should be chosen as the one
that minimizes Var[¢(X*;Y*)|X*]. See [PPV10] for more details.
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Proof. For achievability, we have shown (Theorem 16.7) that log M*(n,€) > nC - VnV Q™ (e) by
refining the proof of the noisy channel coding theorem using the CLT.

The converse statement is log M* < —log B1—c(Pxnyn, Pxn(Py)"). For the BSC, we showed that
the RHS of the previous expression is

“log B1_.(Bern(6)", Bern(%)”) — nd (3] %) VO (€) + o(v/n)

(see homework) where the dispersion is

Bern(d
V = Varz.pern(s) [log BeT((—l))(Z)] |
p)

The general proof is omitted. O

Remark: This expansion only applies for certain channels (as described in the theorem). If,
for example, Var[i(X;Y")] = oo, then the theorem need not hold and there are other stable (non-
Gaussian) distributions that we might converge to instead. Also notice that for DMC without cost
constraint

Var[i(X™;Y™)|X*] = Var[i(X*;Y™")]
since (capacity saddle point!) E[i(X*;Y™*)|X* =z] = C for Px+-almost all z.

20.3.1 Applications

As stated earlier, direct computation of M*(n,e) by exhaustive search doubly exponential in
complexity, and thus is infeasible in most cases. However, we can get an easily computable
approximation using the channel dispersion via

log M*(n,€) » nC —V/nVQ ™ (e)

Consider a BEC (n =500, = 1/2) as an example of using this approximation. For this channel, the
capacity and dispersion are

C=1-9
V=65

Where 6 = 1 - §. Using these values, our approximation for this BEC becomes
log M*(500,107%) » nC = VnVQ ' (€) = nd — VnédQ(107%) ~ 215.5 bits

In the homework, for the BEC(500,1/2) we obtained bounds 213 < log M*(500,1073) < 217, so this
approximation falls in the middle of these bounds.
Examples of Channel Dispersion

213



For a few common channels, the dispersions are
BEC: V(0) = 66 1log? 2

BSC: V() = 5510g2§

. P(P+2)., 5 P(P+2).
AWGN: V(P) = m log e (Real) W 10g e (Complex)
L P; log?e & o3 I
Parallel AWGN: V(P,0%) = > Vawan (=) = S-|=2

L
where Y |T - O'JZ- | = P is the water-filling solution of the parallel AWGN
j=1

Punchline: Although the only machinery needed for this approximation is the CLT, the results
produced are incredibly useful. Even though log M* is nearly impossible to compute on its own, by
only finding C' and V' we are able to get a good approximation that is easily computable.

20.4 Normalized Rate

Suppose you're given two codes k1 - ny and ks — no, how do you fairly compare them? Perhaps
they have the following waterfall plots

P, kl — N1 P, k‘Q — Ny

1074 - -

SNR

P SNR

After inspecting these plots, one may believe that the k; — n; code is better, since it requires
a smaller SNR to achieve the same error probability. However, there are many factors, such as
blocklength, rate, etc. that don’t appear on these plots. To get a fair comparison, we can use the
notion of normalized rate. To each (n,2¥,€)-code, define

k k
logy My gy (1.6, P) ) nC(P) =/nV(P)Q ()

Take € = 107, and P (SNR) according to the water fall plot corresponding to P, = 1074, and we
can compare codes directly (see Fig. 20.1). This normalized rate gives another motivation for the
expansion given in Theorem 20.2.

Rnorm =

20.5 Joint Source Channel Coding

Now we will examine a slightly different information transmission scenario called Joint Source
Channel Coding

Sk Encoder xn y” Decoder Sk
Source (JSCC) Channel ascc) —
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Normalized rates of code families over AWGN, Pe=0.0001
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Figure 20.1: Normalized rates for various codes. Plots generated via [Spel5].
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Definition 20.1. For a Joint Source Channel Code
e Goal: P[S* #5F]<e
e Encoder: f: AF - X7
e Decoder: ¢g:Y" - A*
¢ Fundamental Limit (Optimal probability of error): €%goo(k,n) = inf; ,P[S* # SF]

where the rate is R = % (symbol per channel use).

Note: In channel coding we are interested in transmitting M messages and all messages are born
equal. Here we want to convey the source realizations which might not be equiprobable (has
redundancy). Indeed, if S* is uniformly distributed on, say, {0,1}*, then we are back to the
channel coding setup with M = 2* under average probability of error, and €500 (k,n) coincides
with €*(n,2") defined in Section 20.1.

Note: Here, we look for a clever scheme to directly encode k symbols from A into a length n channel
input such that we achieve a small probability of error over the channel. This feels like a mix of two
problems we’ve seen: compressing a source and coding over a channel. The following theorem shows
that compressing and channel coding separately is optimal. This is a relief, since it implies that we
do not need to develop any new theory or architectures to solve the Joint Source Channel Coding
problem. As far as the leading term in the asymptotics is concerned, the following two-stage scheme
is optimal: First use the optimal compressor to eliminate all the redundancy in the source, then use
the optimal channel code to add redundancy to combat the noise in the transmission.

Theorem 20.3. Let the source {Si} be stationary memoryless on a finite alphabet with entropy H.
Let the channel be stationary memoryless with finite capacity C'. Then

-0 R<CJ/H

* R,
6Jscc(n n){+0 R>C/H

Note: Interpretation: Each source symbol has information content (entropy) H bits. Each channel
use can convey C' bits. Therefore to reliably transmit k& symbols over n channel uses, we need
kH <nC.

Proof. Achievability. The idea is to separately compress our source and code it for transmission.
Since this is a feasible way to solve the JSCC problem, it gives an achievability bound. This
separated architecture is

Pyn‘xn
no_3

sk w2 x Yo 2 gk

Where we use the optimal compressor (f1,¢1) and optimal channel code (maximum probability of
error) (fa,g2). Let W denote the output of the compressor which takes at most Mj, values. Then

1 N
(From optimal compressor) z logM, > H+08 = P[S*+S*(W)]<e Vk>ko

1 .
(From optimal channel code) —log M <C -0 == P[W #m|WW =m]<e VYm,Vk 2>k
n
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Using both of these,

P[S* 4 SF(W)] <P[SF 4 S W = W] +P[W # W]
<P[S* £ SE(W)]+P[W +# W] <e+e

5
And therefore if R(H +8) < C — 6, then ¢* - 0 —=3 R > C/H.

Converse: channel-substitution proof. Let Qgigr = Ugk Pg where Ugk is the uniform
distribution. Using data processing

D(Pgrgr|Qgrgr) = D(Psr|Usk ) + D(Pg g | Pg|Por) 2 d(1 - 6IIﬁ)
Rearranging this gives

1
A
> —log 2 + kélog|A| + H(S®) - klog | A|
= H(S*) —log2 - kelog | A|

I(S%;8%) > d(1 - €| =) - D(Psx|Ugn)

Which follows from expanding out the terms. Now, normalizing and taking the sup of both sides
gives

1 1
—sup I(X™Y"™) > —H(S*) - eE log |A| + o(1)
n xn n n

letting R = k/n, this shows

RH-C

C > RH - €eRlog|A >——>0
eRlog|A| = ¢ Rlog[4]

where the last expression is positive when R > C/H.
Converse: usual proof. Any JSCC encoder/decoder induces a Markov chain
SF > X" 5y GF
Applying data processing for mutual information

(8% 8%) < I(X™;Y™) < sup [(X™;Y™) = nC.

PX”L
On the other hand, since ]P’[Sk # S'k] < €, Fano’s inequality yields
I(S* 8%) = H(S*) - H(S*|S%) > kH - ¢, log|A]" —log 2.

Combining the two gives
nC > kH - e, log | A[F —1og 2.

Since R = %, dividing both sides by n and sending n — oo yields
RH-C

liminf e, >

n—oo Rlog|A|
Therefore ¢,, does not vanish if R > C/H. O]
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§ 21. CHANNEL CODING WITH FEEDBACK

Criticism: Channels without feedback don’t exist (except storage).

Motivation: Consider the communication channel of the downlink transmission from a satellite
to earth. Downlink transmission is very expensive (power constraint at the satellite), but the uplink
from earth to the satellite is cheap which makes virtually noiseless feedback readily available at
the transmitter (satellite). In general, channel with noiseless feedback is interesting when such
asymmetry exists between uplink and downlink.

In the first half of our discussion, we shall follow Shannon to show that feedback gains “nothing’
in the conventional setup, while in the second half, we look at situations where feedback gains a lot.

)

W — X" = channell> Y"—> W W — X » = channel > YV, —> W/

L —1

~

causality constraint
noiseless / Shannon / ideal feedback channel

channel w/o feedback channel with feedback

21.1 Feedback does not increase capacity for stationary
memoryless channels

Definition 21.1 (Code with feedback). An (n, M, €)-code with feedback is specified by the encoder-
decoder pair (f,g) as follows:

e Encoder: (time varying)

fi:[M]—- A
fa:[M]xB—~A

fn:[M]XBn_lﬁ.A

e Decoder:

g:B" > [M]
such that P[W = W]<e.
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Note: [Probability space]
W ~ uniform on [M]

Py x

X1= (W) — N X
: — W=g(Y")
P
Xn = fn(I/Vv Yln_l) L‘): Yn
Definition 21.2 (Fundamental limits).
Mpy(n,€) = max{M : 3(n, M,e) code with feedback.}
1
Cip,e = liminf —log My, (n, €)
n—oco N

Cpy = 1ir% Ch.e (Shannon capacity with feedback)

Theorem 21.1 (Shannon 1956). For a stationary memoryless channel,

Cpp=C=C;=supl(X;Y)
Px

Proof. Achievability: Although it is obvious that C'y, > C, we wanted to demonstrate that in fact
constructing codes achieving capacity with full feedback can be done directly, without appealing to a
(much harder) problem of non-feedback codes. Let m;(-) £ Pyjy+(-[Y") with the (random) posterior
distribution after ¢ steps. It is clear that due to the knowledge of Y on both ends, transmitter and
receiver have perfectly synchronized knowledge of m;. Now consider how the transmission progresses:

1. Initialize mo(-) = %

2. At (t+1)-th step, having knowledge of 7, all messages are partitioned into classes P,, according
to the values fii1(-, Y?):

Pa2{je[M]: fr(j,Y")=a}  acA.
Then transmitter, possessing the knowledge of the true message W, selects a letter X;1 =
fraa (W, Y?).
3. Channel perturbs Xy, into Y;;1 and both parties compute the updated posterior:
Pyix (Yl frsa1 (4, Y1)
Yaeat(Pa)

Notice that (this is the crucial part!) the random multiplier satisfies:

T41(5) = 7 (5) Braa(4) » Bi1(j) =

Pyx (yla)
E[log By (W)|Y] = m(Py)log — =" = [ (7, P 21.1
[log Bra (W)|Y"] a;y%; +(Pa) S m(Poa (7t, Py|x) (21.1)
where 7y(a) = m(P,) is a (random) distribution on A.

The goal of the code designer is to come up with such a partitioning {P,,a € A} that the speed
of growth of 7 (W) is maximal. Now, analyzing the speed of growth of a random-multiplicative
process is best done by taking logs:

t
logmi(j) = Y. log Bs +log mo(j) -

s=1
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Intutively, we expect that the process log m(WW') resembles a random walk starting from —log M and
having a positive drift. Thus to estimate the time it takes for this process to reach value 0 we need
to estimate the upward drift. Appealing to intuition and the law of large numbers we approximate

t
log (W) = log mo(W) » > E[log Bs] .
s=1

Finally, from (21.1) we conclude that the best idea is to select partitioning at each step in such a
way that 7, ~ Py (caid) and this obtains
logm (W) ~ tC —log M ,

implying that the transmission terminates in time » logTM. The important lesson here is the following:
The optimal transmission scheme should map messages to channel inputs in such a way that the
induced input distribution Px,, |yt is approzimately equal to the one maximizing I(X;Y). This idea
is called posterior matching and explored in detail in [SE11] i

Converse: we are left to show that Cyy < C;.

Recall the key in proving weak converse for channel coding without feedback: Fano’s inequality

plus the graphical model A
W->X"->Y">W. (21.2)

Then X
h(e) + €logM < I(W; W) <I(X™;Y"™) <nC;.

With feedback the probabilistic picture becomes more complicated as the following figure shows
for n =3 (dependence introduced by the extra squiggly arrows):

X1 —Y X1 —-Y

/ ~ SN

W—>X2—>Y2—>W W—>X2 Y2—>W
\ / NS
X3 — Y3 X3 — Y3
without feedback with feedback

So, while the Markov chain realtion in (21.2) is still true, we also have
n
Pynixn(y"|2") # [T Prix(yjlzy) (1)
j=1

(This is easy to see from the example where X =7 and thus Py, x> has no randomness.) There is
still a large degree of independence in the channel, though. Namely, we have

YL W)X, -Y;, i=1,...,n (21.3)
W-Y">W (21.4)

!Note that the magic of Shannon’s theorem is that this optimal partitioning can also be done blindly. Le. it is
possible to preselect partitions P, in a way independent of 7 (but dependent on t) and so that the m(P,) ~ Px(a)
with overwhelming probability and for all ¢ € [1,n].
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Then

h(e) +elog M < I(W; W) (Fano)
<I(W;Y™) (Data processing applied to (21.4))
= > I(W; Y[yt (Chain rule)
i=1

< Y IWY'hY) WYy = (W, Y5 1) - 1(Yh V7))
i=1

<)Y I(X;Y5) (Data processing applied to (21.3))
i=1

< nC; ]

The following result (without proof) suggests that feedback does not even improve the speed of
approaching capacity either (under fixed-length block coding) and can at most improve smallish
logn terms:

Theorem 21.2 (Dispersion with feedback). For weakly input-symmetric DMC (e.g. additive noise,
BSC, BEC) we have:
log My,(n,€) =nC - VnVQ 1l (e) + O(logn)

(The meaning of this is that for such channels feedback can at most improve smallish logn
terms.)

21.2* Alternative proof of Theorem 21.1 and Massey’s directed
information

The following alternative proof emphasizes on data processing inequality and the comparison idea
(auxiliary channel) as in Theorem 19.1.

Proof. 1t is obvious that C, > C, we are left to show that C'y, < C;.

1. Recap of the steps of showing the strong converse of C < C; in the last lecture: take any
(n, M, €) code, compare the two distributions:

P:W->X">Y">W (21.5)
Q:W-X" Y">W (21.6)
two key observations:
a) Under @, W L W, so that QW = W] = - while P[W =W]>1-e.
b) The two graphical models give the factorization:
PW,X”,Y”,W = PW,X”PY"IX"PWW”’ QW,Xn,Yn,W = PW7X"PY"PW|Y"

thus D(P|Q) = I(X™;Y™) measures the information flow through the links X" — Y™.

1 | d-procine mem—less,stat ~
h(e) +Elog M = d(1 - € ) P DPQ) = I(X Yy TS S (X V) <nCy
=1
(21.7)
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2. Notice that when feedback is present, X™ — Y™ is not memoryless due to the transmission
protocol, let’s unfold the probability space over time to see the dependence. As an example,
the graphical model for n = 3 is given below:

X a3V

N
No feedback W— Xo~—>Y,— W
p A
X3 H Y3

P

X1 A Yh
A L) N
With feedback W— X5 Yo —>
pN N
Xz~——Y;
P

If we define @ similarly as in the case without feedback, we will encounter a problem at the
second last inequality in (21.7), as with feedback I(X™;Y™) can be significantly larger than
Y21 I(X;Y). Consider the example where Xo = Y7, we have I(X™;Y") = +o0 independent of
I(X:Y).

We also make the observe that if @ is defined in (21.6), D(P|Q) = I(X™;Y™) measures the
information flow through all the 4 and ~ links. This motivates us to find a proper @ such that
D(P|Q) only captures the information flow through all the 4 links {X; - Y;:i=1,...,n},
so that D(P|Q) closely relates to nC;, while still guarantees that W 1 W, so that Q[W #
W=,

144

3. Formally, we shall restrict QW xn yni € Q, where @ is the set of distributions that can be
factorized as follows:

QW’Xn’Yn’W = QWQX1|WQY1 QXQ‘W7Y1QY2|Y1'”QXn“/V,Y"_IQYn‘Yn_lQW‘Yn (218)
Py xen yn i = Pw Pxyw Py x, Pxow,yi Pya|xo - Px, wyn-1 Py, X, Py (21.9)

Verify that W 1L W under @Q: W and W are d-separated by X™.

Notice that in the graphical models, when removing + we also added the directional links
between the Y;s, these links serve to maximally preserve the dependence relationships between
variables when + are removed, so that @ is the “closest” to P while W 1L W is satisfied.

Now we have that for Q € Q, d(1 - e||%) < D(P]|Q), in order to obtain the least upper bound,
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in Lemma 21.1 we shall show that:

n
. k-
gelg D(Pyy s yn 3 |Quyxn ym i) = 20 1 (X Ya[ Y
k=1

n
= Z Eyk—l [I(PXMyk—l,Py‘X)]

n
< Z I(Ey s [PXkD/k—l], PY|X) (concavity of I(Py, PY|X) in Py)

=) I(Px,, Py|x)
1
<nC;.
Following the same procedure as in (a) we have

nC + h(e)

C
Crpes—=>Cp<C.
—€ = Vb 1—6: sb

h(e€) + elog M <nC; = log M <

4. Notice that the above proof is also valid even when cost constraint is present.

O]
Lemma 21.1.
n
k=1

(£ [(X™Y™), directed information)
Proof. By chain rule, we can show that the minimizer ) € @ must satisfy the following equalities:

Qxw = Pxw,
Qx,wy+1 = Px,wys-1, (check!)

