
§ 5. Single-letterization. Probability of error. Entropy rate.

5.1 Extremization of mutual information for memoryless sources
and channels

Theorem 5.1. (Joint M.I. vs. marginal M.I.)

(1) If PY n∣Xn PYi∣Xi then
I Xn;Y n I Xi;Yi (5.1)

with equality

=∏

iff PY n .

(

= i

) ≤∑ ( )

∏PY Consequently,

max I(Xn;Y n) =∑
n

=
max I(Xi;Yi .

P nX Pi 1 Xi

)

(2) If X1 ⊥⊥ . . . ⊥⊥Xn then
I Xn;Y n

with equality iff PXn Y n PX n
i Yi P

(

Y -almost

) ≥

sur

∑ I(X (5.2)

=

i;Yi)

∣ ∏ ∣ ely1. Consequently,

min (
n

I Xn;Y n

P n ∣ nY X

) =∑
=

min I Xi;Yi .
Pi 1 Yi ∣Xi

( )

Proof. (1) Use I(Xn;Y n) −∑ I(Xj ;Yj) =D(PY n∣Xn∥∏PYi∣Xi

(2) Reverse the role ofX and Y : I Xn;Y n I Xj ;Yj D P

∣PXn D PY n PYi

( )− ( ) = ( Xn∣Y

)

n

− (

Y

∥

∥ PXi∣ i ∣P

∏

Y n

)

)−D(PXn∥ PXi)

Note: The moral of this result is that

∑ ∏ ∏

1. For product channel, the MI-maximizing input is a product distribution

2. For product source, the MI-minimizing channel is a product channel

This type of result is often known as single-letterization in information theory, which tremendously
simplifies the optimization problem over a large-dimensional (multi-letter) problem to a scalar (single-
letter)
(

problem.
)

For example, in the simplest case where Xn, Y n are binary vectors, optimizing
I Xn;Y n over PXn and P

(
Y n∣Xn en

)

tails optimizing over 2n-dimensional vectors and 2n 2n matrices,
whereas optimizing each I Xi;Yi individually is easy.
Example:

×

1That is, if PXn,Y n = PY n∏PXi ∣Yi
as measures.
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1. (5.1) fails for non-product channels. X1 X2 Bern 1 2 on 0,1 F2:

Y1 =

=

X1

⊥⊥ ∼ ( / ) { } =

+X2

Y2 X1

I X ;Y I X ;Y 0 but I X2;Y 2
1 1 2 2 2 bits

2. Strict inequality in (5.1

(

).

) = ( ) = ( ) =

∀k Yk =Xk = U ∼ Bern(1/2) ⇒ I(Xk;Yk) =

( ) =

1

I Xn;Y n 1 I Xk;Yk

3. Strict inequality in (5.2). X1 . . . Xn

<∑ ( )

Y1 =X2, Y2 X

⊥ ⊥⊥

= 3, . . .

⊥

, Yn =X1 ⇒ I

I

( ) =

5.2* Gaussian capacity via orthogonal

(

Xk;Yk

Xn;Y n) =

0

∑H

symmetry

(Xi) > 0 =∑ I(Xk;Yk)

Multi-dimensional case (WLOG assume X1 ⊥⊥ . . . ⊥⊥Xn iid), for a memoryless channel:

max
E[∑

X
X
k
]≤

I
nP

(Xn; n

2
+Zn) ≤

n

max
E

Giv

[∑X2
k
]≤nP k

en a distribution PX1 PXn satisfying the constraint, form

∑

the

=
I k;Xk

“a

+Zk
1

(X

verage of marginals”

)

distribution
P̄ 1
X

⋯

= n ∑
n
k=1 PXk , which also satisfies the single letter constraint E[X2] = 1

n ∑
n
k=1 E[X2

k] ≤ P . Then
from concavity in PX of I(PX , PY ∣X)

I(P̄X ;PY ∣X) ≥
1 n

I PXk , PYn k 1
∣X

So
(

P̄X
)

gives the same better MI, which shows

∑
=

)

