
§ 9. Universal compression

In this lecture we will discuss how to produce compression
X

s
→

chemes
{

that do not require apriori
knowledge of the distribution. Here, compressor is a map n 0,1
one fixed probability distribution P n

Xn on . The plan for this lecture
}∗. Now, however, there is no

is as follows:

1. We will start by discussing the earliest

X

example of a universal compression algorithm (of
Fitingof). It does not talk about probability distributions at all. However, it turns out to be
asymptotically optimal simulatenously for all i.i.d. distributions and with small modifications
for all finite-order Markov chains.

2. Next class of universal compressors is based on assuming that a the true distribution PXn

belongs to a given class. These methods proceed by choosing a good model distribution QXn

serving as the minimax approximation to each distribution in the class. The compression
algorithm is designed to work for QXn is made.

3. Finally, an entirely different idea are algorithms of Lempel-Ziv type. These automatically
adapt to the distribution of the source, without any prior assumptions required.

Throughout this section instead of describing each compression algorithm, we will merely specify
some distribution QXn and apply one of the following constructions:

• Sort all xn in the order of decreasing QXn(xn) and assign values from {0, 1}∗ as in Theorem 6.1,
this compressor has lengths satisfying

`(f(xn)) ≤
1

log
QXn(xn)

.

• Set lengths to be

`(f(xn)) ≜ ⌈log
1

QXn(xn

and apply Kraft’s inequality Theorem 6.5 to construct a

)

prefix

⌉

code.

• Use arithmetic coding (see next section).

The important conclusion is that in all these cases we have

`((
1

f xn)) ≤ log
QXn(xn)

+ const ,

and in this way we may and will always replace lengths with log 1 .Q nX (xn) In this way, the only job
of a universal compression algorithm is to specify QXn.

101

Remark
{ }∗

9.1. Furthermore, if we only restrict
0,1 defines a distribution Q (xn) = 2−

attention to prefix codes, then any code f n

` f
Xn

results on redundancy

((xn (we assume the code’s tree is full). In this
way, for prefix-free codes , stated

))

in terms of optimizing the choice of

∶ X

QX

→

n ,
imply tight converses too. For one-shot codes without prefix constraints the optimal answers are
sligh

[(

tly

(

differen

))] ≈

t,

(

how

)

ev

+

er.
∣X ∣−

(For example, the optimal universal code for all i.i.d. sources satisfies

E ` f Xn 3
H Xn

2 logn in contrast with
∣X ∣−1

logn for prefix-free codes.)2

9.1 Arithmetic coding

Constructing an encoder table from QXn may require a lot of resources if n is large. Arithmetic
coding provides a convenient workaround by allowing to output bits sequentially. Notice that to
do so, it requires that not only QXn but also its marginalizations QX1 ,QX2 , be easily computable.
(This is not the case, for example, for Shtarkov distributions (9.8)-(9.9), which are not compatible
for different n.)

⋯

Let us agree upon some ordering on the alphabet of (e.g. a b z) and extend this order
lexicographically to X n

≠

(that is for x x1, . . . , xn and y y1, . . . , yn , we say x y if xi yi for
the first i such that xi yi, e.g., baba babb

X < < ⋯ <

= () = () < <

<). Then let

Fn(x
n Q n

Xn x .
yn xn

Associate to eac xn = [

[

h x
)

n an interval I F

) = ∑

n

<

(xn), Fn(x
n

(

) +Q

)

Xn(xn)). These intervals are disjoint
subintervals of 0,1 . Now encode

xn ↦ largest dyadic interval contained in Ixn .

Recall that dyadic intervals are intervals of the type m2 k, m 1 2 k where a is an odd integer.
Clearly each dyadic interval can be associated with a

[

bin

−

ary
(

stri
+

ng
)

in

−]

{0,1}∗. We set f(xn) to be
that string. The resulting code is a prefix code satisfying

`(f(n)) ≤ ⌈
1

x log2 ⌉ 1
QXn(xn

exercise.)

)
+ .