QW‘Y" = PW‘Y"
and therefore

PPyt Q)

= D(PY1|X1 HQYI‘XI) + D(PY2|X2,Y1 ”ng2|y1|)(27 }/1) 4ot l)(F)an(myni1 HQYn|yn—1|Xn, Yn_l)
= I(X17 Yl) + I(XQ, Y2|Y1) 4o+ I(Xn’ Yn|Yn_1)

21.3 When is feedback really useful?

Theorems 21.1 and 21.2 state that feedback does not improve communication rate neither asymptot-
ically nor for moderate blocklengths. In this section, we shall examine three cases where feedback
turns out to be very useful.
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21.3.1 Code with very small (e.g. zero) error probability
Theorem 21.3 (Shannon ’56). For any DMC Py|x,

Cpo = n}axminlog (21.11)

x  yeB Px(sy)

where
Sy ={aeA: Pyx(yla) >0}

denotes the set of input symbols that can lead to the output symbol y.

Note: For stationary memoryless channel,

def. def.
Co < Cppo < Cpy=limCpye 2L € =1lim €, %2 €, = sup I(X;Y)
’ e—0 ’ e—~0 Px
All capacity quantities above are defined with (fixed-length) block codes.
Observations:

1. In DMC for both zero-error capacities (Cy and C'p ) only the support of the transition matrix
Py|x, i.e., whether Py |x(bla) > 0 or not, matters. The value of Py x(bla) > 0 is irrelevant.
That is, Cp and Cfp o are functions of a bipartite graph between input and output alphabets.
Furthermore, the Cp (but not Cypp!) is a function of the confusability graph — a simple
undirected graph on A with a # a’ connected by an edge iff 3b € B s.t. Py x(bla) Py x(bla") > 0.

2. That Cfp is not a function of the confusability graph alone is easily seen from comparing the
polygon channel (next remark) with L = 3 (for which Cyp = log %) and the useless channel
with A ={1,2,3} and B = {1} (for which Cf, = 0). Clearly in both cases confusability graph
is the same — a triangle.

3. Usually Cj is very hard to compute, but C can be obtained in closed form as in (21.11).

Example: (Polygon channel)

1

S
< 2

L 4
3
Bipartite graph Confusability graph
e Zero-error capacity Cy:
—L=3:Cy=0
— L=5:Cy= %logf) (Shannon ’56-Lovasz '79).
Achievability:

a) blocklength one: {1,3}, rate = 1 bit.
b) blocklength two: {(1,1),(2,3),(3,5),(4,2),(5,4)}, rate = %log5 bit — optimal!
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— L="7T:3/5log7 < Cp<log3.32 (Exact value unknown to this day)
— Even L =2k: Cy = log% for all & (Why? Homework.).
— 0dd L=2k+1: Cy=logZ +0(1) as k > oo (Bohman '03)
e Zero-error capacity with feedback (proof: exercise!)
L
Cfb,() =log 2 VL,
which can be strictly bigger than Cj.

4. Notice that Cfy ¢ is not necessarily equal to Cpy, = lime.o Cyp e = C. Here is an example when

00 < Cfb,O < Cﬂ, =C

Example:
1 1
2 2
3 3
4 —>4
Then
Co =log?2
2 _
Chvo = mgx—logmax(g(s, 1-9) (Px =(8/3,0/3,8/3,9))
5 3
:1 —_ (5* = —
og 5 > Cy ( 5)

On the other hand, Shannon capacity C' = Cy;, can be made arbitrarily close to log4 by picking
the cross-over probability arbitrarily close to zero, while the confusability graph stays the
same.

Proof of Theorem 21.3. 1. Fix any (n, M,0)-code. Denote the confusability set of all possible
messages that could have produced the received signal 3 = (y1,...,y;) for all t =0,1,...,n by:

Ei(y") = {m e [M]: fi(m) € Sy, fo(mn) € Sy, fulm,y™) € Sy}
Notice that zero-error means no ambiguity:
e=0<Vy"eB", |E,(y")|=1o0r0. (21.12)
2. The key quantities in the proof are defined as follows:
0 ¢y = mi Px (S
sb = minmax Py (Sy),

Py = argminmax Px (Sy)
Px  yB
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By definition, we have

V Px, 3y € B, such that PX(Sy) > afb

Notice the minimizer distribution P% is usually not the caid in the usual sense. This definition
also sheds light on how the encoding and decoding should be proceeded and serves to lower

bound the uncertainty reduction at each stage of the decoding scheme.

. “<” (converse): Let Pxn be he joint distribution of the codewords. Denote Ey = [ M ] — original

message set.

t = 1: For Px,, by (21.13), Jy; such that:

{m: fi(m) €Sy}l |Bi(y))

Pa) = aenml T 18

t =2: For PX2|X1€Sy;, by (21.13), Jy5 such that:

PXQ(Sy;|X1 € Syf) =

Z@fb

[{m s fr(m) € Sy, fom,y7) € Sy}l |Es(ui, )|

{m: fi(m) € Sy} [E1(y7)]
t = n: Continue the selection process up to y,; which satisfies that:
|En(y1s-- - Yn)]
Px,(Sy:| Xy €Sy fork=1,...,n-1) = " > 0p.
Y Vi |En—1(y1a--~73/n_1)’ /
Finally, by (21.12) and the above selection procedure, we have
i > |En(y17 .- 7yn)| > G?b
M | Eol
= M < -nlog0p,
= Cfb’() < —longb
. “>” (achievability)
Let’s construct a code that achieves (M, n,0).
encoder f;
1 M P% (ay) > a1 Y1

MP}(ay) —> az /

—s Y2

M MP%(a3) —> a3 L—s y;3

The above example with |A| = 3 illustrates that the encoder f; partitions the space of all
messages to 3 groups. The encoder f; at the first stage encodes the groups of messages into
ai,ag,as correspondingly. When channel outputs y; and assume that S, = {a1, a2}, then the
decoder can eliminate a total number of M P (a3) candidate messages in this round. The
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“confusability set” only contains the remaining M P (S, ) messages. By definition of Py we
know that M P%(S,,) < M0g,. In the second round, f> partitions the remaining messages into
three groups, send the group index and repeat.

By similar arguments, each interaction reduces the uncertainty by a factor of at least 0.
After n iterations, the size of “confusability set” is upper bounded by M G?b, if M 9% <12
then zero error probability is achieved. This is guaranteed by choosing log M = —nlog .
Therefore we have shown that —nlogfy, bits can be reliably delivered with n + O(1) channel
uses with feedback, thus

Cfb70 > —log Gfb

21.3.2 Code with variable length
Consider the example of BEC(d) with feedback, send k bits in the following way: repeat sending

each bit until it gets through the channel correctly. The expected number of channel uses for sending
k bits is given by

L

1-9§

We state the result for variable-length feedback (VLF) code without proof:

l=E[n]=

Notice that compared to the scheme without feedback, there is the improvement of vnVQ !(¢) in
the order of O(y/n), which is stronger than the result in Theorem 21.2.
This is also true in general:

) Ic
log My p(l,€) = 7— +O(logl)

Example: For BSC(0.11), without feedback, n = 3000 is needed to achieve 90% of capacity C, while
with VLF code [ = En = 200 is enough to achieve that.

21.3.3 Code with variable power

Elias’ scheme of sending a number A drawn from a Gaussian distribution N (0, Var A) with linear
processing.
AWGN setup:
Vi = Xi+ Z,  Z~N(0,0%) iid.
E[X?] < P, power constraint in expectation

Note: If we insist the codeword satisfies power constraint almost surely instead on average, i.e.,
Yro1 X,? <nP a.s., then the scheme below does not work!

2Some rounding-off errors need to be corrected in a few final steps (because Py may not be closely approximable
when very few messages are remaining). This does not change the asymptotics though.
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Encoder Decoder

X1 :(31/1 > Y1 :ClA+Z1 9
ci :E[X?]=P A =ElAV: = 7 v
1+ E[XT] 1= E[AY] = 0N
residual noise of MSE estimation
A— .41 L Y1 /
XQICQ(A—A]_) S YQZCQ(A_A])+ZQ
co E[X2]=P Ay = E[A|Y1, Y]

some linear function of Y7,Y5

Xn - C’II(A - A‘n—l) Yn = Cn(A — An—l) + Zn
r > A, = E[A]Y"]
some linear function of Y™

According to the orthogonality principle of the mininum mean-square estimation (MMSE) of A
at receiver side in every step:

A=A, +N,, N,LY"

Morever, since all operations are lienar and everything is jointly Gaussian, N, 1L Y". Since
X,, o< Np_1 L Y™ 1 the codeword we are sending at each time slot is independent of the history of
the channel output (”innovation”), in order to maximize information transfer.

Note that Y — A, — A, and the optimal estimator A, (a linear combination of Y™) is a
sufficient statistic of Y™ for A under Gaussianity. Then

I(A;Y™) =I(A; 4, Y7™)
= I(A; Ay) + I(A; Y A,)
I(A; A)

1 Var(A)
—log ———~.
2 7 Var(Ny,)

where the last equality uses the fact that N follows a normal distribution. Var(N,,) can be computed
directly using standard linear MMSE results. Instead, we determine it information theoretically:
Notice that we also have

T(A;Y™) = I(A;Y7) + T(A; Yo|Y7) + -+ I(A; Y, Y™ )
= I(X15Y1) + I(XQ’YQD/I) 4+ e+ I(Xn’Ynlyn—l)
key I(X1; Y1)+ I( X Yo) + -+ [( X3 Yy)

1
=ng log(1+ P) =nC
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Therefore, with Elias’ scheme of sending A ~ N (0, Var A), after the n-th use of the AWGN(P)
channel with feedback,

P

+ 02

~ n
Var N, = Var(A, - A) =272"C Var A = (P ) Var A,
which says that the reduction of uncertainty in the estimation is exponential fast in n.
Schalkwijk-Kailath: Elias’ scheme can also be used to send digital data.
Let W ~ uniform on M-PAM constellation in € [-1,1], i.e., {-1,-1+ %, e, =1+ %, -+, 1}. In the
very first step W is sent (after scaling to satisfy the power constraint):

Xo=VPW, Yy=Xo+ 2

Since Yy and X are both known at the encoder, it can compute Zy. Hence, to describe W it is
sufficient for the encoder to describe the noise realization Zy. This is done by employing the Elias’
scheme (n -1 times). After n —1 channel uses, and the MSE estimation, the equivalent channel
output:

% = XO + Zo, VaI'(Z()) = 2—2(n—1)C

Finally, the decoder quantizes Y to the nearest PAM point. Notice that

~ (n-1)C
€< IP’[|ZO| > ﬁ] = P[2—<”—1>C|Z| > ;—5] =2Q (%)
= log M > (n - 1)C+log§ —logQ_l(g)

=nC + O(1).

Hence if the rate is strictly less than capacity, the error probability decays doubly exponentially
fast as n increases. More importantly, we gained an \/n term in terms of log M, since for the case
without feedback we have

log M*(n,€) =nC —V/nVQ ™ (¢) + O(logn).

Example: P =1 = channel capacity C = 0.5 bit per channel use. To achieve error probability 1073,
2Q) (%) ~ 1073, so e(;;[)c ~ 3, and @ ~ ”T_lC - %. Notice that the capacity is achieved to
within 99% in as few as n = 50 channel uses, whereas the best possible block codes without feedback

require n ~ 2800 to achieve 90% of capacity.

Take-away message:
Feedback is best harnessed with adaptive strategies. Although it does not increase capacity
under block coding, feedback greatly boosts reliability as well as reduces coding complexity.
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§ 22. CAPACITY-ACHIEVING CODES VIA FORNEY CONCATENATION

Shannon’s Noisy Channel Theorem assures us the existence of capacity-achieving codes. However,
exhaustive search for the code has double-exponential complexity: Search over all codebook of size
2" over all possible |X|" codewords.

Plan for today: Constructive version of Shannon’s Noisy Channel Theorem. The goal is to show
that for BSC, it is possible to achieve capacity in polynomial time. Note that we need to consider
three aspects of complexity

e Encoding
e Decoding

e Construction of the codes

22.1 Error exponents
Recall we have defined the fundamental limit
M*(n,e) =max{M : 3(n, M,e)-code}
For notational convenience, let us define its functional inverse
e (n, M) =inf{e: 3(n, M, €)-code}

Shannon’s theorem shows that for stationary memoryless channels, €, £ ¢*(n,exp(nR)) — 0 for
any R<C =supy I(X;Y). Now we want to know how fast it goes to zero as n - co. It turns out
the speed is exponential, i.e., €, ~ exp(—nE(R)) for some error exponent E(R) as a function R,
which is also known as the reliability function of the channel. Determining E'(R) is one of the most
long-standing open problems in information theory. What we know are

e Lower bound on E(R) (achievability): Gallager’s random coding bound (which analyzes the
ML decoder, instead of the suboptimal decoder as in Shannon’s random coding bound or DT
bound).

e Upper bound on E(R) (converse): Sphere-packing bound (Shannon-Gallager-Berlekamp), etc.

It turns out there exists a number Rt € (0,C'), called the critical rate, such that the lower and
upper bounds meet for all R € (Rcyit, C'), where we obtain the value of E(R). For R € (0, Reit), we
do not even know the existence of the exponent!

Deriving these bounds is outside the scope of this lecture. Instead, we only need the positivity of
error exponent, i.e., for any R < C, E(R) > 0. On the other hand, it is easy to see that E(C-) =0 as a
consequence of weak converse. Since as the rate approaches capacity from below, the communication
becomes less reliable. The next theorem is a simple application of large deviation.
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Theorem 22.1. For any DMC, for any R < C =supy I[(X;Y),

e*(n,exp(nR)) < exp(-nE(R)), for some E(R) > 0.

Proof. Fix R < C so that C — R > 0. Let Py be the capacity-achieving input distribution, i.e.,
C =1(X";Y™). Recall Shannon’s random coding bound (DT /Feinstein work as well):

e< P>i(X;Y) <logM +7) +exp(-7).

As usual, we apply this bound with iid Px» = (P%)", logM =nR and 7 = n(CZ_R), to conclude the

achievability of
1 C+R C-R
en£P<—z’(X";Yn)£ - )+exp _MC-R) .
n 2 2
Since i(X™;Y"™) = ¥ i(Xg; Yx) is an iid sum, and Ei(X;Y) = C > (C + R)/2, the first term is upper
bounded by exp(—nw}(Rgo)) where T'=i(X;Y). The proof is complete since ¢, is smaller than
the sum of two exponentially small terms. O

Note: Better bound can be obtained using DT bound. But to get the best lower bound on E(R)
we know (Gallager’s random coding bound), we have to analyze the ML decoder.

22.2 Achieving polynomially small error probability

In the sequel we focus on BSC channel with cross-over probability §, which is an additive-noise
DMC. Fix R<C =1-h(6) bits. Let the block length be n. Our goal is to achieve error probability
€n, <n~¢ for arbitrarily large a > 0 in polynomial time.
To this end, fix some b > 1 to be specified later and pick m = blogn and divide the block
n

into - sub-blocks of m bits. Applying Theorem 22.1, we can find [later on how to find] an
(m, exp(Rm), €, )-code such that

em < exp(-mE(R)) = n "B

where F(R) > 0. Apply this code to each m-bit sub-block and apply ML decoding to each block.
The encoding/decoding complexity is at most > exp(O(m)) = n°M) . To analyze the probability of

error, use union bound:
n _ _
P, < —e, <n PP ¢ o
m

)

if we choose b > 5‘&%).

Remark 22.1. The final question boils down to how to find the shorter code of blocklength m in
poly(n)-time. This will be done if we can show that we can find good code (satisfying the Shannon
random coding bound) for BSC of blocklenth m in exponential time. To this end, let us go through
the following strategies:

1. Exhaustive search: A codebook is a subset of cardinality 2™ out of 2™ possible codewords.
Total number of codebooks: (22Rm) = exp(Q(m2F™)) = exp(Q2(n°logn)). The search space is
too big.
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2. Linear codes: In Lecture 16 we have shown that for additive-noise channels on finite fields we
can focus on linear codes. For BSC, each linear code is parameterized by a generator matrix,
with Rm? entries. Then there are a total of 28m” = n@losn) _ gtil) superpolynomial and we
cannot afford the search over all linear codes.

3. Toeplitz generator matrices: In Homework 8 we see that it does not lose generality to focus on
linear codes with Toeplitz generator matrices, i.e., G such that G;; = G;_1 j-1 for all 7,5 > 1.
Toeplitz matrices are determined by diagonals. So there are at most 22 = n°(1) and we can
find the optimal one in poly(n)-time.

Since the channel is additive-noise, linear codes + syndrome decoder leads to the same maximal
probability of error as average (Lecture 16).

Remark 22.2. Remark on de-randomization; randomness as a resource, coin flips and cooking
(brown both sides of onions)...

22.3 Concatenated codes

Forney introduced the idea of concatenated codes in 1965 to build longer codes from shorter codes
with manageable complexity. It consists of an inner code and an outer code:

1. C:{0,1}* - {0,1}", with rate %
2. Cout : B - BY for some alphabet B of cardinality 2¥, with rate %
The concatenated code C': {0,1}*% — {0,1}"" works as follows (Fig. 22.1):

1. Collect the kK message bits into K symbols in the alphabet B, apply Coyt componentwise to
get a vector in B

2. Map each symbol in B into k bits and apply Cj, componentwise to get a nN-bit codeword.

The rate of the concatenated code is the product of the rates of the inner and outer codes: R = %%
> Cin ~ Din
 Cin ~ Din
ﬂ’ Cout i > C’i & > Din i > Dout ﬂ’
> Cin ~ Din
- C; | Din

Figure 22.1: Concatenated code, where there are N inner encoder-decoder pairs.
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22.4 Achieving exponentially small error probability
Forney proposed the following idea:
e Use an optimal code as the inner code
e Use a Reed-Solomon code as the outer code which can correct a constant fraction of errors.