)

or the

(

(

that extremization
=

ab
+

ove ought to have the form
nC P where C P is the single letter capacity. Now suppose Y n Xn ZnG where ZnG ∼ 0, In .
Since an isotropic Gaussian is rotationally symmetric,

∼

for any orthogonal transformation
=

U O n ,
the additive noise has the same distribution Zn ZnG U G, so that PUY n UXn PY n Xn , and

N ( )

∈ ( )

I(PXn , PY n∣Xn) = I(PUXn , PUY n∣UXn) = I(PUXn , P

∣

Y n Xn

∣

From the “average of marginal” argument above, averaging over many rotations

∣ )

of Xn can only
make the mutual information larger. Therefore, the optimal input distribution PXn can be chosen
to be invariant under orthogonal

∗
transformations. Consequently, the (unique!) capacity achieving

output distribution PY n must be rotationally invariant. Furthermore, from the conditions for
equality in (5.1) we conclude that PY

∗
n must have independent components. Since the only product

distribution satisfying the
= (

po
∗
w
)

er constrain
∗ =

ts
N (

and having rotational symmetry is an isotropic Gaussian,
we conclude that PY n P n

Y and PY 0, P In

direction

).

For the other in the Gaussian saddle point problem:

∶
min I XG;XG N

PN E N2 1

This uses the same trick, except here

[

the

]=

input

(

distribution

+ )

is automatically invariant under
orthogonal transformations.
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5.3 Information measures and probability of error

ˆLet W be a random variable and W be our prediction. There are three types of problems:

ˆ1. Random guessing: W W .

→ → ˆ2. Guessing with data: W X W .

ˆ3. Guessing with noisy data: W X Y W .

We want to draw converse statemen

→

ts, e.g.,

→

if

→

the uncertainty of W is high or if the information
provided by the data is too little, then it is difficult to guess the value of W .

Theorem 5.2. Let ∣X ∣ =M <∞ and Pmax

H

≜ maxx∈X PX(x). Then

X 1 Pmax log M 1 h Pmax FM Pmax , (5.3)

with equality iff P

( ) ≤ (

max
X

− ) ( − ) + ( ) ( )

= (Pmax,
1−P

≜

M−1 , . . . , 1−Pmax

M−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M−1

).

Proof. First proof : Write RHS-LHS as a divergence. Let P = (Pmax, P2, . . . , PM) and introduce
Q = (Pmax,

1−Pmax

M−1 , . . . , 1−Pmax . Then RHS-LHS D P Q 0, with inequality iff P Q.M
Se

−1

−

cond proof : Given any
)

P Pmax, P2, . . . , PM , apply a random permutation π to the last
M 1 atoms to obtain the distribution Pπ. Then

= (

averaging

∥ ) ≥

Pπ over all

=

Then use concavity of entropy or

=

“conditioning

(

reduces

)

entropy”: H Q
Third proof : Directly solve the convex optimization max H P pi
Fourth proof : Data processing inequality. Later.

( ) ≥

perm

)

H(

utation π gives Q.

{ ( ∶ ≤

Pπ ∣π) P
. . ,M

)

=

H
}

.
Pmax, i 1,

=

.
(

.

Note: Similar to Shannon entropy H, Pmax is also a reasonable measure for randomness of P . In fact,
log 1 is known as the Rényi entropy of order , denoted by H P . Note that H P logMPmax

iff P is uniform; H point mass.
∞ ∞

Note:
∞(P ) = 0 iff P is a

The function FM on the RHS of (5.3) looks

∞

like

( ) ( ) =

0 1/M 1
p

FM (p)

which is concave with maximum logM at maximizer 1/M , but not monotone. However, Pmax ≥
1
M

and FM is decreasing on [ 1 ,1 . Therefore (5.3) gives a lower bound on Pmax in terms of entropy.M
Interpretation: Suppose one is trying to guess the value of X without any information. Then

the best bet is obviously the most

]

likely outcome, i.e., the maximal probability of success among all
estimators is

maxP ˆX X Pmax (5.4)
X̂

Th It

⊥⊥X

us (5.3) means: is hard to predict something

[ =

of

]

large

=

entropy.
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ˆConceptual question: Is it true (for every predictor X ⊥⊥X