(This is an
Observe that

F (xn) = F − (xn 1
n n 1

−) +QXn−1(xn−1

y

and thus F xn can be computed sequentially if Q

) ∑

X

<
QXn∣ − (y −1

Xn 1 ∣xn

xn

)

n() n 1 and QXn Xn 1 are easy to compute. This
method is the method of choice in many modern compression

−

algorithms
∣ −

because it allows to
dynamically incorporate the learned information about the stream, in the form of updating QXn Xn 1

(e.g. if the algorithm detects that an executable file contains a long chunk of English text, it
∣
ma

−

y
temporarily switch to QX ∣Xn 1

n
− modeling the English language).

9.2 Combinatorial construction of Fitingof

Fitingof suggested that a sequence xn ∈ X n should be prescribed information Φ n
0

the
(x) equal to

logarithm of the number of all possible permutations obtainable from xn (i.e. log-size of the

102

type-class containing xn). From Stirling’s approximation this can be shown to be

Φ0(x
n) = nH(xT) +O(logn T

P

∼ Unif

ˆnH xn O logn

)

,

[n] (9.1)

(9.2)

ˆwhere Pxn is the empirical distribution

=

of

(

the

)

sequence

+ (

x

)

n:

P̂xn(a) ≜
1 n

1 xi a . (9.3)
n i 1

Then Fitingof argues that it should be possible

∑
=

to

{

pro

=

duce

}

a prefix code with

` f xn Φ0 xn O logn . (9.4)

This can be done in many ways. In

(

the

(

spirit

)) =

of

(

what

) +

we

(

will do

)

next, let us define

QXn(xn

where cn is a normalization constant cn.

)

Coun

≜ exp{−Φ0(x
n)}cn ,

ting the number of different possible empirical
distributions (types), we get

cn = O(n−(∣X ∣−1)) ,

and thus, by Kraft inequalit
i.i.d.

taking expectation over Xn ∼

y, there must exist a prefix code with lengths satisfying (9.4). Now

PX we get

E[`(f(Xn))] = nH(PX) + (∣X ∣ − 1) logn +O

for

(1) ,

every i.i.d. source on X .

9.2.1 Universal compressor for all finite-order Markov chains

Fitingof’s idea can be extended as follows. Define now the 1-st order information content Φ1 xn

to be the log of the number of all sequences, obtainable by permuting xn with extra restriction
that the new sequence should have the same statistics on digrams. Asymptotically, Φ1 is just

(

the

)

conditional entropy

Φ xn1 nH xT xT 1 mod n O logn , T Unif n .

Again, it can be shown

(

that

)

there

= (

exists

∣ −

a code suc

) +

h that

(

lengths

) ∼ []

`

This implies that for every 1-st order

(f(xn

stat

))

ionary

= Φ1(x
n) +O logn .

Markov

(

chain

)

X1

E ` f Xn nH X2 X1 O logn

→X2 → ⋯→Xn we have

This can be further contin

[

ued

((

to define

))] =

Φ

(∣) + () .

2(x
n) and build a universal code, asymptotically

optimal for all 2-nd order Markov chains etc.

103

9.3 Optimal compressors for a class of sources. Redundancy.

So we have seen that we can construct compressor f ∶ X n → {0,1}∗ that achieves

E[`(f(Xn H Xn o n ,

simultaneously for all i.i.d. sources (or eve

))]

n all

≤

r-th

(

order

) + (

Mark

)

ov chains). What should we do
next? Krichevsky suggested that the next barrier should be to optimize regret, or redundancy :

E[`(f

simultaneously for a class of sources. We

(Xn))] −H(Xn)→min

proceed to rigorous definitions.
Given a collection {PXn∣θ, θ ∈ Θ} of sources, and a compressor f n 0,1 ∗ we define its

redundancy as
supE[`(f(Xn

∶ X → { }

θ0

))∣θ = θ0] −H(Xn θ

1

∣ = θ0

Replacing here lengths with log

) .

n
n

we define redundancy of the distribution QX asQX

supD PXn Q
θ0

∣θ=θ0 Xn .

Thus, the question of designing the best univ

(

ersal compressor

∥)

(in the sense of optimizing worst-case
deviation of the average length from the entropy) becomes the question of finding solution of:

Q∗
Xn = argmin supD

Q nX θ0

(PXn∣θ=θ0 QXn

e

) .