Reed-Solomon (RS) codes are linear codes from F f - IF(]]V where the block length N =¢ -1
and the message length is K. Similar to the Reed-Muller code, the RS code treats the input
(ag,a1,...,ax_1) as a polynomial p(z) = ¥ X1 a;2* over [, of degree at most K — 1, and encodes it
by its values at all non-zero elements. Therefore the RS codeword is a vector (p(«a) : v e F,\{0}) € Fév .
Therefore the generator matrix of RS code is a Vandermonde matrix.

The RS code has the following advantages:

1. The minimum distance of RS code N — K + 1. So if we choose K = (1 —¢€)N, then RS code
can correct % €rrors.

2. The encoding and decoding (e.g., Berlekamp-Massey decoding algorithm) can be implemented
in poly(N) time.

In fact, as we will see later, any efficient code which can correct a constant fraction of errors will
suffice as the outer code for our purpose.

Now we show that we can achieve any rate below capacity and exponentially small probability
of error in polynomial time: Fix 7, e > 0 arbitrary.

e Inner code: Let k = (1 - h(5) —n)n. By Theorem 22.1, there exists a Ci, : {0, 1}F - {0,1}",
which is a linear (n,2¥, e,)-code and mazimal error probability €, < 27" By Remark 22.1,
Cin can be chosen to be a linear code with Toeplitz generator matrix, which can be found in
2" time. The inner decoder is ML, which we can afford since n is small.

e Outer code: We pick the RS code with field size ¢ = 2F with blocklength N = 2¥ — 1. Pick the
number of message bits to be K = (1 —¢€)N. Then we have Cyyt :Féi - ]Fé\,{

Then we obtain a concatenated code C': {0,1}*5 - {0,1}"V with blocklength L = nN = n2¢™ for
some constant C' and rate R = (1—-¢€)(1-h(d) —n). It is clear that the code can be constructed in
2" = poly(L) time and all encoding/decoding operations are poly(L) time.

Now we analyze the probability of error: Let us conditioned on the message bits (input to Coyt).
Since the outer code can correct % errors, an error happens only if the number of erroneous inner
encoder-decoder pairs exceeds % Since the channel is memoryless, each of the N pairs makes an
error independentlyi with probability at most €,. Therefore the number of errors is stochastically
smaller than Binom(N, €,), and we can upper bound the total probability of error using Chernoff
bound:

P. < IP’[Binom(N7 €n) 2 %] <exp (-Nd(e/2|e,)) =exp (-Q(Nlog N)) = exp(-Q(L)).

where we have used €, < exp(-£2(n)) and d(€/2]en) > 5log 5o~ = Q(n) = Q(log N).

'Here controlling the mazimal error probability of inner code is the key. If we only have average error probability,
then given a uniform distributed input to the RS code, the output symbols (which are the inputs to the inner encoders)
need not be independent, and Chernoff bound is not necessarily applicable.
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Note: For more details see the excellent exposition by Spielman [Spi97|. For modern constructions
using sparse graph codes which achieve the same goal in linear time, see, e.g., [Spi96].
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Part V

Lossy data compression
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§ 23. RATE-DISTORTION THEORY

Big picture so far:

1.

2.
3.
4.

Lossless data compression: Given a discrete ergodic source S*, we know how to encode to
pure bits W e [2].

Binary HT: Given two distribution P and (), we know how to distinguish them optimally.
Channel coding: How to send bits over a channel [2¥]5 W - X - Y.

JSCC: how to send discrete data optimally over a noisy channel.

Next topic, lossy data compression: Given X, find a k-bit representation W, X - W — X, such

that X is a good reconstruction of X.
Real-world examples: codecs consist of a compressor and a decompressor

e Image: JPEG...

e Audio: MP3, CD...

e Video: MPEG...

23.1 Scalar quantization

Problem: Data isn’t discrete! Often, a signal (function) comes from voltage levels or other
continuous quantities. The question of how to map (naturally occurring) continuous time/analog
signals into (electronics friendly) discrete/digital signals is known as quantization, or in information
theory, as rate distortion theory.

Domain Range

Continuous Analog

Sampling ‘ time  ~~___ Signal _— Quantization
Discrete / \

time

v

Digital

We will look at several ways to do quantization in the next few sections.
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23.1.1 Scalar Uniform Quantization

The idea of qunatizing an inherently continuous-valued signal was most explicitly expounded in the
patenting of Pulse-Coded Modulation (PCM) by A. Reeves, cf. [Ree65] for some interesting historical
notes. His argument was that unlike AM and FM modulation, quantized (digital) signals could be
sent over long routes without the detrimental accumulation of noise. Some initial theoretical analysis
of the PCM was undertaken in 1947 by Oliver, Pierce, and Shannon (same Shannon), cf. [OPS48].

For a random variable X € [-A/2,A/2] c R, the scalar uniform quantizer qy(X) with N
quantization points partitions the interval [-A/2, A/2] uniformly

N equally spaced points

|

|
A

2

where the points are in {% + %,k =0,...,N-1}.
What is the quality (or fidelity) of this quantization? Most of the time, mean squared error is
used as the quality criterion:

D(N) =E[X - qu(X)[?

where D denotes the average distortion. Often R =logy N is used instead of N, so that we think
about the number of bits we can use for quantization instead of the number of points. To analyze
this scalar uniform quantizer, we’ll look at the high-rate regime (R > 1). The key idea in the high
rate regime is that (assuming a smooth density Px), each quantization interval A; looks nearly flat,
so conditioned on Aj, the distribution is accurately approximately by a uniform distribution.

Let c; be the j-th quantization point, and A; be the j-th quantization interval. Here we have

N
EIX - qu(X)P = Y E[|X - ¢;*|X € Aj]P[X € A;]

j=1
. N o 14,2
(high rate approximation) =~ WP[X € Aj]
j=1
@A
12 12
How much do we gain per bit?
Var(X
1010g10 SNR = 1010g10 m
12Var(X

= constant + (6.02dB)R
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For example, when X is uniform on [—é, é], the constant is 0. Every engineer knows the rule

of thumb “6dB per bit”; adding one more quantization bit gets you 6 dB improvement in SNR.
However, here we can see that this rule of thumb is valid only in the high rate regime. (Consequently,
widely articulated claims such as “16-bit PCM (CD-quality) provides 96 dB of SNR” should be
taken with a grain of salt.)

Note: The above deals with X with a bounded support. When X is unbounded, a wise thing to do
is to allocate the quantization points to the range of values that are more likely and saturate the
large values at the dynamic range of the quantizer. Then there are two contributions, known as
the granular distortion and overload distortion. This leads us to the question: Perhaps instead of
uniform quantization optimal?

23.1.2 Scalar Non-uniform Quantization

Since our source has density px, a good idea might be to use more quantization points where px is
larger, and less where px is smaller.

Often the way such quantizers are implemented is to take a monotone transformation of the source
f(X), perform uniform quantization, then take the inverse function:

f

x—t v
'q lQU (23.1)

X <fT qu(U)

ie., ¢(X) = f(qu(f(X))). The function f is usually called the compander (compressor-expander).
One of the choice of f is the CDF of X, which maps X into uniform on [0,1]. In fact, this compander
architecture is optimal in the high-rate regime (fine quantization) but the optimal f is not the CDF
(1). We defer this discussion till Section 23.1.4.

In terms of practical considerations, for example, the human ear can detect sounds with volume
as small as 0 dB, and a painful, ear-damaging sound occurs around 140 dB. Achieveing this is
possible because the human ear inherently uses logarithmic companding function. Furthermore,
many natural signals (such as differences of consecutive samples in speech or music (but not samples
themselves!)) have an approximately Laplace distribution. Due to these two factors, a very popular
and sensible choice for f is the y-companding function

. In X
F(X) = sign(X) QXD
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which compresses the dynamic range, uses more bits for smaller |X|’s, e.g. |X|’s in the range of
human hearing, and less quantization bits outside this region. This results in the so-called p-law
which is used in the digital telecommunication systems in the US, while in Europe they use a slightly
different compander called the A-law.

23.1.3 Optimal Scalar Quantizers

Now we look for the optimal scalar quantizer given R bits for reconstruction. Formally, this is

. 2
Dseqiar(R) = min  E|X - g(X)|
g:|Im g|<2R
Intuitively, we would think that the optimal quantization regions should be contiguous; otherwise,
given a point ¢;, our reconstruction error will be larger. Therefore quantizers are piecewise constant:

q((E) = Cj]-TjSIST]'Jrl

for some ¢; € [T}, Tj1].

Simple example: One-bit quantization of X ~ N (0,0%). Then optimal quantization points are
¢1 = E[X|X 20] = /20, e = E[X|X <0] = /20

With ideas like this, in 1982 Stuart Lloyd developed an algorithm (called Lloyd’s algorithm)

for iteratively finding optimal quantization regions and points. This works for both the scalar and
vector cases, and goes as follows:

1. Pick any N = 2F points

2. Draw the Voronoi regions around the chosen quantization points (aka minimum distance
tessellation, or set of points closest to ¢;), which forms a partition of the space.

3. Update the quantization points by the centroids (E[X|X € D]) of each Voronoi region.

4. Repeat.

Steps of Lloyd’s algorithm

Lloyd’s clever observation is that the centroid of each Voronoi region is (in general) different than
the original quantization points. Therefore, iterating through this procedure gives the Centroidal
Voronoi Tessellation (CVT - which are very beautiful objects in their own right), which can be
viewed as the fixed point of this iterative mapping. The following theorem gives the results about
Lloyd’s algorithm

Theorem 23.1 (Lloyd).

1. Lloyd’s algorithm always converges to a Centroidal Voronoi Tessellation.
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2. The optimal quantization strategy is always a CV'T.
3. CVT’s are non-unique, and the algorithm may converge to non-global optima.

Remark: The third point tells us that Lloyd’s algorithm isn’t always guaranteed to give the
optimal quantization strategy.l One sufficient condition for uniqueness of a CVT is the log-concavity
of the density of X [Fleischer '64]. Thus, for Gaussian Px, Lloyd’s algorithm outputs the optimal
quantizer, but even for Gaussian, if N > 3, optimal quantization points are not known in closed
form! So it’s hard to say too much about optimal quantizers. Because of this, we next look for an
approximation in the regime of huge number of points.

23.1.4 Fine quantization

[Panter-Dite ’51] Now we look at the high SNR approximation. For this, introduce the probability
density function A(z), which represents the density of our quantization points and allows us to
approximate summations by integrals®. Then the number of quantization points in any interval [a, b]
is~ N [ ab A(z)dz. For any point z, denote its distance to the closest quantization point by A(x).
Then NA(z)A(z) »1 = A(z) » m With this approximation, the quality of reconstruction is
5 X 2
EIX - q(X)I" = Y E[IX - ¢j*|X € A;[P[X € Aj]
j=1

N |ﬁ,|2 52(w)
N [D X [&‘ —'7 %/p —dl:
]-221 [X €A 12 () 12

_ 12;72 f p(2)\2()dx

To find the optimal density A that gives the best reconstruction (minimum MSE) when X has
density p, we use Holder’s inequality: [ p'/® < (f pA™2)Y3(f X\)?/3. Therefore [ pA~2 > ([ p'/?)3,

. . . -2 L : * _ fl/s(m) _oR 3
with equality iff pA™ o< X\. Hence the optimizer is \*(x) = T ds Therefore when N =22

1 3
Dscalar(R) N 52 QR([pl/g(x)dx)

So our optimal quantizer density in the high rate regime is proportional to the cubic root of the
density of our source. This approximation is called the Panter-Dite approximation. For example,
when X ~ N (0,0?), this gives

3
Dscalar (R) N 022_2R %

Note: In fact, in scalar case the optimal non-uniform quantizer can be realized using the compander
architecture (23.1) that we discussed in Section 23.1.2: As an exercise, use Taylor expansion to

! As a simple example one may consider Px = §¢(x - 1) + 3¢(x) + 3¢(x + 1) where ¢(-) is a very narrow pdf,
symmetric around 0. Here the CVT with centers +3 is not optimal among binary quantizers (just compare to any
quantizer that quantizes two adjacent spikes to same value).

2This argument is easy to make rigorous. We only need to define reconstruction points ¢; as solutions of

cj ]
A dr = =.
Lo (@) dv =15

3In fact when R — oo, “~” can be replaced by “= 1+ 0(1)” [Zador ’56].
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analyze the quantization error of (23.1) when N — co. The optimal compander f:R — [0,1] turns

t1/3
out to be f(z) = % [Bennett 48, Smith ’57].

23.1.5 Fine quantization and variable rate

So far we were considering quantization with restriction on the cardinality of the image of ¢(-). If
one, however, intends to further compress the values ¢(X) via noiseless compressor, a more natural
constraint is to bound H(¢(X)).

Koshelev [Kos63] discovered in 1963 that in the high rate regime uniform quantization is
asymptotically optimal under the entropy constraint. Indeed, if ga is a uniform quantizer with cell
size A, then it is easy to see that

H(ga(X))=h(X)-logA+o0(1), (23.2)

where h(X) = - [ px(x)logpx (x) dx is the differential entropy of X. So a uniform quantizer with

H(q(X)) = R achieves
Do AQ 2—2R22h(X)
12 12

On the other hand, any quantizer with unnormalized point density function A(x) (i.e. smooth
function such that [ A(z)dz = j) can be shown to achieve (assuming A — co pointwise)

Dw %pr(x)A%()dx (23.3)

H0)~ [ px(@ion 2 o (23.)

Now, from Jensen’s inequality we have

211 (a(x)) 220
———dx > —ex —2] z)logA(x)dx} ~ 277 A —
15 @ p(-2 [ px(v)logA(x) dr} 5
concluding that uniform quantizer is asymptotically optimal.

Furthermore, it turns out that for any source, even the optimal vector quantizers (to be considered

2R 22h(X)

next) can not achieve distortion better that 27**=5— —i.e. the maximal improvement they can
gain (on any iid source!) is 1.53 dB (or 0.255 bit/ sample) This is one reason why scalar uniform

quantizers followed by lossless compression is an overwhelmingly popular solution in practice.

23.2 Information-theoretic vector quantization

By doing vector quantization (namely, compressing (X1,...,X,) = 2" points), rate-distortion
theory tells us that when n is large, we can achieve the per-coordinate MSE:

Dyee(R) = 022728

which saves 4.35 dB (or 0.72 bit/sample). This should be rather surprising, so we repeat it again:
even when Xi,..., X, are iid, we can get better performance by quantizing X; jointly. One instance
of this surprising effect is the following;:

Hamming Game: Given 100 unbiased bits, we want to look at them and scribble something
down on a piece of paper that can store 50 bits at most. Later we will be asked to guess the
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original 100 bits, with the goal of maximizing the number of correctly guessed bits. What is the
best strategy? Intuitvely, the optimal strategy would be to store half of the bits then guess on the
rest, which gives 25% BER. However, as we will show in the next few lectures, the optimal strategy
amazingly achieves a BER of 11%. Note does this happen? After all we are guessing independent
bits and the utility function (BER) treats all bits equally. Some intuitive explanation:

1. Applying scalar quantization componentwise results in quantization region that are hypercubes,
which might not be efficient for covering.

2. Concentration of measures removes many source realizations that are highly unlikely. For
example, if we think about quantizing a single Gaussian X, then we need to cover large portion
of R in order to cover the cases of significant deviations of X from 0. However, when we are
quantizing many (X1,...,X,) together, the law of large numbers makes sure that many X’s
cannot conspire together and all produce large values. Thus, we may exclude large portions of
the R™ from consideration.

Math Formalism: A lossy compressor is an encoder/decoder pair (f,g) where
xLwg

e X ¢ X - continuous source

e W - discrete data

e XeX- reproduction

A distortion metric is a function d : X x X — RuU{+o0} (loss function). There are various formulations
of the lossy compression problem:

1. Fixed length (fixed rate), average distortion: W e [M], minimize E[d(X, X)].
2. Fixed length, excess distortion: W € [M], minimize P[d(X, X) > D].

3. Variable length, max distortion: W e {0,1}", d(X,X) < D a.s., minimize E[length(1)] or
H(X)=H(W).

Note: In this course we focus on fixed length and average distortion loss compression. The
difference between average distortion and excess distortion is analogous to average risk bound and
high-probability bound in statistics/machine learning.

Definition 23.1. Rate-distortion problem is characterized by a pair of alphabets A, A, a single-
letter distortion function d(-,-) : Ax A - R U {+c0} and a source — a sequence of A-valued r.v.’s
(S1,54,...). A separable distortion metric is defined for n-letter vectors by averaging the single-letter
distortions:

1
d(a",a") = = > d(a;,a;)
n
An (n, M, D)-code is
e Encoder f: A" - [M]

A~

e Decoder g: [M] - A"
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e Average distortion: E[d(S™, g(f(S™)))] < D
Fundamental limit:
M*(n,D) = min{M : 3(n, M, D)-code}

1
R(D) = limsup —log M*(n, D)
n

n—oo

Now that we have the definition, we give the (surprisingly simple) general converse

Theorem 23.2 (General Converse). For all lossy codes X - W — X such that E[d(X,X)] < D,
we have

log M > D)= inf I(X:Y
eMzpx(D)=  oinl e TEGY)

where W e [ M].
Proof.
logM > H(W) > I(X;W) > I(X;X) > ox(D)

where the last inequality follows from the fact that PX\ « is a feasible solution (by assumption). [
Theorem 23.3 (Properties of ¢x).