H X FM P ˆ

) that

This is not obvious from (5.3) and (5.4

(

) since

) ≤

p

( [ =

↦

X X ? (5.5)

(

FM(p)
)↦

is not monotone. To show (5.5) consider
ˆthe data processor X,X 1

])

{X=X̂

P ˆ PXP ˆ P

}:

XX = X [X = X̂] ≜ P d(P 1
S S∥M ) ≤ D(PXX̂∥QXX̂)

QXX̂ = UXPX̂

⇒
Q[X = X̂] = 1 logM

⇒
= M −H(X

where inequality follows by the data-processing for divergence.

)

(

The
)

benefit of this proof is that it trivially generalizes to (possibly randomized) estimators
X̂ Y , which depend on some observation

∣X ∣

Y

=

correlated

<∞

with

→

X:

ˆTheorem 5.3 (F

(

ano’s

∣ )

inequalit

≤ ( [

y).

=

Let

( )]) =

M and X Y X. Then

ˆ ˆH X Y FM P X X Y P

→

[X ≠X] log(M − 1) + h(P

(

is

[ ˆX ≠X]). (5.6)

Thus, if in addition X uniform, then

I X;Y ) = logM − ˆH(X ∣Y ) ≥ P[X =X] logM − (P[ ˆh X ≠X . (5.7)

Proof. Apply data processing to PXY vs. UXPY and the data processor (kernel)

])

(X,Y )↦ 1{ ˆX X

(note that P ˆ fixed).X

}

∣ isY

≠

ˆRemark: We can also derive Fano’s Inequality as follows: Let ε P X X . Apply data
processing for M.I.

I

= [ ≠ ]

(X;Y ) ≥ I( ˆX;X) ≥ min{I(PX , P
∣

Z∣X P X Z 1 ε .
PZ X

This minimum will not be zero since if we force X and Z to agree

) ∶ [

with

=

some

] ≥

probabilit

− }

y, then I X;Z
cannot be too small. It remains to compute the minimum, which is a nice convex optimization
problem. (Hint: look for invariants that the matrix PZ∣X must satisfy under permutations X

(

, Z

)

π X ,π Z then apply the convexity of I PX , ).

Theorem

( ( ) (

5.4

))

(

(Fano

)

inequality: general).

( )

[

Let X

⋅

≥ ( [ = ]∥

, Y , M and let Q

)↦

XY PXPY , then

(

I X;Y d P X Y Q X Y

≥ [ = ]
1

∈ X ∣X ∣ = =

P X Y log

= ])

h P X Y
Q

(=

X Y

P[X Y

[ = ]
− ( [ = ])

= ] logM − h(P[X = Y ]) if PX or PY uniform)

Pr
]

o
=

of. Apply data processing to PXY and QXY . Note that if PX or PY = uniform, then Q[X
Y 1

=

=

M always.

The following result is useful in providing converses for data transmission.

→ → →

[ ] ≜ { }

ˆCorollary 5.1 (Lower bound on average probability of error). Let W X Y W and W is
uniform on M 1, . . . ,M . Then

Pe ≜ P[
I X;Y h Pˆ e

W ≠W ] ≥ 1 −
( ) + ( )

logM
(5.8)

≥ 1 −
I(X;Y ) + log 2

. (5.9)
logM

ˆProof. Apply Theorem 5.3 and the data processing for M.I.: I(W ;W ) ≤ I(X;Y ).
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5.4 Fano, LeCam and minimax risks

In order to show an application to statistical decision theory, consider the following setting:

• Parameter space θ ∈ [0,1

• Observation model Xi –

]

i.i.d. Bern(θ

• Quadratic loss function:

)

`(θ̂, θ) = (θ̂ − θ

limit:

)2

• Fundamental
R∗(n) ≜ sup

∈[
E[(ˆ

]
inf θ(Xn θ 2 θ θ0

ˆθ0 0,1 θ

A natural estimator to consider is the empirical mean:

) − ) ∣ = ]

1
θ̂emp(X

n) =
n
∑
i

Xi

It achieves the loss

sup
θ0

E[(θ̂emp − θ)
2∣θ = θ0] = sup

θ0

θ0(1 − θ0)

n
=

1
. (5.10)

4n

The question is how close this is to the optimal.