W therefore get to the following definition

∥

Definition
Θ =

9.1 (Redundancy in universal compression). Given a class of sources PXn θ θ0 , θ0

, n 1, . . .
{ ∣ = ∈

} we define its minimax redundancy as

Rn
∗ ≜ min supD

Q nX θ0

Note that under condition of finiteness of R

(PXn∣θ=θ ∥QXn
0

) . (9.5)

n
∗, Theorem 4.5 gives the maximin and capacity

representation

Rn
∗ = sup minD(PXn∣θ∥QXn ∣Pθ

θ

the

=

P
) (9.6)

Q nXθ

sup I ;Xn . (9.7)
Pθ

Thus redundancy is simply capacity of

(

the channel

)

θ Xn. This result, obvious in hindsight,
was rather surprising in the early days of universal compression.

Finding exact QXn-minimizer in (9.5) is a daunting task

→

even for the simple class of all i.i.d.
Bernoulli sources (i.e. Θ 0,1 , PXn θ Bernn θ). It turns out, however, that frequently the
approximate minimizer has

=

a
[

rather
]

nice
∣ =

structure:
()

it matches the Jeffreys prior.

Remark 9.2. (Shtarkov and Fitingof) There is a connection between the combinatorial method
of Fitingof and the metho

()
d of optimality for a class. Indeed, following Shtarkov we may want to

S
choose distribution Q n so as to minimize the worst-case redundancy for each realization xn (notX
average!):

P
min

Q nX (xn)
Xn θ

sup log
θ0

∣ (x
n∣θ0)

QXn(xn)

104

This leads to Shtarkov’s distribution:

Q
(S)

xn c 0 , (9.8)Xn supPXn

θ0
∣θ x

n θ

where
X

c is the normalization constant.

(

If class

) = (∣)

{PXn∣θ, θ ∈ Θ} is chosen to be all i.i.d. distributions
on then

i.i.d. Q
(S
n
)
(xn) = c exp{−nH(P̂xn)} , (9.9)X

S
and thus compressing w.r.t. QXn recovers Fitingof’s construction Φ0 up to O logn differences

ˆbetween nH .

(

(P n
xn

)

) and Φ0(x) If we take PXn∣θ to be all 1-st order Markov chains,

()

then we get
construction Φ1 etc.

9.4* Approximate minimax solution: Jeffreys prior

In this section we will only consider the simple setting of a class of sources consisting of all i.i.d.
distributions on a given finite alphabet. We will show that the prior, asymptoticall

/

solving capacity
question (9.7), is given by the Dirichlet-distribution with parameters set to 1 2, namely the pdf

Pθ
∗ =

1
const√ .

d
j 0 θj

First, we give the formal setting as follows:

∏ =

• Fix X – finite alphabet of size ∣X d 1, which we will enumerate as 0, . . . , d .

• Θ = {(

X

θj , j = 1, . . . , d) ∶ ∑dj=1 θj ≤ 1,

∣

θ

=

j

+

0 – is the collection of all probabili

X =

ty

{

distributions

}

on
. Note that Θ is a d-dimensional simplex.

≥ }

We will also define

θ0 ≜ 1 −
d

θj .
j
∑
=1

• The source class is

∣ (∣) ≜∏
n

exp{
1

PXn θ x
n θ

j=
θxj

1

= −n
a

∑
∈X
θa log ,

P̂xn a

ˆ

}

where as before Pxn is the empirical distribution of xn, cf. (9.3).

()

In order to derive the caod Q∗
Xn we first propose a guess that the caid Pθ in (9.7) is some

distribution with smooth density on Θ (this can only be justified by an apriori belief that the caid
in such a natural problem should be something that employs all θ’s). Then, we define

QXn xn PXn∣θ x
n θ′ Pθ θ

′ dθ . (9.10)
Θ

′

Before proceeding further, we recall

()

the

≜ ∫

following

(

metho

∣)

d

(

of

)

approximating exponential integrals
ˆ(called Laplace method). Suppose that f(θ) has a unique minimum at the interior point θ of Θ

105

and that Hessian Hessf is uniformly lower-bounded by a multiple of identity (in particular, f θ is
strongly convex). Then taking Taylor expansion of π and f we get

()