1. px 18 convex, non-increasing.

2. px continuous on (Dy,o0), where Dy =inf{D : px (D) < oo}.

3. 1If

Dy =y

d(z,y) = {> Dy x4y

Then ox (Do) = 1(X; X).

4. Let

Dinax = inf Ed(X, 2).
TeX

Then px (D) =0 for all D > Dyax. If Do > Dpae then also @ x (Dimaz) = 0.
Note: If Dyax = Ed(X, %) for some &, then & is the “default” reconstruction of X, i.e., the best
estimate when we have no information about X. Therefore D > D,,.x can be achieved for free. This
is the reason for the notation Dy, despite that it is defined as an infimum.
Example: (Gaussian with MSE distortion) For X ~ N(0,0?) and d(z,y) = (x - y)?, we have
ex(D) = %logJr %. In this case Do = 0 which is not attained; Dpmax = 02 and if D > o2, we can
simply output X =0 as the reconstruction which requires zero bits.

Proof.
1. Convexity follows from the convexity of Py x = I(Px, Py|x).

2. Continuity on interior of the domain follows from convexity.
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3. The only way to satisfy the constraint is to take X =Y.

4. For any D > Dy, We can set X =3 deterministically. Thus I(X;Z) = 0. The second claim
follows from continuity. O

In channel coding, we looked at the capacity and the information capacity. We define the
Information Rate-Distortion function in an analogous way here, which by itself is not an operational
quantity.

Definition 23.2. The Information Rate-Distortion function for a source is

1 N
R;(D) =limsup —pgn (D) where @gn(D) = inf I(S™;8™)
n—oo M Pgn|5n¢E[d(S"75")]SD

And Dy =inf{D: R;(D) < co}.

The reason for defining R;(D) is because from Theorem 23.2 we immediately get:
Corollary 23.1. VD, R(D) > R;(D).

Naturally, the information rate-distortion function inherit the properties of ¢:

Theorem 23.4 (Properties of R;).
1. R;(D) is conver, non-increasing
2. R;(D) is continuous on (Dg,o0), where Dy =inf{D : R;(D) < oo }.

3. If

Dgy rT=1y
d(z,y) = {
>Dy z#y
Then for stationary ergodic {S™}, R;(D) =H (entropy rate) or +oo if Sy is not discrete.
4. Ri(D) =0 for all D > Dyax, where

Diax 2 limsup inf Ed(X",27).

n—oo gneX

If Do < Dpax, then Ri(Dmax) =0 too.
5. (Single letterization) If the source {S;} is i.i.d., then

Ri(D) = ¢s,(D) = inf  I(S;9)
Py :E[d(S,5)]<D

Proof. Properties 1-4 follow directly from corresponding properties of ¢g» and property 5 will be
established in the next section. O
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23.3* Converting excess distortion to average

Finally, we discuss how to build a compressor for average distortion if we have a compressor for
excess distortion, which we will not discuss in details in class.
Assumption D,. Assume that for (5, d), there exists p > 1 such that D, < oo, where

D, % supinf(E|d(S™, 2)[P)}P < +o0
n
i.e. that our separable distortion metric d doesn’t grow too fast. Note that (by Minkowski’s
inequality) for stationary memoryless sources we have a single-letter bound:
D, < inf(E|d(S,#)[P)'/P (23.5)
xX
Theorem 23.5 (Excess-to-Average). Suppose there exists X - W — X such that W e [M] and

P[d(X,X) > D] <e. Suppose for some p>1 and &g € X, (E[d(X,#0)]?)/? = D, < co. Then there
exists X > W' — X' code such that W' e [M + 1] and

E[d(X,X")] < D(1-¢)+ D, 'P (23.6)

Remark 23.1. Theorem is only useful for p > 1, since for p = 1 the right-hand side of (23.6) does
not converge to 0 as € = 0.

Proof. We transform the first code into the second by adding one codeword:

iy f(@)  d(z,g(f(x))) <D
f(x)_{M-i-l o/w

o )90) J<M
9() =1, :
Zo j=M+1

Then

E[d(X,¢ o f/(X)) <E[d(X,X)|W # M +1](1 - €) + E[d(X,20)1{W = M +1}]
(Holders Inequality) < D(1-¢€)+ Dpel_l/p
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§ 24. RATE DISTORTION: ACHIEVABILITY BOUNDS

24.1 Recap

Compute R(D).
Recall from the last lecture:

1
R(D) =limsup —log M*(n,D), (rate distortion function)

n—-oco N

1
R;(D) =limsup —pgn(D), (information rate distortion function)

n—oo N
and
ps(D) = inf  1(5;89)
Pg s E[d(S5,8)]<D
gn(D) = inf I(S™ S™)

Pgn gnE[d(S7,97)]<D

Also, we showed the general converse: For any (M, D)-code X - W — X we have

log M > px (D)
= log M (n,D) > pgn(D)
= R(D) > R;(D)

In this lecture, we will prove the achievability bound and establish the identity R(D) = R;(D)
for stationary memoryless sources.

First we show that R;(D) can be easily calculated for memoryless source without going through
the multi-letter optimization problem.

Theorem 24.1 (Single-letterization). For stationary memoryless source S™ and separable distortion
d,

Ri(D) = ps(D)

Proof. By definition we have that pgn(D) < npg(D) by choosing a product channel: P*n|5n =
(PS\S)R' Thus R;(D) < ¢s(D).
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For the converse, take any Pg, g, such that the constraint E[d(S™,5™)] < D is satisfied, we have

1(S;,5)) (S™ independent)

M=

I(S™;8™) >
J

3
—_

J

> 1¢s(E[d(5jvgj)])

1& A
2NPg (E Z E[d(S;, Sj)]) (convexity of ¢g)
=1

>nps(D) (¢s non-increasing)

24.2 Shannon’s rate-distortion theorem

Theorem 24.2. Let the source S™ be stationary and memoryless, S”i'i&d'Pg, and suppose that
distortion metric d and the target distortion D satisfy:

1. d(s™,8") is non-negative and separable
2. D> Dy

3. Dmax 18 finite, i.e.
Dinx = nf E[d(S,5)] < oo.

Then

R(D) = Ry(D) = inf 1(S;9). (24.1)
Py ¢'E[d(S,5)]<D

Remarks:

e Note that Dyax < 0o does not imply that d(-,-) only takes values in R, i.e. theorem permits
d(a,a) = oo.

e It should be remarked that when Dy,ax = oo typically R(D) = co. Indeed, suppose that d(,-)
is a metric (i.e. finite valued and satisfies triangle inequality). Then, for any xy € A" we have

d(X,X) > d(X,x0) - d(z0, X).
Thus, for any finite codebook {c1,...,cap} we have max; d(xo,c;) < oo and therefore

E[d(X,X)] > E[d(X,z0)] - mjaxd(aco, ¢j) =00,

So that R(D) = oo for any finite D. This observation, however, should not be interpreted as
absolute impossibility of compression for such sources. It is just not possible with fixed-rate
codes. As an example, for quadratic distortion and Cauchy-distributed S, Dyax = oo since S
has infinite second-order moments. But it is easy to see that R;(D) < oo for any D € (0,00). In
fact, in this case R;(D) is a hyperbola-like curve that never touches either axis. A non-trivial
compression can be attained with compressors S™ — W of bounded entropy H (W) (but
unbounded alphabet of ). Indeed if we take W to be a A-quantized version of S and notice
that differential entropy of S is finite, we get from (23.2) that R;(A) < H(W) < co. Interesting
question: Is H(W) =nR;(D) + o(n) attainable?
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e Techniques in proving (24.1) for memoryless sources can be applied to prove it for “stationary
ergodic” sources with changes similar to those we have discussed in channel coding.

Before giving a formal proof, we illustrate the intuition non-rigorously.
24.2.1 Intuition

Try to throw in M points C = {¢1,...,cp} € A" which are drawn i.i.d. according to a product
distribution Qgﬁ where (g is some distribution on A. Examine the simple encoder and decoder pair:

encoder : f(s") =argmind(s",c;) (24.2)
je[M]

decoder : g(j) =¢; (24.3)

The basic idea is the following: Since the codewords are generated independently of the source,
the probability that a given codeword offers good reconstruction is (exponentially) small, say, €.
However, since we have many codewords, the chance that there exists a good one can be of high
probability. More precisely, the probability that no good codeword exist is (1 — €)™, which can be
very close to zero as long as M grows faster than %

To explain the intuition further, let us consider the excess distortion of this code: P[d(S™,S™) >
D]. Define

Psyccess =P[3ceC, s.t. d(S",¢) < D]

Then
Phaiture 2P[Ve¢; € C,d(S",¢) > D] (24.4)
~P[Ve; €C,d(S™,¢) > D|S" €T, ] (24.5)
( T}, is the set of typical strings with empirical distribution Pgn ~ Pg )
=P[d(S",5") > DIS" e T,]"  (Pgu 3. = PEQY) (24.6)
=(1- P[d(S",5")<D|S"eT,] M (24.7)

since S™ 1 8™, this should be small

n(1 -2 E@Qs) )M (large deviation!) (24.8)
where it can be shown (similar to information projection) that

E(Qg) = min D(Pg5|QglPs) (24.9)

Pg sE[d(S,5)]<D

Thus we conclude that VQg,Vd > 0 we can pick M = 27(E(@3)+9) and the above code will have
arbitrarily small excess distortion:

Ptoiture =P[VceC,d(S",c) > D] - 0 as n — oo.
We optimize Q¢ to get the smallest possible M:

min F(Q¢s) = min min D(Pg o||Q | Ps 24.10
Qs (@s) Py g E[d(8,9)]<D Qs (Pys1QslFs) ( )

= min  1(S;9)
Pg gE[d(S,8)]<D

= ps(D)
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24.2.2 Proof of Theorem 24.2

Theorem 24.3 (Performance bound of average-distortion codes). Fixz Px and suppose d(x,z) >0
for all z,%. VPy|x, V¥ >0, Vyo € A, there ezists a code X -~ W — X, where W ¢ [M +1] and

E[d(X,X)] <E[d(X,Y)]+E[d(X,y0)]e”™ + E[d(X,50)1(i(x.v)s1ogn) ]
d(X,X)<d(X,y0) a.s.

Notes:

e This theorem says that from an arbitrary Py |y such that Ed(X,Y) < D, we can extract a good
code with average distortion D plus some extra terms which will vanish in the asymptotic
regime.

e The proof uses the random coding argument. The role of the deterministic yg is a “fail-safe”

codeword (think of yy as the default reconstruction with Dyax = E[d(X,y)]). We add yo to
the random codebook for damage control, to hedge the (highly unlikely and unlucky) event
that we end up with a horrible codebook.

Proof. Similar to the previous intuitive argument, we apply random coding and generate the
codewords randomly and independently of the source:

C= {Cl, .. .,CM}i'i"vd'Py 1 X

and add the “fail-safe” codeword cps41 = yo. We adopt the same encoder-decoder pair (24.2) — (24.3)
and let X = g(f(X)). Then by definition,

d(X,X)= min d(X,c;)<d(X, o).
( ) ) ]GI[IJEI-EI] ( 7cj)— ( 7y0)

To simplify notation, let Y be an independent copy of Y’ (similar to the idea of introducing unsent
codeword X in channel coding):

P

XYYy ~ Pxy Py

where Py = Py. Recall the formula for computing the expectation of a random variable U € [0, a]:
/0 [U > u]du. Then the average distortion is

Ed(X,X)=E min d(X,c;) (24.11)
je[M+1]

:EXELJ?KH d(X, ¢;)|x] (24.12)
d(vaO)

=Ex '/0 P[]eﬁ\l}&] d(X,cj) > u‘X]du (24.13)
d(vaO)

<Ey fo I:Jrer[l]l\}[l A(X, ¢5) > u[ X |du (24.14)
d(X,yo) _

:EX/O RAX,Y) > u XM du (24.15)
d(X,yo) _

_Ey fo 1P, Y < ulX])Mdu (24.16)

26(X,u)
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Next we upper bound (1 - 6(X,u)) as follows:

(1-8(X,u)M < ™M 1)1 —~48(X,u)| (24.17)
= e M7 4 |1 = yE[exp{-i(X; V) } 1 {a(x.v )< X[ (24.18)
< e—M/'Y + IP)[’L(X, Y) > ]0g7|X] + P[d(X,Y) > u|X] (2419)

where

e (24.17) uses the following trick in dealing with (1 -6)™ for § <« 1 and M > 1. First, recall
the standard rule of thumb:
0 > 1
(1-€)" =1 Cnlt
1, e,n«kl1
In order to argue firm bounds of similar flavor, consider

union bound

1-6M < (1-6)M<eM (log(1-6) < -0)
<e MM (yg A1)+ |1 =78 (Vv>0)

<e MM 1 —~8"

6—61\/1

0 1/y 5
upper bound e M
. . . .o _ Py (y) . oL . oL .
e (24.18) is simply change of measure using i(x;y) = log Py (017 (i.e., conditioning-unconditioning

trick for information density, cf. Proposition 15.1.
o (24.19):

1= yElexp{-i(X;Y )} qx,v)<uy| X] < 1= vE[exp{-i(X;Y) }1{a(x,v)<ui(X;v)<logy} X ]
< 1-E[1g(x,y)<ui(X;v)<log} | X ]
=Pld(X,Y)>uor i(X;Y) >logv|X]
<PA(X,Y) >ulX]+Pli(X;Y) > log~v|X]

Plugging (24.19) into (24.16), we have
~ d(vaO) —M/ .
E[d(X,X)] <Ex /0 (M L P[i(X;Y) > logr| X] + P[A(X,Y) > u[X])du

<E[d(X, yo)]e_M/'y +E[d(X,y0)P[i(X;Y) >logv|X]] + Ex /Ooo Pld(X,Y) > u|X])du
= E[d(X,y0)]e ™" + E[d(X,50)1(i(x:v)s1081] + E[A(X, V)]
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As a side product, we have the following achievability for excess distortion.
Theorem 24.4 (Performance bound of excess-distortion codes). VPy|x, Vv >0, there exists a code
X - W - X, where W € [M] and
P[d(X,X) > D] < e My P{d(X,Y)>D}u{i(X;Y) >log~}]

Proof. Proceed exactly as in the proof of Theorem 24.3, replace (24.11) by P[d(X, X)>D]=P[Vje
[M],d(X,¢;) > D] =Ex[(1-P[d(X,Y) < D|X])™], and continue similarly. O

Finally, we are able to prove Theorem 24.2 rigorously by applying Theorem 24.3 to iid sources
X =8" and n — oo:

Proof of Theorem 24.2. Our goal is the achievability: R(D) < R;(D) = ¢s(D).

WLOG we can assume that Dy.x = E[d(S, 50)] achieved at some fixed §p — this is our default
reconstruction; otherwise just take any other fixed sequence so that the expectation is finite. The
default reconstruction for S™ is 57 = (8o, ...,80) and E[d(S™,5()] = Dmax < oo since the distortion
is separable.

Fix some small § > 0. Take any P§|S such that E[d(S,S5)] < D -4. Apply Theorem 24.3 to

(X,Y) = (8™, 8") with
PX = PSn
Py|x = Pgngn = (Pé\s)n
log M = n(I(S;S) +26)
logy = n(I1(S;8) +0)
1 & A
d(X,Y)= _Zd(sjasj)
nj:l

an

Yo = Sp
we conclude that there exists a compressor f: A" - [M +1] and g: [M + 1] - A", such that

E[d(S", g(f(S™)))] < E[d(S",$™)] + E[d(S", 5)]e” ™7 + E[d(S", 50)L{i(sm:5m)>1og 1) )

< D=6+ Doy e P L R[d(S™,50)1E, ], (24.20)
-0 -0 (later)
where
N 12 R N
B, = {i(S™;8") > logy} = {— Si(S;585) > 1(S;8) + 5} ML P[E,] -0
n j=1

If we can show the expectation in (24.20) vanishes, then there exists an (n, M , D)-code with:
M =2nU(S9428) - B o p_§1o(1)<D.
To summarize, V Pg g such that E[d(S,S)] < D - § we have that:
R(D) <1(S;8)

1)
L R(D) < ps(D-) = ¢ps(D). (continuity, since D > Dy)
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It remains to show the expectation in (24.20) vanishes. This is a simple consequence of the
L
uniform integrability of the sequence {d(S™,3%)}. (Indeed, any sequence V;, = V is uniformly
integrable.) If you do not know what uniform integrability is, here is a self-contained proof.

Lemma 24.1. For any positive random variable U, define g(6) = suppyprp<s E[ULH]. Thenk
-0

EU < 00 = g(6) — 0.
Proof. Forany b> 0, E[Uly] <E[Uly.p ]+bd, where E[U1 55y ] Lty by dominated convergence
theorem. Then the proof is completed by setting b =1/ V. O

Now d(S™,35() = % > Uj, where U; are iid copies of U. Since E[U] = Dpax < 00 by assumption,
applying Lemma 24.1 yields E[d(S", §))1E, ]| = %ZE[UleH] < g(P[E,]) = 0, since P[E,] — 0.
We are done proving the theorem. O

Note: It seems that in Section 24.2.1 and in Theorem 24.2 we applied different relaxations in
showing the lower bound, how come they turn out to yield the same tight asymptotic result?
This is because the key to both proofs is to estimate the exponent (large deviations) of the
underlined probabilities in (24.7) and (24.16), respectively. To get the right exponent, as we know,
the key is to apply tilting (change of measure) to the distribution solving the information projection

problem (24.9). In the case, when Py = (Q¢)" = (Pg)" is chosen as the solution to rate-distortion
i(X5Y)

optimization inf I(S;5), the resulting tilting is precisely given by 2~

24.3* Covering lemma

Goal:
ii.d. ~ P} generated by nature
An
TESTER
Rate R link - (A", B") jointly ~ Pan pn = P} g7
- evaluate f(A™, B™)
B

What’s the minimum rate R needed to fool the tester?
In other words:

n fact, = is <.