→

First,
→

recall the
∈

Cramer-Rao
(

lower
∣ )

b
=

ound
(

: Consider an arbitrary statistical estimation problem
ˆθ X

( )

θ with

[

θ

(

R
)∣

and

] =

PX
+

∣θ
(

dx

)

θ0 f x∣θ)µ(dx) with f(x∣ )

( )

θ is differentiable in θ. Then for
ˆany θ x with E θ̂ X θ θ b θ and smooth b θ we have

E[(
1 b θ 2

ˆ 0
θ − θ)2∣θ = θ0] ≥ b(θ0)

2 +
( + ′( ))

JF (θ0)
, (5.11)

where JF (θ0) = Var[
∂ ln f(X ∣θ)

∣

( =

θ = θ0]

)

is the Fisher information (4.6). In our case, for any unbiased∂θ
estimator (i.e. b θ 0) we have

E[(θ̂ −
θ0 1 θ0

θ)2∣θ = θ0] ≥
( − )

,
n

ˆand we can see from (5.10) that θemp is optimal in the class of unbiased estimators.
How do we show that biased estimators can not do significantly better? One method is the

ˆfollowing. Suppose some estimator θ achieves

E[(θ̂ − θ)2

for

∣θ θ 2
0 ∆n (5.12)

all θ0. Then, setup the following probability space:

= ] ≤

W → → ˆθ Xn → θ → Ŵ

• W ∼ Bern 1 2

• θ = 1 2 κ

( /

1

)

W∆n where κ 0 is to be specified later

• Xn is

/

i.i.d.

+ (−

Bern

) >

(θ)

55



• θ̂ is the given estimator

• ˆ ˆ ˆW 0 if θ 1 2 and W 1 otherwise

The
θ = 1/

idea here is that we use our high-quality estimator to distinguish between two hypotheses
2

= > / =

± κ∆n. Notice that for probability of error we have:

P[W ≠ Ŵ ] =
E θ̂ θ 2

P[θ̂ > 1/2∣θ = 1/2 − κ∆n] ≤
[( − ) ]

κ2∆2
n

≤
1

κ2

where the last steps are by Chebyshev and (5.12), respectively. Thus, from Theorem 5.3 we have

I(W ; Ŵ ) ≥ (1 −
1

κ
) log 2 h

2
− (κ−2 .

On the other hand, from data-processing and golden formula we

)

have

I( ˆW ;W ) ≤ I(θ;Xn) ≤D

Computing the last divergence we get

(P 1/2)nXn∣θ∥Bern( ∣Pθ)

D(PXn∣θ∥Bern(1/2)n∣Pθ) = nd

As

(1/2 − κ∆n∥1/2) = n(log 2 − h(1

∆n 0 we have

/2 − κ∆n))

→

h(1/2 − κ∆n) = log 2 − 2 log e ⋅ (κ∆n)
2 + o(∆2

n

So

) .

altogether, we get that for every fixed κ we have

(1 −
1

κ
κ

− e

In

) log 2 h κ 2 2n log ∆ 2
n o n∆2 .

2 n

particular, by optimizing over κ w

−

e get

(

that

) ≤

for some

⋅ (

constan

)

t

+

c

( )

≈ 0.015 > 0 we have

∆2
n ≥

c

n
+ o(1/n) .

