
§ 28. Random number generators

Let’s play the following game: Given a stream of Bern p bits, with unknown p, we want to turn
them into pure random bits, i.e., independent fair coin flips Bern 1 2 . Our goal is to find a universal
way to extract the most number of bits.

()

In 1951 von Neumann proposed the following scheme: Divide

(/)

the stream into pairs of bits,
output 0 if 10, output 1 if 01, otherwise

=

do
−

nothing and move to the next pair. Since both 01 and
10 occur with probability pq (where q 1 p), regardless of the value of p, we obtain fair coin flips
at the output. To measure the efficiency of von Neumann’s scheme, note that, on average, we have
2n bits in and 2pqn bits out. So the efficiency (rate) is pq. The question is: Can we do better?

Several variations:

1. Universal v.s. non-universal: know the source distribution or not.

2. Exact v.s. approximately fair coin flips: in terms of total variation or Kullback-Leibler
divergence

We only focus on the universal generation of exactly fair coins.

28.1 Setup

Recall from Lecture 6 that {0,1}∗ = ∪k≥0{

∅

0,1
denotes

}k = {∅,0,1,00,01, . . . denotes the set of all finite-
length binary strings, where the empty string. For any x

}

0,1 ∗, let l x denote the
length of x.

Let’s first introduce the definition of random numb
∈

er generator formally

∈ { }

. If the

(

input

)

vector is
Xn, denote the output (variable-length) vector by Y {0,1}∗. Then the desired property of Y is
the following: Conditioned on the length

∶

of

{

Y

}

being

→ {

k, Y {

}

is uniformly distributed on 0,1

Definition

}k.

28.1 (Extractor). We say Ψ 0,1 ∗ 0,1 ∗ an extractor if

1. Ψ(x

i.i.d.
2.

) is a prefix of Ψ y if x is a prefix of y.

F
(

or
(

any
))

n
=

and any p

()

∈ (0,1), if Xn Bern p , then Ψ Xn Bern 1 2 k conditioned on
l Ψ Xn k.

∼ () () ∼ (/)

The rate of Ψ is
E l Ψ Xn

rΨ(p) = lim sup
n→∞

[(())] i.i.d.
, Xn

n
∼ Bern(p).

Note
()

that the von Neumann (

() =

scheme above defines a valid extractor Ψ (with Ψ x2n 1
vN vN

ΨvN x2n), whose rate is rvN p pq.

+) =

285

28.2 Converse

No extractor has a rate higher than the binary entropy function. The proof is simply data processing
inequality for entropy and the converse holds even if the extractor is allowed to be non-universal
(depending on p).

Theorem 28.1. For any extractor Ψ and any p

) ≥
1

r

∈ (0,1),

Ψ(p h(p) = p log2 p
+ q log2

1
.
q

Proof. Let L = Ψ(Xn). Then

nh p H Xn

where the step follows
on L k.

() = () X

fr

≥H(Ψ(n H

om the assumption

)) = (Ψ(Xn)∣L) +H

on Ψ that Ψ

(L

X

)

n

≥H

is

(Ψ(Xn = E [L] bits,

() uniform

)∣L

o

)

ver {0,1}
=

k conditioned

The rate of von Neumann extractor and the entropy bound are plotted below. Next we present
two extractors, due to Elias [Eli72] and Peres [Per92] respectively, that attain the binary entropy
function. (More precisely, both ideas construct a sequence of extractors whose rate approaches the
entropy bound).

0 1
2

1
p

rate

1 bit

rvN

28.3 Elias’ construction of RNG from lossless compressors

The intuition behind Elias’ scheme is the following:

1. For iid Xn, the probability of each string only depends its type, i.e., the number of 1’s.
Therefore conditioned on the number of ones, Xn is uniformly distributed (over the type class).
This observation holds universally for any p.

2. Given a uniformly distributed random variable on some finite set, we can easily turn it
into variable-length
1 ,

{ }

↦ ∅ 2↦ 0 and 3

Lemma 28.1. Given U
conditioned on l f U

↦

fair coin flips. For example, if U is uniform over 1,2,3 , we can map
1.

[] ∶ [] → { }∗

(()) =

uniformly
()

distributed on
{

M , there exists f M 0,1 such that
k, f U is uniformly over 0,1}k. Moreover,

log2M − 4 ≤ E[l(f(U))] ≤ log2M bits.

286

Proof. We defined f by partitioning M into subsets whose cardinalities are powers of two, and
assign elements in each subset to binary
of M by M n 2ii 0mi , where the most

[

strings
]

of that length. Formally, denote the binary expansion
significant bit mn 1 and n log2M 1. Those non-zero

m a partition M t ij ij
i’s defines j 0Mj , where Mi 2 . Map the elements of Mj to 0,1 .

To prove

=

the

∑ =

bound

= = ⌊ ⌋+

argument log2M H

[

on
]

the
U

=

H

∪

=

exp
=

ected length,
∣ ∣

the
= { }

)) ≥ H(f(U
follows from

1

() ≥ (f(U)∣ (

upp
(

er bound follows from
l f U))) = E[l(

y
f(U))]

the same entrop
, and the lower bound

E[l(f(U))] =
M

n

∑
i=0

mi2
i ⋅ i = n −

1

M

n

∑
i=0

mi2
i(n − i) ≥ n −

2n

M

n

∑
i=0

2i−n(n − i) ≥ n −
2n+1

n
M

≥ − 4,

where the last step follows from n ≤ log2M + 1.