252



Ay — By Aq

Ay —> Bs Az

An —> Bn

p Q
Approximate P with ) such that for any function f, Vz, we have:
P[f(A" B") <]~ Q[f(A",B") <z], |[W|<2"F,

what is the minimum rate R to achieve this?
Some remarks:

1. The minimal rate will depend (although it is not obvious) on whether the encoder A" — W
knows about the test that the tester is running (or equivalently whether he knows the function

2. If the function is known to be of the form f(A", B") = ¥ fi(Aj;, B;), then evidently the job
of the encoder is the following: For any realization of the sequence A", we need to generate a
sequence B" such that joint composition (empirical distribution) is very close to P4 p.

3. If R=H(A), we can compress A" and send it to “B side”, who can reconstruct A" perfectly
and use that information to produce B" through Ppgn|sn.

4. If R= H(B), “A side” can generate B" according to P} 5 and send that B" sequence to the
“B side”.

5. If A1 B, we know that R =0, as “B side” can generate B™ independently.

Our previous argument turns out to give a sharp answer for the case when encoder is aware of
the tester’s algorithm. Here is a precise result:

Theorem 24.5 (Covering Lemma). VP4 p and R > I(A;B), let C = {c1,...,c;m} where each
codeword cj is i.1.d. drawn from distribution Pg. Ve >0, for M > 2 I(AB)*+€) e have that:

P[3c e C such that pAnyc ~Pypl—1
Stronger form: VF
P[3c: (A", c) e F]>P[(A",B") e F]+ o(1)
——
uniform in F
Proof. Following similar arguments of the proof for Theorem 24.3, we have
P[¥eeC: (A" c) ¢ F] <™ +P[{(A", B") ¢ F} U {i(A"; B") > log~}]

=P[(A",B") ¢ F]+0(1)
= P[VceC: (A" c)e F]>P[(A",B") e F]+0(1)
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Note: [Intuition] To generate B™, there are around 2" (B) high probability sequences; for each A™
sequence, there are around 27 (Bl4) B" sequences that have the same joint distribution, therefore, it
is sufficient to describe the class of B™ for each A™ sequence, and there are around % = onl(4;B)
classes.

Although Covering Lemma is a powerful tool, it does not imply that the constructed joint
distribution @ 4»pr» can fool any permutation invariant tester. In other words, it is not guaranteed
that

s Qanp(F) = Ph ()] ~0.
FcAnxBn permut.lnvar.

Indeed, a sufficient statistic for a permutation invariant tester is a joint type PAn@. Our code
satisfies pAn,c ~ Py p, but it might happen that JSAn7C although close to P4 p still takes highly
unlikely values (for example, if we restrict all ¢ to have the same composition Py, the tester can
easily detect the problem since Pp-measure of all strings of composition Py cannot exceed O(1/\/n)).
Formally, to fool permutation invariant tester we need to have small total variation between the
distribution on the joint types under P and Q. (It is natural to conjecture that rate R = I(A; B)
should be sufficient to achieve this requirement, though).
A related question is about the minimal possible rate (i.e. cardinality of W e [2"%]) required to
have small total variation:
TV(Qan pn,Pip) <€ (24.21)

Note that condition (24.21) guarantees that any tester (permutation invariant or not) is fooled to
believe he sees the truly iid (A", B™). The minimal required rate turns out to be (Cuff’2012):

R= min I(A,B;U)
A-U-B

a quantity known as Wyner’s common information C'(A;B). Showing that Wyner’s common
information is a lower-bound is not hard. Indeed, since Q a» g» » P}z (in TV) we have

I(QAt’l,Bt’17QAtBt|At’1,Bt’1) N I(PAt’l,Bt’laPAtBt|At’1,Bt’1) =0

(Here one needs to use finiteness of the alphabet of A and B and the bounds relating H(P) - H(Q)
with TV(P,Q)). We have (under Q!)

nR=H(W)>I(A", B";W) (24.22)
> iI(At,Bt;W) — I(Ay, Bi; AV1B) (24.23)
t;l
» S I(Ag, By W) (24.24)
> :é’(A; B) (24.25)

where in the last step we used the crucial observation that under @) there is a Markov chain
At - W d Bt

and that Wyner’s common information P4 g = C(A; B) should be continuous in the total variation
distance on P4 p. Showing achievability is a little more involved.
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§ 25. EVALUATING R(D). LOSSY SOURCE-CHANNEL SEPARATION.

Last time: For stationary memoryless (iid) sources and separable distortion, under the assumption
that Dypax < 00.

R(D) = Ry(D) = inf I(S;9).

Pg sEd(S,5)<D

25.1 Evaluation of R(D)

So far we’ve proved some properties about the rate distortion function, now we’ll compute its value
for a few simple statistical sources. We’ll do this in a somewhat unsatisfying way: guess the answer,
then verify its correctness. At the end, we’ll show that there is a pattern behind this method.

25.1.1 Bernoulli Source

Let S ~ Ber(p), p < 1/2, with Hamming distortion d(S,S) = 1{S # S} and alphabets A = A = {0,1}.
Then d(s",8") = %Hs" — 58" | Hamming is the bit-error rate.
Claim: R(D) = |h(p) - h(D)|*

Proof. Since Dy« = p, in the sequel we can assume D < p for otherwise there is nothing to show.
(Achievability) We're free to choose any PS\ g 80 choose S =5+ Z, where S ~ Ber(p') L Z ~

Ber(D), and p’ is such that p’(1- D)+ (1-p")D =p so that p’ < p. In other words, the backward
channel Pg ¢ is a BSC(D). This induces some forward channel Pgg- Then,

I1(S;5) = H(S) - H(S|S) = h(p) - h(D)

Since one such Pg g exists, we have the upper bound R(D) < h(p) - h(D).
(Converse) First proof: For any Pg g such that P[S+S]<D<p< %,

1(5;5) = H(S) - H(S|S)
= H(S)-H(S+5|9)
> H(S)-H(S+5)
= h(p) - W(P[S = 5])
> h(p) - h(D)

Second proof: Here is a more general strategy. Denote the random transformation from the

achievability proof by P .. Now we need to show that there is no better Qg ¢ with Eq[d(S,5)] <D

3|8
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and a smaller mutual information. Then consider the chain:

R(D) <1(Ps,Qgs) = D(Qg5lPsQg)
PS|§
= D(QS|§HPS|§\QS) +Eq [log P_s]

(Marginal Qg = PsQgg) = D(Qg 5l Ps5|Qg) + H(S) +Eg[log D1{S # 5} +log D1{S = 5}]

And we can minimize this expression by taking @ SIg = PS| g, giving

>0+ H(S)+P[S =S]log(1-D)+P[S#S]logD > h(p)-h(D) (D<1/2) (25.1)
Since the upper and lower bound agree, we have R(D) = |h(p) — h(D)|*. O

For example, when p = 1/2, D = .11, then R(D) = 1/2 bit. In the Hamming game where we
compressed 100 bits down to 50, we indeed can do this while achieving 11% average distortion,
compared to the naive scheme of storing half the string and guessing on the other half, which
achieves 25% average distortion.

Interpretation: By WLLN, the distribution Pg = Ber(p)" concentrates near the Hamming
sphere of radius np as n grows large. The above result about Hamming sources tells us that the
optimal reconstruction points are from Pg = Ber(p’)" where p’ < p, which concentrates on a sphere

of radius np’ (note the reconstruction points are some exponentially small subset of this sphere).

S(0,np)
~

[~ 5(0,np)

Hamming Spheres

It is interesting to note that none of the reconstruction points are the same as any of the possible
source values (with high probability).

25.1.2 (Gaussian Source

The Gaussian source is defines as A= A=R, S ~ N (0,0?), d(a,a) = |a - a[> (MSE distortion).
Claim: R(D) = §log* %.

Proof. Since Dyax = 02, in the sequel we can assume D < o2 for otherwise there is nothing to show.
(Achievability) Choose S = S+ Z , where S ~ (0,02 - D) 1 Z ~N(0,D). In other words, the
backward channel PS‘ g is AWGN with noise power D. Since everything is jointly Gaussian, the

forward channel can be easily found to be Pgq = N ("Z—;DS, o*-D D). Then

g

2 0.2

N 1 1
I(S;S) = ilog% = R(D)Sglog 5
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(Converse) Let Pg o be any conditional distribution such that Ep|S - S| < D. Denote the
forward channel in the achievability by Pg We use the same trick as before

IS
Pys
I(PS’PS|S) = D(PS|S'”P;|S'|P§) +Ep IOgP—S
- pr
S8
>Ep|log ——
p|log Ps
[ 1 _(5=9?2
27TD6 .
=Ep|log P
L \/271'026 2
1. o? loge 52 |S- 8P
=—log—+——Ep|— -
25D " 2 P[c;? D
11 o?
> —log —.
2 %D
Again, the upper and lower bounds agree. ]

The interpretation in the Gaussian case is very similar to the case of the Hamming source. As n
grows large, our source distribution concentrates on S(0, Vno? ) (n-sphere in Euclidean space rather
than Hamming), and our reconstruction points on S(0,v/n(c2 - D)). So again the picture is two
nested sphere.

How sensitive is the rate-distortion formula to the Gaussianity assumption of the source?

Theorem 25.1. Assume that ES = 0 and VarS = 0. Let the distortion metric be quadratic:
d(s,5) = (s —3)2. Then

[\

+ 7

2
110g+%-D(pSHN(o,UQ))gR(D)= it 1(5:8) < log” T

2 Pg sE(5-5)2<D

DN | —

Note: This result is in exact parallel to what we proved in Theorem 17.6 for additive-noise channel
capacity:

1 P 1 P
—log(1+—)S sup I(X;X+Z)S—log(1+—)+D(PZ||N(O,02)).
2 0] " pyEx2<p 2 o?

where EZ =0 and Var Z = ¢2.

Note: A simple consequence of Theorem 25.1 is that for source distributions with a density,
the rate-distortion function grows according to %log% in the low-distortion regime as long as
D(Ps|N(0,0?)) is finite. In fact, the first inequality, known as the Shannon lower bound, is
asymptotically tight, i.e., R(D) = %log% - D(Ps|N(0,6%)) + o(1) as D — 0. Therefore in this
regime performing uniform scalar quantization with accuracy % is in fact asymptotically optimal

within an o(1) term.

Proof. Again, assume D < Dyay = 02. Let Sg ~ N(0,0?).
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(Achievability) Use the same P§| 5= N Ji;QDS, Ui}D D) in the achievability proof of Gaussian

rate-distortion function:

R(D) < I(Ps, Py)

2 _ D 2 D
= 1(5: 2575+ W) W~ N(0,2-=D)
o o
o?-D . .
< I(Sg; s—Sa + W) by Gaussian saddle point (Theorem 4.6)
o 20
B 11 o?
"%

(Converse) For any Pg g such that E(S-S)2<D. Let P

S8 = N (S, D) denote AWGN with noise

power D. Then

1(5:8) = D(Pg 3] Ps|Pg)

= D(Pg 5 Pg5|Ps) + Ep llog Psls - D(Ps| Ps)
Sa
1 6_<52—£s;>2
> Ep | log Y252 = |~ D(Ps| Psg)
1 o?
2 5 log — = D(Ps||Psg).

O]

Remark: The theory of quantization and the rate distortion theory at large have played a
significant role in pure mathematics. For instance, Hilbert’s thirteenth problem was partially solved
by Arnold and Kolmogorov after they realized that they could classify spaces of functions looking
at the optimal quantizer for such functions.

25.2* Analog of saddle-point property in rate-distortion

In the computation of R(D) for the Hamming and Gaussian source, we guessed the correct form
of the rate distortion function. In both of their converse arguments, we used the same trick to
establish that any other PSI ¢ gave a larger value for R(D). In this section, we formalize this trick,
in an analogous manner to the saddle point property of the channel capacity. Note that typically
we don’t need any tricks to compute R(D), since we can obtain a solution in parametric form to
the unconstrained convex optimization

min I(S; S) + NE[d(S, 9)]

Pé\s

In fact there are also iterative algorithms (Blahut-Arimoto) that computes R(D). However, for
peace of mind it is good to know there are some general reasons why tricks like we used in
Hamming/Gaussian actually are guaranteed to work.

258



Theorem 25.2. 1. Suppose Py« and Px|y+ < Px are found with the property that E[d(X,Y™)] < D
and for any Pxy with E[d(X,Y)] < D we have

dPx |y~

E logw

(X|Y) |2 I(X;Y%). (25.2)

Then R(D) =I1(X;Y™).
2. Suppose that I(X;Y™*) = R(D). Then for any regular branch of conditional probability Px/y
and for any Pxy satisfying

e E[d(X,Y)] <D and
e Py < Py+ and
o I(X:Y) <00

the inequality (25.2) holds.
Remarks:

1. The first part is a sufficient condition for optimality of a given Pxy+. The second part gives a
necessary condition that is convenient to narrow down the search. Indeed, typically the set of
Pxvy satisfying those conditions is rich enough to infer from (25.2):

dpx‘yx-
dPx

log (zly) = R(D) - 0[d(x,y) - D],

for a positive 6 > 0.

2. Note that the second part is not valid without Py << Py~ condition. The counter-example to
this and various other erroneous (but frequently encountered) generalizations is the following:
A={0,1}, Px =Bern(1/2), A={0,1,0",1"} and

d(0,0) = d(0,0) =1-d(0,1) =1-d(0,1) =0.

The R(D) = |1 - h(D)[", but there are a bunch of non-equivalent optimal Py x, Px}y and
Py’s.

Proof. First part is just a repetition of the proofs above, so we focus on part 2. Suppose there exists
a counter-example Pxy achieving

Il =K log aP
X

(X|Y)|<I* = R(D).

Notice that whenever I(X;Y") < co we have
L=1(X;Y)- D(PX|YHPX|Y*|PY) )

and thus
D(Pxy | Pxpy+|Py) < oo. (25.3)

Before going to the actual proof, we describe the principal idea. For every A we can define a joint
distribution
PX,YA = )\PX,Y + (1 - )\)PX,Y* .
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Then, we can compute

P Py
I(X;Y/\) - [log XYy (X|Y )] [ og ﬂx_ly] (25'4)
PX|Y>(- PX
Pxy«(X[Yy)
= D(Pxy, | Px|y+|Pyy) +E[|P— (25.5)
X
=D(PX‘Y>\HPX‘Y*|PY)\)+>\Il+(1_)\)I*- (256)

From here we will conclude, similar to Prop. 4.1, that the first term is o(\) and thus for sufficiently
small A we should have I(X;Y)) < R(D), contradicting optimality of coupling Px y+.
We proceed to details. For every A € [0,1] define

)= T2 ) (25.7)
Ay) = A;'O(IT% (25.8)
P)(()|\1)/ =y - A(y)PX|Y=y + S‘(y)PXD’*:y (259)
dPy/\ = /\dPy + ;\dPy* = ()\pl (y) + E\)dPy* (25.10)
D(y) = D(Px|y -y Px|y+-y) (25.11)
DA(y) = D(PYY_, [ Pxjye=y) (25.12)

Notice:
On {p1=0}: Ay)=D(y)=Dx(y)=0

and otherwise A(y) > 0. By convexity of divergence

Di(y) < AM(y)D(y)

and therefore

A( ) Dx(y)1{p1(y) >0} < D(y)1{p1(y) > 0}.

Notice that by (25.3) the function p;(y)D(y) is non-negative and Py+-integrable. Then, applying
dominated convergence theorem we get

Jim [{p1>0}dPy Sy W) = f APy-p1(y) lim < Da(y) = 0 (25.13)

A=0

( )
where in the last step we applied the result from Lecture 4
D(P|Q) < oo — D(AP+2Q|Q) = o())

since for each y on the set {p; >0} we have A\(y) = 0 as A - 0.
On the other hand, notice that

,/{-p1>0} d Py~ ﬁD)\(y)pl(y)l{Pl(y) > O} = % (o150} dPy*()\pl (y) + S\)D)\(y) (2514)
- % sy IR DAW) (25.15)

-5 [ APy DAG) = S DR IPxy-IP). (25.16)
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where in the penultimate step we used Dy(y) =0 on {p; =0}. Hence, (25.13) shows
A
DY |Pxy+IPr) = o)), A=0.

Finally, since
we have

dpx|y>e — dPX|Y*
XY AE(L
Py (X[Y) [+ AE|log Py

ST AL - T) +o()), (25.18)

[(X;Y3) = D(P) | Pxpy+| Py ) + AE | log (X|y*)|  (25.17)

contradicting the assumption
I(X;Y\)>I"=R(D).

25.3 Lossy joint source-channel coding

The lossy joint source channel coding problem refers to the fundamental limits of lossy compression
followed by transmission over a channel.

Problem Setup: For an A-valued ({S, S, ...} and distortion metric d : A* x AF 5 R, a lossy
JSCC is a pair (f,g) such that

Ski)XnC_h-)Yni)Sk

Definition 25.1. (f,g) is a (k,n, D)-JSCC if E[d(S*, $%)] < D.

gk X" Yn Srk

Source JSCC enc Channel JSCC dec |—s

R =

S

where p is the bandwidth expansion factor:

p= % channel uses/symbol.