Together with (5.10), we have

0.015

n
+ o(1/n) ≤ R∗(n) ≤

1
,

4n

and thus the empirical-mean estimator is rate-optimal.
We mention that for this particular problem (estimating mean of Bernoulli samples) the minimax

risk is known exactly:

R∗(n) =
1

4(1 +
√
n)2

but obtaining this requires rather sophisticated methods. In fact, even showing R∗(n) = 1 o 1 n4n
requires careful priors on θ (unlike the simple two-point prior we used above).2

We demonstrated here the essense of the Fano method of proving lower (impossibility)

+

bounds

( / )

in statistical decision theory. Namely, given
(

an estimation task we select a prior on θ which on one
hand yields a rather small information I θ;X and on the other hand has sufficiently separated
points which thus should be distinguishable by

)

a good estimator. For more see [Yu97].

2In fact, getting this result is not hard if one accepts the following Bayesian Cramer-Rao lower bound : For any
ˆestimator θ and for any prior π(θ)dθ with smooth density π we have

∼ [( ( ) − )2] ≥ 1E ˆ
θ π θ X θ

E[JF (θ)] + JF (π)
,
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5.5 Entropy rate

Definition 5.1. The entropy rate of a process X = (X1,X2, . . .) is

H(X) ≜
1

lim
n→∞

H
n

(Xn) (5.13)

provided the limit exists.

Stationarity is a sufficient condition for entropy rate to exist. Essentially, stationarity means
D

invariance w.r.t.
∈

time shift. Formally, X is stationary if (Xt1 , . . . ,Xtn)=(Xt1+k, . . . ,Xtn k for any
t1, . . . , tn, k N.

+

Theorem 5.5. For any stationary process X = (X ,

)

1 X2, . . .

1. H X 1
n X

n H Xn 1 X
n 2

)

2. 1

( ∣ − ) ≤ ( − ∣ − )

nH(Xn) ≥H(Xn∣X
n−1)

3. 1Hn (Xn) ≤ 1
n−1H(Xn−1)

4. H(X) exists and H(X) = limn→∞
1H Xn limn H Xn X

n
n

−1 .

5. For X = (

(

double-side
) <∞

d process . . . ,X

( ) = →

−1,X0,X1,X2

∞

, . . .

(

,

)

) H

∣

(X) = H(X1∣X
0

H
−∞ ovided that

X1

) pr
.

Proof.

1. Further conditioning + stationarity: H(Xn∣X
n−1

2. Using chain rule: 1

) ≤H(X n−1
2 ) =H(X −1∣X

n−2
n∣X n )

nH(Xn) = 1 H X Xi 1 1
i H Xn X

n

( ) = ( ) + ( ∣

n

3. H Xn H Xn−1 H X Xn
n

∑

1

( ∣ − ) ≥ ( ∣ − )

− ) ≤H(Xn−1) + 1
nH(Xn)

4. n ↦ 1H Xn is a decreasing sequence and lower bounded by zero, hence has a limit H .n
Moreo

( ) (X
ver by chain rule, 1

)

nH(Xn) = 1
n ∑

n
i=1H(Xi∣X

i−1). Then H(Xn∣X
n−1)→H(X). Indeed,

from part 1 limnH(Xn∣X
n−1) = H ′ exists. Next, recall from calculus: if an → a, then the

Cesàro’s mean 1 n
i 1 ai a as well. Thus, H H X .n

′

5. Assuming H

∑ = → = ( )

(X1) < we have from (3.10):

lim
→∞

H(X1) −H X
n

∞

( 1∣X−
0
n) = lim

n→∞
I(X1;X−

0
n) = I(X1;X−∞

0 ) =H(X1) −H(X1∣X−∞
0 )

2

where JF (θ) is as in (5.11), JF (π) ≜ ∫ (π′(θ))

π(θ)
dθ. Then taking π supported on a 1

n
1
4

-neighborhood surrounding a

given point θ0 we get that E[JF (θ)] = n
θ0(1−θ0)

+ o(n) and JF (π) = o(n), yielding

R∗(n) ≥ θ0(1 − θ0)
.

n
+ o(1/n

This is a rather general phenomenon: Under regularity assumptions in

)

ˆany iid estimation problem θ →Xn → θ with
quadratic loss we have

∗( 1
R n) =

infθ JF (θ)
+ o(1/n) .
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Example: (Stationary processes)

1. X − iid source⇒H(X) =H(X1

2. X mixed sources: Flip a coin

)

− = = =

( ) = ( ) + ( )

with bias p at time t 0, if head, let X Y, if tail, let X Z.
Then H X pH Y pH¯ Z .