∫ π
Θ

(θ)e−nf(θ)dθ = ∫ ((ˆπ θ) + (ˆ
e−

1

O(∥t∥)) n(f θ)−
2
tTHessf(θ̂)t+o(∥t∥2))dt (9.11)

= π(θ̂)e−nf(θ̂)∫
Rd
e−x

THessf(θ̂)x dx
√
nd

(1 +O(n−1/2)) (9.12)

= π(θ̂)e−nf(θ̂) (
2π

n
)

d
2 1
√ 1

ˆdet Hessf(θ
(+

)
O(n−1/2)) (9.13)

where in the last step we computed Gaussian integral.
Next, we notice that

P ∣ (∣
ˆ

xn∣θ′) = e−n(D(P̂ n nx ∥PX θ θ
X

= ′)+H
θ

(Px
n

)) log e ,

and therefore, denoting
θ̂(xn) ≜ P̂xn

we get from applying (9.13) to (9.10)

d
logQ n(xnX) = −nH(θ̂) +

2
log

2π

n log e
+ log

Pθ(θ̂)
√

detJF (θ̂)
+O(n−

1
2) ,

where we used the fact that Hessθ′D(P̂ ∥PX ∣θ=θ′) =
1

log eJF (θ
′) with JF – Fisher information matrix,

see (4.13). From here, using the fact that under Xn ∼ PXn∣θ=θ′ the random variable θ̂ = θ′ +O(n−1/2)
we get by linearizing JF (⋅) and Pθ(⋅)

D(PXn∣θ=θ′∥QXn) = n(E[H(θ̂)]−H(X ∣θ = θ′))+
d

2
logn− log

Pθ(θ
′)

√
detJF (θ′)

+const+O(n−
1
2) , (9.14)

where const is some constant (independent of prior Pθ or θ′). The first term is handled by the next
Lemma.

ni.i.d. ˆLemma 9.1. Let X ∼ P on finite alphabet X and let P be the empirical type of Xn then

E[D(
1

P̂ ∥P)] =
∣X ∣ −

2n
log e + o(

1

n
) .

Proof. Notice that
√

∣X

ˆn(P − P)

∣

converges in distribution to 0,Σ , where Σ diag P PP T ,
where P is an -by-1 column vector. Thus, computing second-order

N ()

Taylor expansion
= (

of
cf.

)

D
−

(⋅∥P),
(4.15), we get the result.

Continuing (9.14) we get in the end

D(PXn∣θ=θ′∥QXn) =
d

2
logn − log

Pθ(θ
′)

√
detJF (θ′)

+ const +O(n−
1
2) (9.15)

under the assumption of smoothness of prior Pθ and that θ is not too close to the boundary.
Consequently, we can see that in order for the prior

′

Pθ(θ
′) ∼

√

Pθ be the saddle point solution, we should have

detJF (θ′) ,

106

provided that such density is normalizable. Prior proportional to square-root of the determinant of
Fisher information matrix is known as Jeffreys prior. In our case, using the explicit expression for
Fisher information (4.16) we get

Pθ
∗ = Beta(

1
1/2,1/2,⋯,1/2) = cd√

where

∏
, (9.16)

d
j=0 θj

cd is the normalization constant. The corresponding redundancy is then

Rn
∗ =

d

2
log

n
log

2πe
− cd o

Remark

+ (1) . (9.17)

9.3. In statistics Jeffreys prior is justified as being invariant to smooth reparametrization,
as evidenced by (4.14). For example, in answering “will the sun rise tomorrow”, Laplace proposed
to
∈

estimate
[]

the

√

probability by modeling sunrise as i.i.d. Bernoulli process with a uniform prior on
θ
=

0,1 . Ho
=

wever, this is clearly not very logical, as one may equally well postulate uniformity of
α θ10 or β θ. Jeffreys prior θ ∼ 1√

θ(1−θ)
is invariant to reparametrization in the sense that if

one computed
√

detJF (α) under α-parametrization the result would be exactly the pushforward of
the 1√

θ(
along

1−θ)
the map θ ↦ θ10.

Making the arguments in this subsection rigorous is far from trivial, see [CB90, CB94] for details.