Our goal is to minimize p subject to a fidelity guarantee by designing the encoder/decoder pairs
smartly. The asymptotic fundamental limit for a lossy JSCC is

p* (D) = limsup min{E :3(k,n, D) - code}

n—oo k

For simplicity in this lecture we will focus on JSCC for stationary memoryless sources with
separable distortion + stationary memoryless channels.
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25.3.1 Converse

The converse for the JSCC is quite simple. Note that since there is no € under consideration, the
strong converse is the same as the weak converse. The proof architecture is identical to the weak
converse of lossless JSCC which uses Fano’s inequality.

Theorem 25.3 (Converse). For any source such that

Ri(D) = lim 1 inf I(S*; 8%)

we have
R;(D
C;

Remark: The requirement of this theorem on the source isn’t too stringent; the limit expression
for R;(D) typically exists for stationary sources (like for the entropy rate)

p"(D) >

Proof. Take a (k,n,D)-code Sk x7 5 vy" 5 S5 Then
inf 1(5%;5%) <1(S%;8%) < 1(X*;Y*) <sup I(X™5 ™)

Pé'k\sk Pxn

Which follows from data processing and taking inf/sup. Normalizing by 1/k and taking the liminf
as nm — oo

1
(LHS) liminf —sup I(X";Y™) = C;

n—oo M po,

(RHS) liminf— inf I(S*:$*) = Ry(D)

n— 00 " ngn|Skn
And therefore, any sequence of (ky,n, D)-codes satisfies

lim sup i > Ri(D)

n—00 n Cz

O

Note: Clearly the assumptions in Theorem 25.3 are satisfied for memoryless sources. If the source
S is iid Bern(1/2) with Hamming distortion, then Theorem 25.3 coincides with the weak converse
for channel coding under bit error rate in Theorem 14.4:

I < nC
~1-h(p)

which we proved using ad hoc techniques. In the case of channel with cost constraints, e.g., the
AWGN channel with C(SNR) = %log(l +SNR), we have

prh_l (1_M)

R

This is often referred to as the Shannon limit in plots comparing the bit-error rate of practical codes.
See, e.g., Fig. 2 from [RSUQL| for BIAWGN (binary-input) channel. This is erroneous, since the
pp above refers to the bit-error of data bits (or systematic bits), not all of the codeword bits. The
latter quantity is what typically called BER in the coding-theoretic literature.
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25.3.2 Achievability via separation

The proof strategy is similar to the lossless JSCC: We construct a separated lossy compression
and channel coding scheme using our tools from those areas, i.e., let the JSCC encoder to be
the concatenation of a loss compressor and a channel encoder, and the JSCC decoder to be the
concatenation of a channel decoder followed by a loss compressor, then show that this separated
construction is optimal.

Theorem 25.4. For any stationary memoryless source (Pg, A, A, d) satisfying assumption Al
(below), and for any stationary memoryless channel Pyx,

R(D)
C

Note: The assumption on the source is to control the distortion incurred by the channel decoder
making an error. Although we know that this is a low-probability event, without any assumption
on the distortion metric, we cannot say much about its contribution to the end-to-end average
distortion. This will not be a problem if the distortion metric is bounded (for which Assumption Al
is satisfied of course). Note that we do not have this nuisance in the lossless JSCC because we at
most suffer the channel error probability (union bound).

The assumption is rather technical which can be skipped in the first reading. Note that it is
trivially satisfied by bounded distortion (e.g., Hamming), and can be shown to hold for Gaussian
source and MSE distortion.

p*(D) -

Proof. The converse direction follows from the previous theorem. For the other direction, we
constructed a separated compression / channel coding scheme. Take

Sk W — 8% compressor to W e [2FF(P)+o(M)] with E[d(S*,5%)] <D
W - X" > Y" > W maximal probability of error channel code (assuming kR(D) < nC + o(n))
with P[W # W] <e VPy
So that the overall system is
SF W — X" —-Y" W — 5k

Note that here we need a maximum probability of error code since when we concatenate these
two schemes, W at the input of the channel is the output of the source compressor, which is not
guaranteed to be uniform. Now that we have a scheme, we must analyze the average distortion to
show that it meets the end-to-end distortion constraint. We start by splitting the expression into
two cases

E[d(S*, $%)] = E[d(S*, SE(W))1{W = W}] + E[d(S*, SF(W))1{W + W}]

By assumption on our lossy code, we know that the first term is < D. In the second term, we know
that the probability of the event {W # W} is small by assumption on our channel code, but we
cannot say anything about E[d(S*, % (W))] unless, for example, d is bounded. But by Lemma 25.1
(below), 3 code S* - W — S* such that

(1) E[d(S*,S*)] < D holds

(2) d(alg, Sk) < L for all quantization outputs S*, where a’é = (ag,...,ap) is some fixed string of
length k from the Assumption Al below.
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The second bullet says that all points in the reconstruction space are “close” to some fixed string.
Now we can deal with the troublesome term

E[d(S*, S(W))L{W # W}] <E[L{W # W}A(d(S",ag) +d(ag, 5*))]
(by point (2) above) < AE[1{W # W}d(S*,af)]+ A\E[1{W # W}L]
<Xo(l)+ALe—>0ase—0
where in the last step we applied the same uniform integrability argument that showed vanishing of

the expectation in (24.20) before.
In all, our scheme meets the average distortion constraint. Hence we conclude that for Vp >

—R(CD) , 3 sequence of (k,n, D + o(1))-codes. -

The following assumption is critical to the previous theorem:
Assumption A1l: For a source (Ps, A, A,d), I\ >0,a9 € A, ag € A such that

1. d(a,a) < A(d(a,a,) +d(ag,a)) Va,a (generalized triangle inequality)
2. E[d(S,a0)] < oo (s0 that Dyax < 00 t00).

3. E[d(ag,S)] < oo for any output distribution Py achieving the rate-distortion function R(D)
at some D.

4. d(ao,&o) < 00.

This assumption says that the spaces A and A have “nice centers”, in the sense that the distance
between any two points is upper bounded by a constant times the distance from the centers to each
point (see figure below).

e
=
G - ~
a~"‘~ —‘-— a
d‘ -
- ~ -
- ~
- - o
—‘ =~ -
- - = -
agp ag

But the assumption isn’t easy to verify, or clear which sources satisfy the assumptions. Because of
this, we now give a few sufficient conditions for Assumption Al to hold.

Trivial Condition: If the distortion function is bounded, then the assumption A1l holds
automatically. In other words, if we have a discrete source with finite alphabet |A[,|A| < oo and a
finite distortion function d(a,a) < oo, then A1 holds. More generally, we have the following criterion.

Theorem 25.5 (Criterion for satisfying Al). If A = A and d(a,a) = pi(a,a) for some metric p
with ¢ > 1, and Dyax = infs, E[d(S, a0)] < oo, then A1 holds.

Proof. Take ag = Go that achieves finite D, (in fact, any points can serve as centers in a metric
space). Then

(500" < (500,00 + 5pla0. )

1 1
(Jensen’s) < §pq(a, ap) + §pq(a0, a)
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And thus d(a,a) < 297 (d(a,ag) + d(ag,d)). Taking A = 297! verifies (1) and (2) in Al. To verify
(3), we can use this generalized triangle inequality for our source

d(ag, §) <277 (d(ao, S) +d(S,5))
Then taking the expectation of both sides gives

E[d(ao, $)] < 297" (E[d(ao, $)] + E[d(S, S)])
< 2‘1_1(DmaX +D) < o0

So that condition (3) in A1 holds. O

So we see that metrics raised to powers (e.g. squared Euclidean norm) satisfy the condition Al.
The lemma used in Theorem 25.4 is now given.
Lemma 25.1. Fiz a source satisfying A1 and an arbitrary Pg . Let R > 1(S;5), L > max{E[d(ao, S)],d(ag, do)}

and D > E[d(S,S)]. Then, there exists a (k,2"%, D)-code such that for every reconstruction point
i e AF we have d(af,2) < L.

Proof. Let X = A¥, X = A* and Py = Pé“ , Py|x = Pg Then apply the achievability bound for

excess distortion from Theorem 24.4 with

1S

d(z,z) d(af,&) <L
dh(a.3) = { (2.2) d(af,2)
+00 o/w
Note that this is NOT a separable distortion metric. Also note that without any change in d;-

distortion we can remove all (if any) reconstruction points & with d(alg, %) > L. Furthermore, from
the WLLN we have for any D > D" > E[d(S,S")]

P[d1(X,Y) > D'] <P[d(S*,5%) > D'] + P[d(af,5¥) > L] - 0

as k — oo (since E[d(S,5)] < D' and E[ag, S] < L). Thus, overall we get M = 257 reconstruction
points (c1,...,cpr) such that
P[ min d(S*,¢;) > D'] -0
je[M]

and d(af,c;) < L. By adding cpr41 = (o, . .., a0) we get

E[ min _d(S", ¢;)] < D' +E[d(S*, cars1)1{ min d(S*,¢;) > D'}] = D' +o(1),
je[M+1] je[M]

where the last estimate follows from uniform integrability as in the vanishing of expectation in (24.20).
Thus, for sufficiently large n the expected distortion is < D, as required. O

To summarize the results in this section, under stationarity and memorylessness assumptions on
the source and the channel, we have shown that the following separately-designed scheme achieves
the optimal rate for lossy JSCC: First compress the data, then encode it using your favorite channel
code, then decompress at the receiver.

R(D) bits/sec pC bits/sec

Source JSCC enc Channel |
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25.4 What is lacking in classical lossy compression?

Examples of some issues with the classical compression theory:

e compression: we can apply the standard results in compression of a text file, but it is extremely
difficult for image files due to the strong spatial correlation. For example, the first sentence
and the last in Tolstoy’s novel are pretty uncorrelated. But the regions in the upper-left
and bottom-right corners of one image can be strongly correlated. Thus for practicing the
lossy compression of videos and images the key problem is that of coming up with a good
“whitening” basis.

e JSCC: Asymptotically the separation principle sounds good, but the separated systems can
be very unstable - no graceful degradation. Consider the following example of JSCC.

Example: Source = Bern(3), channel = BSC(J).

1. separate compressor and channel encoder designed for Ié((?)) =1

2. a simple JSCC:

p=1,X;=5;
distortion
JSCC
1 F------ ‘—.‘L
— 7’ .
2 »7 separate design
_,
4l
7
’ i
5* 4

no graceful degradation of separately designed source channel code
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Part VI

Advanced topics
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§ 26. MULTIPLE-ACCESS CHANNEL

26.1 Problem motivation and main results

Tx2 — | Noisy Medium Rx

Note: In network community, people are mostly interested in channel access control mechanisms
that help to detect or avoid data packet collisions so that the channel is shared among multiple

users. o
collision

o i e = |

U2 L] |
The famous ALOHA protocal achieves

Y R;~0.37C

where C is the (single-user) capacity of the channel.
In information theory community, the goal is to achieve

ZR1>C

The key to achieve this is to use coding so that collisions are resolvable.
In the following discussion we shall focus on the case with two users. This is without loss of
much generality, as all the results can easily be extended to N users.

Definition 26.1.
e Multiple-access channel: {Pynjgn gn: A" xB" > Y" n=1,2,...}.
e a (n, My, Ms, €) code is specified by
fi:[Mi] - A", fo:[Ma] - B"
g:Y" = [Mi] x [Ms]

'Note that there is a lot of research about how to achieve even these 37%. Indeed, ALOHA in a nutshell simply
postulates that everytime a user has a packet to transmit, he should attempt transmission in each time slot with
probability p, independently. The optimal setting of p is the inverse of the number of actively trying users. Thus, it is
non-trivial how to learn the dynamically changing number of active users without requiring a central authority. This
is how ideas such as exponential backoff etc arise.
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W1, Wy ~ uniform, and the codes achieves

P[{W1 = W1} U{Wa % Wal] <e

e Fundamental limit of capacity region
R*(n,€) = {(R1,Ry) : 3 a (n,2"", 2772 ¢) code}
e Asymptotics:
Ce = [IiminfR* (n,e)]
n—o0
where [-] denotes the closure of a set.

Note: liminf and limsup of a sequence of sets {A,,}:

liminf A, ={w:weA,,Vn>ng}

limsup A,, = {w : w infinitely occur}
n

C=limC.=[C
>0
Theorem 26.1 (Capacity region).
C.=co |J Penta(Pa,Pg) (26.1)
Py,Pp
:[ U Penta(Pay, PB|U|PU)] (26.2)

Py, a,B=Pu Pau Py

where ¢o is the set operator of constructing the convex hull followed by taking the closure, and
Penta(-,-) is defined as follows:

0< Ry <I(A;Y|B)
Penta(Pa, Pg) = {(RI,RQ) © 0< Ry < I(B;Y|A) }
Ri+Ro < I(A, B;Y)
0< Ry <I(A;Y|B,U)
Penta(PA|U,PB|U|PU) = {(Rl,RQ) : 0< Ry < I(B,Y|A, U) }
Ri+Ro < I(A,B;Y|U)

Note: the two forms in (26.1) and (26.2) are equivalent without cost constraints. In the case when
constraints such as Eci(A) < P; and Eco(B) < P, are present, only the second expression yields the
true capacity region.
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Penta

26.2 MAC achievability bound

First, we introduce a lemma which will be used in the proof of Theorem 26.1.

Lemma 26.1. VPA,PB,Py|A,B such that Py gy = PAPBPY\A,B7 and Yy1,7v2,7v12 > 0, VM1, M,
there exists a (M1, Ma,e) MAC code such that:

€ S]P’[{im(A, B;Y) <logi2} {i1(A;Y|B) <logv1 } U{ia(B: Y|A) < log’yg}]
+ (M= 1)(Ma - 1)e™2 + (My - 1)e ™ + (My — 1) (26.3)

Proof. We again use the idea of random coding.
Generate the codebooks
Cl,...,cheA, dl,...,dM2EB

where the codes are drawn i.i.d from distributions: c¢i,...,cp ~ @.4.d. Pa, dy,...,dpy, ~ t.4.d. Pp.
The decoder operates in the following way: report (m,m’) if it is the unique pair that satisfies:

(Pi2)  i12(cm, dmr;y) >logvyio
(Pl) il(cm§ y|dm’) > 1Ogr)/l
(P2) iQ(dm’Q y|cm) > 10g'72

Evaluate the expected error probability:
EP.(c}",d}") = P[{(W1, W) violate (P15) or (P1) or (P2)}
({3 impostor (W, W3) that satisfy (Pi2) and (P;) and (Pg)}]
by symmetry of random codes, we have

P.=E[P.[Wy=m,Wy=m'] = P[{(m,m') violate (Pi2) or (Py) or (P,)}

({3 impostor (i # m,j # m’) that satisfy (Pi2) and (P;) and (PQ)}]

= P < P[{ilz(Aa B;Y) <logyia} (U{i1(A4;Y|B) <log i} (U{ia(B; Y(A) < logw}] +P[E12] + P[E1] + P[Es]
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where

P[E12] =P[{3(i £ m,j +m) s.t. i12(cm, dmr;y) > logy12}]
< (My -1)(My - 1)P[i12(A, B;Y) > logv12]
= E[e (4B 1{i15(A, B;Y) > log v12}]
< e M2

P[Ey] = P[{3(j # m') s.t. i2(dj;ylei) > logya}]
< (M - 1)P[iz(B; Y|A) > log 2]
= Ea[e BN 1Liy(B;Y]A) > log 2} A]
<Egle ?|A]l=e

similarly P[Ej]<e™™

O]

Note: [Intuition] Consider the decoding step when a random codebook is used. We observe Y
and need to solve an M-ary hypothesis testing problem: Which of {Py|a—c,, B=d, , }m,m’e[M]x[Ms]
produced the sample Y'?

Recall that in P2P channel coding, we had a similar problem and the M-ary hypothesis testing
problem was converted to M binary testing problems:

1

Py|x=c; Vs PKﬁZm

i%*]

Pyx-, » Py

Le. distinguish ¢; (hypothesis Hy) against the average distribution induced by all other codewords
(hypothesis H;), which for a random coding ensemble ¢; ~ Px is very well approximated by
Py = Py|x o Px. The optimal test for this problem is roughly

Pyix-c

Py 2log(M-1) = decide Py|x-, (26.4)

since the prior for Hy is %, while the prior for H; is %

The proof above followed the same idea except that this time because of the two-dimensional
grid structure:

space of ) _
codewords (P1)—7 My
1
A &
(P2)
A Il y
(Pr2)” —
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there are in fact binary HT of three kinds

1
(P12) ~ testPYAszzd,vs PYA=7;B=d'%PY
e B (Ml_l)(MQ_l)i;nj;L’ e
1
(P1) ~ test Pyjac,, B=d,, VS > Pyiaze; B=a,, ® Py|p-a,,
M -1 iEm
1
(P2) ~ test Pyja,, B=d,, VS Vo1 > Prjazen,B-d, ® Prjazen,

Jj+m/

And analogously to (26.4) the optimal tests are given by comparing the respective information
densities with log M1 Ms, log M7 and log M.

Another observation following from the proof is that the following decoder would also achieve
exactly the same performance:

e Step 1: rule out all cells (7,7) with i12(c;,d;j;Y) S log My M.
e Step 2: If the messages remaining are NOT all in one row or one column, then FAIL.

e Step 3a: If the messages remaining are all in one column m’ then declare Ws =m'. Rule out
all entries in that column with i1(c;;Y|d,, ) $ log M. If more than one entry remains, FAIL.
Otherwise declare the unique remaining entry m as Wy = m.

e Step 3b: Similarly with column replaced by row, i; with is and log My with log Ms.

The importance of this observation is that in the regime when RHS of (26.3) is small, the
decoder always finds it possible to basically decode one message, “subtract” its influence and then
decode the other message. Which of the possibilities 3a/3b appears more often depends on the
operating point (R, Ry) inside C.