3. X − stationary Markov chain X1 X2 X3

H(X ∣Xn−1
n

∶ → → → ⋯

) =H(
1

Xn∣Xn−1)⇒H(X) =H(X2∣X1) =∑µ
a,b

(a)Pb∣a log
Pb a

where µ is an invariant measure (possibly non-unique; unique if the chain is ergodic).

∣

4. X−
PY X

hidden
= (

Marko
)

v chain ∶ Let X1 →X2 →X3 be a Markov chain. Fix PY X . Let Xi
∣

Yi.
Then Y Y1, . . . is a stationary process. Therefore H Y exists but it is very difficult
(no closed-form solution to date), even if

∣
to compute

X is

→

a

⋯

binary

ÐÐÐ→

(

Mark
)

ov chain and PY ∣X is a BSC.

5.6 Entropy and symbol (bit) error rate

In this section we show that the entropy rates of two processes X and Y are close whenever they
can be “coupled”. Coupling of two processes means defining them on a common probability space
so that average distance between their realizations is small. In our case, we will require that the
symbol error rate be small, i.e.

1 n

P Xj Yj ε . (5.14)
n j
∑
=1

Notice that if we define the Hamming distance

[

as

≠ ] ≤

n

d (xnH , yn 1 xj yj
j 1

then indeed (5.14) corresponds to requiring

) ≜∑
=

{ ≠ }

E[dH(Xn, Y n nε .

Before showing our main result, we show that Fano’s

)] ≤

inequality Theorem 5.3 can be tensorized:

Proposition 5.1. Let Xk take values on a finite alphabet X . Then

H(Xn∣Y n

where
1

) ≤ nF∣X ∣(1 − δ) , (5.15)

δ =
n
E[dH(Xn, Y n)] =

1 n

P Xj Yj .
n j 1

ˆProof. For each j

∑
=

[ ≠

∈ [n] consider X

]

j(Y
n

H X

)

j

= Yj . Then from (5.6) we get

( ∣Y n) ≤ FM(P[Xj = Yj) , (5.16)
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where we denoted M = ∣X ∣. Then, upper-bounding joint entropy by the sum of marginals, cf. (1.1),
and combining with (5.16) we get

H(
n

Xn∣Y n) ≤
j
∑
=
H

1

(Xj ∣Y
n) (5.17)

≤
j

nF

∑
n

P
=
FM

1

( [Xj = Yj]) (5.18)

≤ M(
1

n

n

∑
j=1

P[Xj = Yj]) . (5.19)

where in the last step we used concavity of FM and Jensen’s inequality. Noticing that

1
P

j
∑
n

n =1

[Xj = Yj] = 1 − δ

concludes the proof.

Corollary 5.2. Consider two processes X and Y with entropy rates H

P

(X) and H(Y). If

Xj Yj ε

for every j and if X takes values on a finite

[

alphab

≠

et

] ≤

of size M , then

H

If both processes have alphabets of size

(X) −H Y

M then

( ) ≤ FM(1 − ε) .

H X H Y ε logM h ε 0 as ε 0

Proof. There is almost nothing

∣ ( )

to

−

pr

(

ov

)∣

e:

≤ + ( )→ →

H

and apply (5.15). For the last

(Xn) ≤H(Xn, Y n) =H(Y n) +H(Xn∣Y n

statement just recall the expression for

)

FM .

5.7 Mutual information rate

Definition 5.2 (Mutual information rate).

I(X;Y) =
1

lim
n→∞

I(Xn;Y n

n

provided the limit exists.