9.5 Sequential probability assignment: Krichevsky-Trofimov

From (9.16) it is not hard to derive the (asymptotically) optimal universal probability assignment
QXn . For simplicity we consider Bernoulli case, i.e. d = 1 and θ ∈ [0,1] is the 1-dimensional
parameter. Then,1

Pθ
∗ =

1

π
√
θ(1 − θ)

(9.18)

Q∗
Xn(xn) =

(2t0 − 1)!! ⋅ (2t1 − 1)!!
, ta # j n xj a (9.19)

2nn!

This assignment can now be used to create a universal compressor

= {

via

≤

one

∶

of

=

the

}

methods outlined
in the beginning of this lecture. However, what is remark

=

able

∫

is that it has a very nice sequential
interpretation (as does any assignment obtained via QXn PθPXn∣θ with Pθ not depending on n).

1

QXn∣Xn−1(1∣xn−1) =
t1 + 2

n
, t1 = #{j ≤ n − 1 ∶ xj = 1} (9.20)

QXn∣Xn−1(0∣xn−1) =
t0 +

1
2 , t0

n
= #{j

This is the famous “add 1/2” rule of Krichevsky and Trofimov.

≤ n − 1 ∶ xj = 0} (9.21)

Note that this sequential assignment
is very convenient for use in prediction as well as in implementing an arithmetic coder.

1This is obtained from identity ∫
1

0
θa(1−θ)b
√
θ(1−θ)

dθ = π 1⋅3⋯(2a−1)⋅1⋅3⋯(2b−1)

=
for integer a, b 0. This identity can be

2a+b(a+b)!

derived by change of variable z θ

≥
and

1−
using the standard keyhole contour on the complex plain.

θ

107

Remark 9.4. Notice that attaining the first order term d logn in (9.17) is easy. For example,2
taking QXn to be the result of uniform Pθ does achieve this redundancy. In the Bernoulli (d
case, the corresponding successive probability is given by

t 1

= 1)

Q
n∣Xn−1(1∣xn−1) =

1
X

+
#

“add

+
, t1

1
= {j

n

This is known as Laplace’s 1” rule.

≤ n − 1 ∶ xj = 1} .

9.6 Lempel-Ziv compressor

So given a class of sources {PXn∣θ, θ ∈ Θ} we have shown how to produce an asymptotically optimal
compressors by using Jeffreys’ prior. Although we have done so only for i.i.d. class, it can be
extended to handle a class of all r-th order Markov chains with minimal modifications. However,
the resulting sequential probability becomes rather complex. Can we do something easier at the
expense of losing optimal redundancy?

In principle, the problem is rather straightforward: as we observe a stationary process, we may
ˆestimate with better and better precision the conditional probability PXn

ˆthe basis for arithmetic coding. As long as P converges to the actual conditional
n 1

∣Xn−1
n−

and then use it as
r

probability, we
will get to the entropy rate of H(Xn∣Xn−

−
r). Note that Krichevsky-Trofimov assignment (9.21) is

clearly learning the distribution too: as n grows, the estimator QXn Xn 1 converges to the true
PX (provided sequence is i.i.d.). So in some sense the converse is also
compression scheme is inherently learning the true distribution.

∣
true:
−

any good universal

The main drawback of the learn-then-compress approach is the following. Once we extend the
class of sources to include those with memory, we invariably are lead to the problem of learning
the joint distribution PXr−1 of r-blocks. However, the number of samples required to obtain a good

0

estimate of PXr−1 is exponential in r. Thus learning may proceed rather slowly. Lempel-Ziv family
0

of algorithms works around this in an ingeniously elegant way:

• First, estimating probabilities of rare substrings takes longest, but it is also the least useful,
as these substrings almost never appear at the input.

• Second, and most crucial, observation is that a great estimate of the PXr xr is given by the
reciprocal of the distance to the last observation of xr in the incoming stream.

()

• Third, there is a prefix code2 mapping any integer n to binary string of length roughly log2 n:

fint Z 0,1 +, ` fint n log2 n O log logn . (9.22)

Thus, by encoding the

∶ {

(

poin

+ → }

)

ter to the last observ

((

ation

)) =

of xr via

+

suc

(

h a code

)

we get a string of
length roughly logP r xrX automatically.