26.3 MAC capacity region proof

Proof. 1. Show C is convex.

Take (R1, Ry) € C.jo, and take (R, R)) € Ceja-

We merge the (n, 2", 2772 ¢/2) code and the (n, 27,2772 ¢/2) code in the following time-
sharing way: in the first n channels, use the first set of codes, and in the last n channels, use
the second set of codes.

Thus we formed a new (2n, 2R1+R’1,2R2+R’2,e) code, we know that

1

1
565/2 + §C6/2 C CE

take limit at both sides 1 ]
—-C+-CcC
2 2

also we know that C c %C + %C, therefore C = %C + %C is convex.

Note: the set addition is defined in the following way:

A+B=2{(a+b):aecAbeB}
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2. Achievability
STP: VP4, Pg,V(Ry, Ry) € Penta(Pa, Pg), 3(n, 2% 2782 ¢)code.
Apply Lemma 26.1 with:
Py— P}, Pp—Pp, Pyap—>P,p
My =2 My = onhe
logyiz = n(I(A, B;Y) = 6), logm =n(I(A;Y|B)-6), logye=n(I(B;Y|4)-9).

we have that there exists a (Mj, Ma,€) code with
€ S]P’[{%kililg(/lk, By;Yy) <logyie -6} U{% éil(AkQ Yi|Bi) <logy — 6}
U{% 1;7::1 io(By; Yi|Ag) < logya - 5}]
@
+(2MF 1) (2mF2 — 1)e 2 4 (27— )e 4 (20 — 1) e

@

by WLLN, the first part goes to zero, and for any (Ri, Rg) such that Ry < I[(A;Y|B) -4
and Ry < I(B;Y|A) -6 and Ry + Ry < I(A, B;Y) - 0, the second part goes to zero as well.
Therefore, if (R;, R2) € interior of the Penta, there exists a (M7, Ma, e =o0(1)) code.

3. Weak converse

A LA“\ . / W, W, L)AN . /q Wy
Wo %B“/ \ Wa Wy LB” \ W,

P Q < (%)
LI N . / W Wy s / W,
w, 12 pn \ W, W %B”/ \ W

Q1 € (x1) Q2 € (x2)

1

Wy =Wy, Wy =Ws] =
Q[ 1 1, 2 2] M1M27

P[W1=W1,W2=WQ]21—6

d-proc:

d(l—e||

)<&f)p(p\|g)) I(A™, B"Y™)

SRy + Ry < SI(A™, B":Y™) + o(1)
n
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To get separate bounds, we apply the same trick to evaluate the information flow from the
link between A — Y and B — Y separately:

A 1 n
Ql[WZ:WQ]:ﬁ’ ]P)[WQZWQ]Z].—E
2

d-proc:
1
d(l-¢|—)< inf D(P =I(B™Y"™A"
( ||M2) ot (P|Q1) = I( |A")
1
=Ry < —I(B™";Y"|A"™) +0(1)
n
similarly we can show that

1
Ry < ~I(A™;Y"|B") + o(1)
n

For memoryless channels, we know that %I (A", B™Y™) < % Y I(Ag, Br;Yy). Similarly, since
given B" the channel A™ - Y™ is still memoryless we have

I(A™;Y"B") < Y I(Ay; Y| B") = > I(Ay; Yi|Bi)
k=1 k=1

Notice that each (A;, B;) pair corresponds to (Pa,, Pp, ), Yk define

0< Ryp < I(Ag; Yi|Br)
Pentak(PAk,PBk) = (R17k,R2,k) : 0< R27k < I(Bk;Yk|Ak)
Ry + Roj < I(Ag, By; Yy)

therefore
1
(R1,R9) € [ﬁ ; Pentak]

=C eco U Penta
PA7PB
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§ 27. EXAMPLES OF MACS. MAXIMAL P, AND ZERO-ERROR CAPACITY.

27.1 Recap

Last time we defined the multiple access channel as the sequence of random transformations
{PY"|A"B" A" x B" —>yn,n= 1,2,}
Furthermore, we showed that its capacity region is

C = {(Ry,Ry) : 3(n, 2" 2"F2 ) - MAC code} =co | J Penta(Pa, Pg)
P4 Pp

were co denotes the convex hull of the sets Penta, and Penta is
Ry <I(A;Y|B)

Penta(Pa, Pg) ={ Ry < I(B;Y|A)
Ri+ Rs SI(A,B;Y)

So a general MAC and one Penta region looks like
Ry

I(A,B;Y)
A" —— I(B;Y|A)

PY'rL‘A'an — Y

B ——— R,

I(A;Y|B)

Note that the union of Pentas need not look like a Penta region itself, as we will see in a later
example.

27.2 Orthogonal MAC

The trivial MAC is when each input sees its own independent channel: Py|sp = Py |4 Py|p where
the receiver sees (Y4, Yp). In this situation, we expect that each transmitter can achieve it’s own
capacity, and no more than that. Indeed, our theorem above shows exactly this:

Ry <I(A;Y|B) =I(A;Y)
Penta(Pa, P) ={ Ry < I(B;Y|A) = I(B:;Y)
Ry+ Ry <I(A,B;Y)

Where in this case the last constraint is not applicable; it does not restrict the capacity region.
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R

A PY\A Ya Cy

B Pyip Yr Ry
Gy

Hence our capacity region is a rectangle bounded by the individual capacities of each channel.

27.3 BSC MAC

Before introducing this channel, we need a definition and a theorem:
Definition 27.1 (Sum Capacity). Cgsum = max{R; + Ry : (R1,R2) € C'}
Theorem 27.1. Cgyy = maxa, g I(A, B;Y)

Proof. Since the max above is achieved by an extreme point on one of the Penta regions, we can
drop the convex closure operation to get

max{Ry + Ry : (R1, Ry) €co | JPenta(P4, Pg)} = max{Ry + R : (R1, R2) € | JPenta(Pa, Pp)}
max { Ry + Ry : (R1, R2) € Penta( P4, Pg)} < max I(A, B;Y)
PA’PB PA7PB

Where the last step follows from the definition of Penta. Now we need to show that the constraint
on R; + Ry in Penta is active at at least one point, so we need to show that I(A, B;Y) < I(A;Y|B) +
I(B;Y|A) when A 1 B, which follows from applying Kolmogorov identities

I(A;Y,B)=0+I(A;Y|B)=I(A;Y)+I(A;BlY) = I(A;)Y)<I(A;Y|B)
= I[(A,B;Y)=I1(A4;Y)+I(B;Y|A) <I(A;Y|B) +I(B;Y|A)

Hence maxp, p,{R1 + R2: (R1, Ry) € Penta(Pa, Pg)} = maxp, p, I(A,B;Y) O
We now look at the BSC MAC, defined by

Y=A+B+7Z mod?2
Z ~ Ber(9)
A,Be{0,1}

Since the output Y can only be 0 or 1, the capacity of this channel can be no larger than 1 bit. If
B doesn’t transmit at all, then A can achieve capacity 1 - h(d) (and B can achieve capacity when
A doesn’t transmit), so that Ry, Ry <1 - h(d). By time sharing we can obtain any point between
these two. This gives an inner bound on the capacity region. For an outer bound, we use Theorem
27.1, which gives

Csum= HlaXI(A,B;Y) =]IDHEI%DXI(A,B;A+B+Z)
ALB

PyPp
=max H(A+B+Z)-H(Z)=1-h(0)
Py Pp
Hence Ry + Ry <1 -h(6), so by this outer bound, we can do no better than time sharing between
the two individual channel capacity points.
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Ry

A 1—h(5)

Ry

1 — h(3)

Remark: Even though this channel seems so simple, there are still hidden things about it, which
we’ll see later.

27.4 Adder MAC

Now we analyze the Adder MAC, which is a noiseless channel defined by:

Y=A+B (overZ)
A,Be{0,1}
Intuitively, the game here is that when both A and B send either 0 or 1, we receiver 0 or 2 and can
decode perfectly. However, when A sends 0 and B send 1, the situation is ambiguous. To analyze
this channel, we start with an interesting fact
Interesting Fact 1: Any deterministic MAC (Y = f(A, B)) has Cgym = max H(Y'). To see
this, just expand I(A, B;Y).
Therefore, the sum capacity of this MAC is
111 3.
Csum = I,?f%{H(A + B) =H (1, 5, Z) = 5 bits
Which is achieved when both A and B are Ber(1/2). With this, our capacity region is
Ri<I(AY|B)=H(A)=1
Penta(Ber(1/2),Ber(1/2)) ={ Ry < I(B;Y|A)=H(B) =1
Ri+Ry<I(A,B;Y)=3/2
So the channel can be described by

Ry R1+R2§3/2

11/

1

A Y

Ry

Now we can ask: how do we achieve the corner points of the region, e.g. R; =1/2 and Rg =17 The
answer gives insights into how to code for this channel. Take the greedy codebook B = {0,1}" (the
entire space), then the channel A — Y is a DMC:

1
2 0

0 1
1

1 2
1 2

2
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Which we recognize as a BEC(1/2) (no preference to either —1 or 1), which has capacity 1/2. How
do we decode? The idea is successive cancellation, where first we decode A, then remove A from Y,
then decode B.

yn Dec An
Ar D BEC(1/2) _l
B" o B

Using this strategy, we can use a single user code for the BEC (an object we understand well) to
attain capacity.

27.5 Multiplier MAC

The Multiplier MAC is defined as
Y =AB
Ae{0,1}, Be{-1,1}
Note that A = |Y| can always be resolved, and B can be resolved whenever A = 1. To find the
capacity region of this channel, we’ll use another interesting fact:
Interesting Fact 2: If A =g(Y), then each Penta(P4, Pp) is a rectangle with
Ry <H(A)

Penta(Py, Pp) =
enta(Fs, Pa) {RgSI(A,B;Y)—H(A)

Proof. Using the assumption that A = g(Y") and expanding the mutual information
I(A;Y|B)+I(B;Y|A)=H(A)-H(Y|A)-H(Y|A,B)=H(A,Y)- H(Y|A, B)
=H(Y)-H(Y|A,B)=1(A,B;Y)
Therefore the R; + Ro constraint is not active, so our region is a rectangle. O

By symmetry, we take Pp = Ber(1/2). When P4 = Ber(p), the output has H(Y') = p + h(p).
Using the above fact, the capacity region for the Multiplier MAC is

Ry < H(A) = h(p)
Ro<H(Y)-H(A) =p

C:@U{

We can view this as the graph of the binary entropy function on its side, parametrized by p:
Ry

1 _\
1/2 _

Ry

1

To achieve the extreme point (1,1/2) of this region, we can use the same scheme as for the Adder
MAC: take the codebook of A to be {0,1}", then B sees a BEC(1/2). Again, successive cancellation
decoding can be used.

For future reference we note:
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Lemma 27.1. The full capacity region of multiplier MAC' is achieved with zero error.

Proof. For a given codebook D of user B the number of messages that user A can send equals the
total number of erasure patters that codebook D can tolerate with vanishing probability of error.
Fix rate Rz <1 and let D be a row-span of a random linear nRy x n binary matrix. Then randomly
erase each column with probability 1 — R —e€. Since on average there will be n(Ry + €) columns left,
the resulting matrix is still full-rank and the decoding is possible. In other words,

P[D is decodable, # of erasures » n(l1 - Ry —€)] > 1.
Hence, by counting the total number of erasures, for a random linear code we have

E[# of decodable erasure patterns for D] ~ 2"h(1-R2=)+o(n)

And result follows by selecting a random element of the D-ensemble and then taking the codebook
of user A to be the set of decodable erasure patterns for a selected D. O

27.6 Contraction MAC

The Contraction MAC is defined as
B= —

&
I
4

0 1
€1
1 e———e 2
2 2
3 3 > €2
Here, B is received perfectly, We can use the fact above to see that the capacity region is
3
C= Ry < 3
Ro<1

For future reference we note the following:

{0,1,2,3} > A ————| FErasure [—Y

1V

W = O

{—,+}>B

Lemma 27.2. The zero-error capacity of the contraction MAC satisfies

Ry <h(1/3)+(2/3-p)log2, (27.1)
Ry < h(p) (27.2)

for some p €[0,1/2]. In particular, the point Ry = %, Rs =1 s not achievable with zero error.

Proof. Let C and D denote the zero-error codebooks of two users. Then for each string " € {+,-}"
denote
Ubn = {an taj € {0,1} if bj =+,a; € {2,3} if bj = —}.

Then clearly for each b" we have
’Ubn‘ < 2d(b"7D) ,

where d(b", D) denotes the minimum Hamming distance from string " to the set D. Then,

0] < 37 270" D) (27.3)
bn

= ﬁ%ﬂ{bﬂ :d(b", D) = 5} (27.4)
i
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For a given cardinality |D| the set that maximizes the above sum is the Hamming ball. Hence,
Ry = h(p) + O(1) implies

Ry < HEa)li] h(q)+ (¢-p)log2="h(1/3)+(2/3-p)log2.
a<[p,

27.7 Gaussian MAC
Perhaps the most important MAC is the Gaussian MAC. This is defined as

Y=A+B+Z
Z ~N(0,1)
E[A%] < Py, E[B*] < P,

Evaluating the mutual information, we see that the capacity region is

—

I(A;Y|B)=1(A; A+ Z) < = log(1+ Py)

[ V)

I(B;Y|A)=I(B;B+Z)< =< (1+P)

\V)

I(A,B:Y) = h(Y) - h(Z) < %log(l £ P+ Py)

Ry %log(l + P+ P)
%log(l + )

7z
A ($Y

B

Ry
% log(1+ Pp)

Where the region is Penta(N (0, P;), N (0, P,)). How do we achieve the rates in this region? We’ll
look at a few schemes.

1. TDMA: A and B switch off between transmitting at full rate and not transmitting at all. This
achieves any rate pair in the form

1 -1
R1 :)\Elog(1+P1), RQZ)\ilOg(l'i'PQ)

Which is the dotted line on the plot above. Clearly, there are much better rates to be gained
by smarter schemes.

2. FDMA (OFDM): Dividing users into different frequency bands rather than time windows
gives an enormous advantage. Using frequency division, we can attain rates

1 P -1 P,
e 2). oo+ 5)
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In fact, these rates touch the boundary of the capacity region at its intersection with the
Ri = Ry line. The optimal rate occurs when the power at each transmitter makes the noise
look white:

P P % Py
p— )\ =
A P+ P

While this touches the capacity region at one point, it doesn’t quite reach the corner points.
Note, however, that practical systems (e.g. cellular networks) typically employ power control
that ensures received powers P; of all users are roughly equal. In this case (i.e. when P = P»)
the point where FDMA touches the capacity boundary is at a very desirable location of
symmetric rate Ry = Ro. This is one of the reasons why modern standards (e.g. LTE 4G) do
not employ any specialized MAC-codes and use OFDM together with good single-user codes.

3. Rate Splitting/Successive Cancellation: To reach the corner points, we can use successive
cancellation, similar to the decoding schemes in the Adder and Multiplier MACs. We can use
rates:

1
Ry = 5 log(1+ P»)

1 1 P
R, = §(log(1 + P+ Py) -log(l+ P)) = 510g(1 t9 +1Pg)

The second expression suggests that A transmits at a rate for an AWGN channel that has
power constraint P; and noise 1+ Ps, i.e. the power used by B looks like noise to A.

A
E /L Y
A ! ( & Dec D,

S

B L é Dec D- 3

Theorem 27.2. There exists a successive-cancellation code (i.e. (E1,FE2,Dy,D2)) that
achieves the corner points of the Gaussian MAC capacity region.

Proof. Random coding: B™ ~ N'(0, P;)". Since A™ now sees noise 1+ P», there exists a code
for A with rate Ry = 5log(1+ Py/(1+ P,)). O

This scheme (unlike the above two) can tolerate frame un-synchronization between the two
transmitters. This is because any chunk of length n has distribution N (0, P2)". It has
generalizations to non-corner points and to arbitrary number of users. See [RU96] for details.

27.8 MAC Peculiarities

Now that we’ve seen some nice properties and examples of MACs, we’ll look at cases where MACs
differ from the point to point channels we’ve seen so far.

1. Max probability of error # average probability of error.
Theorem 27.3. C'(™me) 4 C
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Proof. The key observation for deterministic MAC is that C("%®) = Cy (zero error capacity)
when € < 1/2. This is because when any two strings can be confused, the maximum probability
of error

mag]P’[VAVl £m U Wy #m/|[Wy =m, Wy =m']
Must be larger than 1/2. O

For some of the channels we’ve seen

e Contraction MAC: Cy # C
e Multiplier MAC: Cy=C

e Adder MAC: Cy # C. For this channel, no one yet can show that Cp gym < 3/2. The idea
is combinatorial in nature: produce two sets (Sidon sets) such that all pairwise sums
between the two do not overlap.

. Separation does not hold: In the point to point channel, through joint source channel coding
we saw that an optimal architecture is to do source coding then channel coding separately.
This doesn’t hold for the MAC. Take as a simple example the Adder MAC with a correlated
source and bandwidth expansion factor p = 1. Let the source (S,T") have joint distribution

1/3 1/3
PST:[ 0 1/3]

We encode S™ to channel input A™ and 7™ to channel input B"™. The simplest possible scheme
is to not encoder at all; simply take S; = A; and T} = B;. Take the decoder

A~ ~

S T
Yi=0= 0 0
Yij=1=0 1
Yj=2 =1 1

Which gives P[S™ = §”,T™ = T™] = 1, since we are able to take advantage of the zero entry in
joint distribution of our correlated source.