)

Example: Gaussian processes. Consider X,N two stationary Gaussian processes, independent of
each other. Assume that their auto-covariance functions are absolutely summable and thus there
exist continuous power spectral density functions fX and fN . Without loss of generality, assume all
means are zero. Let cX(k) = E [

( ) = ∑∞
X1Xk+1]

( )

. Then fX is the Fourier transform of the auto-covariance
function cX , i.e., fX ω k=−∞ cX k eiωk. Finally, assume fN ≥ δ 0. Then recall from Lecture 2:

1
I(Xn;Xn +Nn

>

) =
2

log
det(ΣXn +ΣNn)

det ΣNn

=
1 1

log
i
∑
n

2 =
σi

1

−
2

n

∑
i=1

logλi ,
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where σj , λj are the eigenvalues of the covariance matrices ΣY n ΣXn ΣNn and ΣNn , which are
all Toeplitz matrices, e.g.,

= +

(ΣXn)ij E XiXj cX i j . By Szegö’s theorem (see Section 5.8*):

1

= [ ] = ( − )

n

n

∑
i=1

logσi →
1 2π

log fY ω dω
2π 0

Note that cY (k) = E [(X1 +N1)(Xk+1 +Nk 1

∫ ( )

+ )] = cX(k) + cN(k) and hence fY = fX + fN . Thus, we
have

1

n
I(Xn;Xn +Nn)→ I(X;X +N) =

1

4π
∫

2π

0
log

fX(w) + fN(ω)
dω

fN ω

(Note: maximizing this over fX ω leads to the famous water filling solution

( )

fX
∗ ω T fN ω +.)

5.8* Toeplitz matrices

( )

and Szegö’s theorem

( ) = ∣ − ( )∣

Theorem 5.6 (Szegö). Let f ∶ [0,2π)→ R be the Fourier transform of a summable sequence ak ,
that is

f(ω e ak

{ }

k

∞
ikωak ,

Then for any φ ∶ R→ R continuous on

) =

the

=
∑
−∞

closure of the

∑

range

∣ ∣ <

of

∞

f , we have

1
lim
n→∞ n

n

∑
j=1

φ(σn,j) =
1 2π

φ f ω dω ,
2π 0

where {σn,j , j = 1, . . . , n ar

∫ ( ( ))

} e the eigenvalues of the Toeplitz matrix Tn a n
` m `,m 1.

Proof sketch. The idea is to approximate φ by polynomials, while for

=

p

{

olynomials

− } =

the statement
can be checked directly. An alternative interpretation of the strategy is the following: Roughly
speaking we want to show that the empirical distribution of the eigenvalues 1 n

j 1 δσn,j convergesn
weakly to the distribution of f W , where W is uniformly distributed on 0,2π . To this end, let
us check that all moments converge.

( )

Usually this does not imply weak conve

∑
[

rgenc
]

e,

=

but in this case
an argument can be made.

For example, for φ(x) = x2 we have

1

n

n

∑
j=1

σ2
n,j =

1

n
trT 2

n

=
1

T
`,m

∑
n

n =1

( n)`,m(Tn)m,`

=
1

n
∑
`,m

a`−mam−`

=
1 n 1

n ` a`a `

=

n `

∑
−

=−n−1

( − ∣ ∣) −

x∈(−1

∑
,1)∩ 1

n
Z
(1 − ∣x∣)anxa−nx ,

Substituting a` =
1

2π ∫
2π

0 f(ω)eiω` we get

1

n

n

∑
j=1

σ2
n,j =

1

(2π)2 ∬ f(ω)f(ω′)θn(ω − ω
′) , (5.20)
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where
θn(u) = ∑

x∈(−1,1)∩ 1

1 x e

n
Z

−inux

is a Fejer kernel and converges to a δ-function: θ

( − ∣ ∣)

n u 2πδ u (in the sense of convergence of
Schwartz distributions). Thus from (5.20) we get

( ) → ( )

1

n

n

∑
j=1

σ2
n,j →

1

(2π)2 ∬ f(ω)f(ω′)2πδ(ω − ω′)dωdω′ =
1

2π
∫

2π

0
f2(ω)dω

as claimed.
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