There are a number of variations of these basic ideas, so we will only attempt to give a rough
explanation of why it works, without analyzing any particular algorithm.

We proceed to formal details. First, we need to establish a Kac’s lemma.

2For this just notice that ∑ −
≥ 2− log2 k 2 log2 log
k 1

(k+1) <∞ and use Kraft’s inequality.

108

Lemma
= { >

9.2
∶

(Kac)
=

. Consider
}

a finite-alphabet stationary ergodic process . . . ,X 1,X0,X1 Let
L inf t 0

[

X
=
−t

]

X
>

0 be the last appearance of symbol X0 in the sequence X 1
−
. Then for any u

such that P X0 u 0 we have
−∞
−

[
1

E L∣X0 = u] = .
P[X0 = u

In particular, mean recurrence time E L suppPX .

]

Proof. Note that from stationarity the

[

follo

] =

wing

∣

probabilit

∣

y

P[∃t ≥ k

does not depend on k Z. Thus by continuity of

∶Xt = u]

∈ probability we can take k to get

P[∃t ≥ 0 X

= −∞

∶ t u P t Z Xt

However, the last event is shift-invariant and

=]

th

=

us

[∃

must

∈

ha

∶

ve

= u] .

probability zero or one by ergodic
assumption. But since P[X0 = u] > 0 it cannot be zero. So we conclude

P t 0 Xt u 1 . (9.23)

Next, we have

[∃ ≥ ∶ =] =

E[L∣X0 = u] =
t
∑P
≥1

[L t

1

≥ ∣X0 = u] (9.24)

=
P[X0 = u]

∑
t≥1

P[L ≥ t,X0 = u] (9.25)

=
1

P[X0 = u]
∑
t≥1

P[X−t+1 ≠ u, . . . ,X−1 ≠ u,X0 = u] (9.26)

=
1

P X u, . . . ,Xt 2 u,X u (9.27)
P[X0 =] ≥

[0
t
∑

1

≠ − ≠ t−1
u

=]

=
1

P[X0 = u]
P[∃t ≥ 0 ∶Xt = u] (9.28)

=
1

,

expression

[
(9.29)

P X0 = u

where (9.24) is the standard for

]

the expectation of a Z+-valued random variable, (9.27)
is from stationarity, (9.28) is because the events corresponding to different t are disjoint, and (9.29)
is from (9.23).

The following proposition serves to explain the basic principle behind operation of Lempel-Ziv:

Theorem 9.1. Consider a finite-alphabet stationary ergodic process . . . ,X 1,X0,X1 . . . with entropy
rate

(

H. Suppose that X−∞
−1 is known to the decoder. Then there exists a

−

− −)

sequence of prefix-codes
fn xn 1

0 , x−∞
1 with expected length

1
E

n
[`(fn(X

n−1
0 ,X∞

−1))]→H ,

109

Proof. Let Ln be the last occurence of the block xn−1
0 in the string x−−∞

1 (recall that the latter is
known to decoder), namely

Ln = inf{t > 0 ∶ x−−
t n 1 n 1

()
t x

n

+ −
0 .

Then, by Kac’s lemma applied to the process Y Xt+

=

= n 1

−

t t
− we

}

have

E[Ln∣X
n−1
0 = xn−1

0] =
1

]
.

P[Xn−1
0 = xn−1

0

We kno
[−

w
−

enco
+

de
−

L
]
n using

[

the
−

co
]

de (9.22). Note that there
−

is crucial subtlety: even if Ln n and
thus t, t n 1 and 0, n 1 overlap, the substring xn 1

0 can be decoded from the knowledge
<

of
Ln.

We have, by applying Jensen’s inequality twice and noticing that 1
nH(Xn−1

0) ↘ H and
1 logHn (Xn−1

0)→ 0 that

1

n
E[`(fint(Ln))] ≤

1

n
E[log

1
o

0

− 1 H .
PXn−

1
1 Xn

0

From Kraft’s inequality we know that for any prefix code

(

we

)

m

]

ust

+ (

ha

)

v

→

e

1

n
E[`(fint(Ln))] ≥

1
H

n
(Xn−1

0 ∣X−∞
−1) =H .

110

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