Can we achieve this with a separated source? Amazingly, even though the above scheme is so
simple, we can’t! The compressors in the separated architecture operate in the Slepian Wolf
region

Ry > H(S|T)
Ry > H(T|S)
Ri+Ry>H(S,T)=1og3
Hence the sum rate for compression must be > log 3, while the sum rate for the Adder MAC

must be < 3/2; so these two regions do not overlap, hence we can not operate at a bandwidth
expansion factor of 1 for this source and channel.
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Ry

Slepian Wolf

1 / log 3
1/2 3/2
Adder MAC R
1/2 1

3. Linear codes beat generic ones: Consider a BSC-MAC and suppose that two users A and
B have independet k-bit messages Wy, Wy € Fg . Suppose the receiver is only interested in
estimating Wi + Wo. What is the largest ratio k/n? Clearly, separation can achieve

k/n ~ %(log2 ~h(5))

by simply creating a scheme in which both W; and Ws are estimated and then their sum is
computed.

A more clever solution is however to encode

A" =G - Wy,
:G'W27
Y'"=A"+B"+Z"=G(W1+Wy)+Z".

where G is a generating matrix of a good k-to-n linear code. Then, provided that
k<n(log2-h(d))+o(n)

the sum W; + W3 is decodable (see Theorem 16.2). Hence even for a simple BSC-MAC there
exist clever ways to exceed MAC capacity for certain scenarios. Note that this “distributed
computation” can also be viewed as lossy source codmg with a distortion metric that is only
sensitive to discrepancy between W7 + W5 and W1 + WQ

4. Dispersion is unknown: We have seen that for the point-to-point channel, not only we know
the capacity, but the next-order terms (see Theorem 20.2). For the MAC-channel only the
capacity is known. In fact, let us define

R*

sum

(n,€) =sup{R1 + Ry : (R1,R2) e R"(n,€)}.

Now, take Adder-MAC as an example. A simple exercise in random-coding with P4 = Pg =

Ber(1/2) shows
Rl (n,0) 2 Slog2 - Q7 () log2 + O(E™).

In the converse direction the situation is rather sad. In fact the best bound we have is only
slightly better than the Fano’s inequality [?]. Namely for each € > 0 there is a constant K, >0
such that

logn

NG

(n, e)<—log2+K

sum
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So it is not even known if sum-rate approaches sum-capacity from above or from below as
n — ool What is even more surprising, is that the dependence of the residual term on € is not
clear at all. In fact, despite the decades of attempts, even for € = 0 the best known bound to
date is just the Fano’s inequality(!)

Rm(n,0) <

N W
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§ 28. RANDOM NUMBER GENERATORS

Let’s play the following game: Given a stream of Bern(p) bits, with unknown p, we want to turn
them into pure random bits, i.e., independent fair coin flips Bern(1/2). Our goal is to find a universal
way to extract the most number of bits.

In 1951 von Neumann proposed the following scheme: Divide the stream into pairs of bits,
output 0 if 10, output 1 if 01, otherwise do nothing and move to the next pair. Since both 01 and
10 occur with probability pg (where ¢ = 1 — p), regardless of the value of p, we obtain fair coin flips
at the output. To measure the efficiency of von Neumann’s scheme, note that, on average, we have
2n bits in and 2pgn bits out. So the efficiency (rate) is pg. The question is: Can we do better?

Several variations:

1. Universal v.s. non-universal: know the source distribution or not.

2. Exact v.s. approximately fair coin flips: in terms of total variation or Kullback-Leibler
divergence

We only focus on the universal generation of exactly fair coins.

28.1 Setup

Recall from Lecture 6 that {0,1}* = Ups0{0, 1}* = {,0,1,00,01,...} denotes the set of all finite-
length binary strings, where @ denotes the empty string. For any x € {0,1}*, let I(z) denote the
length of x.

Let’s first introduce the definition of random number generator formally. If the input vector is
X", denote the output (variable-length) vector by Y € {0,1}*. Then the desired property of Y is
the following: Conditioned on the length of Y being k, Y is uniformly distributed on {0, 1}*.

Definition 28.1 (Extractor). We say ¥ :{0,1}* - {0,1}* an extractor if

1. ¥(z) is a prefix of U(y) if x is a prefix of y.

2. For any n and any p € (0,1), if X”i'i&d'Bern(p), then ¥(X"™) ~ Bern(1/2)* conditioned on
[(P(X™)) =E.

The rate of ¥ is

ry(p) = limsup , X"i'i&d'Bern(p).

n—oo

E[(¥(X™)]

Note that the von Neumann scheme above defines a valid extractor W,y (with W (227*) =

U n(2%")), whose rate is ryn (p) = pg.
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28.2 Converse

No extractor has a rate higher than the binary entropy function. The proof is simply data processing
inequality for entropy and the converse holds even if the extractor is allowed to be non-universal
(depending on p).

Theorem 28.1. For any extractor ¥ and any p € (0,1),

1 1
ry(p) 2 h(p) = plog, , +qlog, 7

Proof. Let L =¥ (X™). Then
nh(p)=H(X")>H(V(X"))=H((V(X")|L)+H(L)>H(V(X")|L)=E[L] bits,

where the step follows from the assumption on ¥ that ¥(X™) is uniform over {0,1}* conditioned
on L =k. O

The rate of von Neumann extractor and the entropy bound are plotted below. Next we present
two extractors, due to Elias [Eli72] and Peres [Per92] respectively, that attain the binary entropy
function. (More precisely, both ideas construct a sequence of extractors whose rate approaches the
entropy bound).

rate

Ibitf--------om—mco-mmo -

TyN

N |

28.3 Elias’ construction of RNG from lossless compressors

The intuition behind Elias’ scheme is the following:

1. For iid X™, the probability of each string only depends its type, i.e., the number of 1’s.
Therefore conditioned on the number of ones, X" is uniformly distributed (over the type class).
This observation holds universally for any p.

2. Given a uniformly distributed random variable on some finite set, we can easily turn it
into variable-length fair coin flips. For example, if U is uniform over {1,2,3}, we can map
1»@,2~0and 3~ 1.

Lemma 28.1. Given U uniformly distributed on [M], there exists f: [M] — {0,1}* such that
conditioned on I(f(U)) =k, f(U) is uniformly over {0,1}*. Moreover,

logg M =4 <E[I(f(U))] <logag M bits.
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Proof. We defined f by partitioning [M ] into subsets whose cardinalities are powers of two, and
assign elements in each subset to binary strings of that length. Formally, denote the binary expansion
of M by M = ¥ ,m;2%, where the most significant bit m,, = 1 and n = |logy M | + 1. Those non-zero
m;’s defines a partition [M] = UE-:OMJ-, where |[M;| = 2%. Map the elements of M; to {0,1}%.

To prove the bound on the expected length, the upper bound follows from the same entropy
argument logo M = H(U) > H(f(U)) > H(f(U)|I(f(U))) = E[I(f(U))], and the lower bound

follows from

1 2 . 1 X2 ) on n. n+1
E[I(f(U))] = — 2 i=n—-— 2'(n—i)2n—-—> 2""(n-i)>2n- >n -4,
[L(f(U))] Mg(:)mz i=n M;)mz (n-i)>n M;) (n-i)>n a7 2"
where the last step follows from n <logy, M + 1. O]

Elias’ extractor. Let w(z™) define the Hamming weight (number of ones) of a binary string. Let
T ={z" €{0,1}" :w(a™) = k} define the Hamming sphere of radius k. For each 0 < k < n, we apply
the function f from Lemma 28.1 to each Tj,. This defines a mapping ¥g : {0,1}" — {0,1}* and then
we extend it to Uy : {0,1}" - {0,1}* by applying the mapping per n-bit block and discard the last
incomplete block. Then it is clear that the rate is given by 1E[I(¥g)(X™)]. By Lemma 28.1, we
have

n n
El -4 <E[l(V)(X™")] <El
08 () ~ 1 < EBCER) (X)) < Elog (| L)
. AT . . . onh(p) n onh(p)
Using Stirling’s expansion (see, e.g., [Ash65, Lemma 4.7.1]), we have TR (k) S ommra where
p=1-qg=k/ne(0,1) and hence E[I(¥g)(X™)] =nh(p) + O(logn). Therefore the extraction rate
approaches h(p) as n — oco.

28.4 Peres’ iterated von Neumann’s scheme

Main idea: Recycle the bits thrown away in von Neumann’s scheme and iterate. What did von
Neumann'’s extractor discard: (a) bits from equal pairs. (b) location of the distinct pairs. To achieve
the entropy bound, we need to extract the randomness out of these two parts as well.

First some notations: Given 22", let k = [(¥,n(2?")) denote the number of consecutive distinct
bit-pairs.

e Let 1 <mq <...<my <n denote the locations such that Tom; # Tom;-1-
e Let 1 <41 <...<i,- <n denote the locations such that Toj; = Ti;-1.
® Yj = Toamy, Vj = T2, Uj = X5 © T2j41-

Here y* are the bits that von Neumann’s scheme outputs and both v"* and " are discarded. Note
that «” is important because it encodes the location of the y* and contains a lot of information.
Therefore von Neumann’s scheme can be improved if we can extract the randomness out of both
v F and u".

Peres’ extractor: For each t € N, recursively define an extractor W; as follows:

e Set Uy to be von Neumann’s extractor Wy, i.e., Uy (22"*1) = ¥ (22") = y¥.

o Define ¥y by Wy (27") = Uy (a™*1) = (U1 (2*"), Wemr (u), Wema (0" F)).
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Example: Input = =100111010011 of length 2n = 12. Output recursively:
(011)(110100)(101)

(1)(010)(10)(0)
(O

Note that the bits that enter into the iteration are longer iid. To compute the rate of Wy, it
is convenient to introduce the notion of exchangeability. We say X" are exchangeable if the joint
distribution is invariant under permutation, that is, Px, . x, = PXW(D,W, Xr(m) for any permutation 7
on [n]. In particular, if X;’s are binary, then X™ are exchangeable if and only if the joint distribution
only depends on the Hamming weight, i.e., Pxn_zn = p(w(z™)). Examples: X" is iid Bern(p); X"
is uniform over the Hamming sphere Tk.

Lemma 28.2 (U; preserves exchangebility). Let X" be exchangeable and L = W1(X?"). Then con-

ditioned on L =k, Y* U™ and V"% are independent and exchangeable. Furthermore, Yki'iéd'Bern(%)
and U™ is uniform over Tj.

Proof. 1f suffices to show that Yy, 3" € {0,1}*, u,u’ € T}, and v, v’ € {0,1}" % such that w(v) = w(v'),
PY* = 4, U™ = w, V"% = o|L = k] = P[Y* = o/, U" = /,V"* = /|L = k]. Note that X?" and
the triple (Y*,U™, V") are in one-to-one correspondence of each other (to reconstruct X7,
simply read the k distinct pairs from Y and fill them according to the locations ones in U and
fill the remaining equal pairs from V). Finally, note that u,y,v and y’,u’,v" correspond to two
input strings = and ' of identical Hamming weight (w(z) = 2k + 2w(v)) and hence of identical
probability due to the exchangeability of X?". [Examples: (y,u,v) = (01,1100,01) = = = (10010011),
(y,u,v) = (11,1010,10) = 2’ = (01110100).]

Computing the marginals, we conclude that both Y* and U™ are uniform over their respective
support set.i ]

Lemma 28.3 (U, is an extractor). Let X2" be exchangeable. Then \IIt(X%)i'kd'Bem(l/Q) condi-
tioned on (¥ (X2")) = m.

Proof. Note that W;(X?") € {0,1}*. It is equivalent to show that for all s™ € {0,1}™,
P, (X?") = s™] = 27" P[I(T,(X?")) = m].

Proceed by induction on ¢. The base case of ¢ =1 follows from Lemma 28.2 (the distribution of the
Y part). Assume U, ; is an extractor. Recall that ¥, (X?") = (¥ (X?"), U, 1 (U"), ¥, (V™F))
and write the length as L = L1 + Lo + L3, where Lo I L3|L; by Lemma 28.2. Then

P[0 (X*") = s™]

= Y P{W(X?) = 5Ly = KIP[L: = k]

k=0
m m—k
tem 8250 Y P[Ly = KP[YF = $HLy = KIP[W 1 (U") = sEF Ly = KIP[We s (VI F) = 8Ly = K]
k=0 r=0
inducti m m—k
AN NN SN P[Ly = k272 P[ Ly = 7| Ly = k]2 R IR Ly = m — k — 7| Ly = K]
k=0 r=0
= 27"P[L = m]. .

Yf X2" is iid Bern(p), then V™% is iid Bern(p?/(p* + ¢*)), since L ~ Binom(n, 2pq) and P[Y* = 4, U™ =, V"™ =
v|L=Fk]=27". (2)71 : (%)m(pz‘iq2 Y"F=™ where m = w(v). In general we cannot say much more than the fact

that V™" is exchangeable.
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Next we compute the rate of W;. Let X2"i'i&d'Bern(p). Then by SLLN, %l(\lll(XQ")) = é—g
converges a.s. to pg. Assume that %l(\llt_l(XQ"))grt_l(p). Then

1 L, 1 1 .

— (T (X)) = 2 + o (@ (UM) + U (V Eny).

2n 2n 2n

Note that U”i'i&d'Bern(qu) ynolniL, b Bern(p?/(p? + ¢*)) and L,>Zs00. Then the induction
hypothesis implies that l(\I/t 1(U”))——>rt 1(2pq) and S L )l(‘I/t (V7 L"))—irt_l(p2/(p2 +
¢%)). We obtain the recursion:

2

1 2+ 2
ri(p) = pg+ =re1(2pg) + P L [ 5 ) = (Trc) (), (28.1)
2 2 p*+q

where the operator T" maps a continuous function on [0, 1] to another. Note that f < g pointwise
then T'f <Tg. Then it can be shown that r; converges monotonically from below to the fixed-point
of T', which turns out to be exactly the binary entropy functlon h. Instead of directly verifying
Th = h, next we give a simple proof: Consider X, X = Bern(p) Then 2h(p) = H(X1, X2) =
H(X1 @ Xy, X1) = H(X1 @ X2) + H(X1|X1 @ X2) = h(p* + ¢°) + 2pgh(3) + (0° +¢ )h(pzfqz)-

The convergence of 7, to h are shown in Fig. 28.1.

1.0 r
0.8 :’
0.6 :*
0.4 :’

02r

0.2 0.4 0.6 0.8 10

Figure 28.1: Rate function r; for ¢t = 1,4, 10 versus the binary entropy function.

28.5 Bernoulli factory

Given a stream of Bern(p) bits with unknown p, for what kind of function f:[0,1] - [0,1] can
we simulate iid bits from Bern(f(p)). Our discussion above deals with f(p) = % The most famous
example is whether we can simulate Bern(2p) from Bern(p), i.e., f(p) =2p A 1. Keane and O’Brien
[KO94] showed that all f that can be simulated are either constants or “polynomially bounded
away from 0 or 1”: for all 0 < p < 1, min{f(p),1 - f(p)} > {p,1 - p}" for some n > 1. In particular,
doubling the bias is impossible.

The above result deals with what f(p) can be simulated in principle. What type of computational
devices are needed for such as task? Note that since 71 (p) is quadratic in p, all rate functions ry
that arise from the iteration (28.1) are rational functions (ratios of polynomials), converging to
the binary entropy function as Fig. 28.1 shows. It turns out that for any rational function f that
satisfies 0 < f <1 on (0,1), we can generate independent Bern(f(p)) from Bern(p) using either of
the following schemes [MP05]:
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1. Finite-state machine (FSM): initial state (red), intermediate states (white) and final states
(blue, output 0 or 1 then reset to initial state).

2. Block simulation: let Ag, Ay be disjoint subsets of {0,1}*. For each k-bit segment, output 0 if
falling in Ag or 1 if falling in A;. If neither, discard and move to the next segment. The block
size is at most the degree of the denominator polynomial of f.

The next table gives examples of these two realizations:

Goal Block simulation FSM
1
0
f(p)=1/2 Ag=10;A; =01 . 0
1
@
S\
f(p) =2pq | Ag=00,11; Ay = 01,10 .
oL A
3
fp)=5m | Ao=000;4; =111

Exercise: How to generate f(p) =1/37

It turns out that the only type of f that can be simulated using either FSM or block simulation
is rational function. For f(p) = /p, which satisfies Keane-O’Brien’s characterization, it cannot be
simulated by FSM or block simulation, but it can be simulated by pushdown automata (PDA),
which are FSM operating with a stack [MP05].

What is the optimal Bernoulli factory with the best rate is unclear. Clearly, a converse is the
entropy bound %, which can be trivial (bigger than one).

28.6 Related problems

28.6.1 Generate samples from a given distribution

The problem of how to turn pure bits into samples of a given distribution P is in a way the opposite
direction of what we have been considering so far. This can be done via Knuth-Yao’s tree algorithm:
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Starting at the root, flip a fair coin for each edge and move down the tree until reaching a leaf node
and outputting the symbol. Let L denote the number of flips, which is a random variable. Then
H(P)<E[L] < H(P)+2bits.

Examples:

e To generate P =[1/2,1/4,1/4] on {a,b,c}, use the finite tree: E[L] = 1.5.

e To generate P = [1/3,2/3] on {a,b} (note that 2/3 = 0.1010...,1/3 = 0.0101...), use the
infinite tree: E[L] =2 (geometric distribution)

28.6.2 Approximate random number generator

The goal is to design f: X™ - {0,1}* s.t. f(X™) is close to fair coin flips in distribution in certain
distances (TV or KL). One formulation is that D( P xn)[Uniform) = o(k).

Intuitions: The connection to lossless data compression is as follows: A good compressor
squeezes out all the redundancy of the source. Therefore its output should be close to pure bits,
otherwise we can compress it furthermore. So good lossless compressors should act like good
approximate random number generators.
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