Elias’ extrac
=

tor. Let w xn define the Hamming weight (number of ones) of a binary
Tk {xn

()

∈ {0, 1}n ∶ w(xn) = k} define the Hamming sphere of radius k. For each 0 k
the function f from Lemma 28.1 to each Tk. This defines a mapping ΨE 0, 1 n 0,
we extend it to ΨE 0, 1 n 0, 1 by applying the mapping per n-bit block and

≤

discard

≤

string. Let

∶ ∗

incomplete

}

, w

block. Then
{

it

{ } → {

n e apply

∶ }

is
→

clear
{ }∗

1 and then
the last

that the rate is given by 1
nE l Ψ n

E X . By Lemma 28.1, we
have

n
E log 4

[()()]

(
w(Xn)

) − ≤ E l

Using Stirling’s expansion (see, e.g., [Ash65,

[

Lemma

(Ψ (
n

E)(X
n)] ≤ E log

w(Xn

4.7.1]), we have 2nh

)
)

(p)
√

8npq
≤ (n

k
) ≤ 2nh(p)√

=

where
πnpq

p 1 − q = k/
2

n ∈ (

()

0,1) and [()()] = () + ()

→∞

hence E l ΨE Xn nh p O logn . Therefore the extraction rate
approaches h p as n .

28.4 Peres’ iterated von Neumann’s scheme

Main idea: Recycle the bits thrown away in von Neumann’s scheme and iterate. What did von
Neumann’s extractor discard: (a) bits from equal pairs. (b) location of the distinct pairs. To achieve
the entropy bound, we need to extract the

=

randomness
(())

out of these two parts as well.
First some notations: Given x2n, let k l Ψ 2n

vN x denote the number of consecutive distinct
bit-pairs.

• Let 1

• Let 1

≤m1 < . . . <mk ≤ n denote the locations such that x2mj x2mj 1.

≤ i1 < . . . < in−k ≤ n denote the locations such that x2ij

≠ −

• yj x2mj , vj x2ij , uj x2j x2j

= x2ij−1.

Here yk are

=

the bits

=

that von

=

Neumann

⊕

’s

+1.

scheme outputs and both vn k and un are discarded. Note
that un is important because it encodes the location of the yk and

−

contains a lot of information.
Therefore

−
von Neumann’s scheme can be improved if we can extract the randomness out of both

vn k and un.
Peres’ extractor: For each t

• Set Ψ1 to be von Neumann’s

∈ N, recursively define an extractor Ψt as follows:

extractor Ψ , i.e., Ψ (x2n+1) = Ψ (x2n) = ykvN 1 1 .

• Define Ψt by Ψt(x
2n) = Ψt(x

2n+1) = (Ψ1(x
2n),Ψt−1(u

n),Ψt−1(v
n−k)).

287

Example: Input x = 100111010011 of length 2n =

(

12. Output recursively:

011)(110100)(101)

(1)(010)(10)(0)

(1)(0

Note that the bits that enter into the iteration are longer iid. To compute the rate of Ψt, it
is convenient to introduce the notion of exchangeabilit

)

y. We say Xn are exchangeable if the joint
distribution

[]

is invariant under permutation, that is, PX1,...,Xn = PXπ(1),...,Xπ(n) for any permutation π
on n . In particular, if Xi’s are binary, then Xn are exc

= (

hangeable
())

if and only if the joint distribution
only depends on the Hamming weight, i.e., PXn=xn p w xn . Examples: Xn is iid Bern p ; Xn

is uniform over the Hamming sphere Tk.

Lemma 28.2

=

(Ψt preserves exchangebility). Let X2n be exchangeable and L Ψ

()

1 X2n . Then con-
i.i.d.

ditioned on L k, Y k, Un and V n−k are independent and exchangeable. Furthermor

= (

e, Y k

)

∼ Bern(1
2

and Un is uniform over Tk.

Pr
[

oof.
=

If suffices
=

to sho
−

w that y, y 0, 1 k, u, u Tk and v, v 0, 1 n k such that w v w v

)

,
P Y k y,U

(

n u,V n

−
k = v L

∀ ′ ∈ { } ′ ∈ ′ ∈ { } −

∣ = k] = P[′∣
)

Y k = y′, Un = u′, V n−k = v L k . Note that X2n and

′

the triple Y k, Un, V n k are in one-to-one correspondence of each other (to reconstruct

() =

X

(

2n

)

,
simply read the k distinct pairs from Y and fill them according to the

=

lo

]

cations ones in U and
fill the remaining equal pairs from V). Finally, note that u,
input strings x and x of identical Hamming weight (w x

′ ′ ′

probability due to the exc

′

hangeability of X2n. [Examples:
y, u, v 11,1010,10 x 01110100 .]

(

y,
)

u,
=

y, v and
(

y
)

, u , v ond to two

(

2
)

k +
corresp

= (

2w v) and hence of identical

() = ()⇒ ′ = ()

v 01, 1100, 01 x 10010011 ,

Computing the marginals, we conclude that both Y k and Un are uniform o

)

ver

⇒

their

= (

respectiv

)

e
support set.1

Lemma 28.3
((

(Ψ is
))

an
=

extractor). Let X2n n
t be exchangeable. Then Ψ 2 i.i.d.

t X Bern 1 2 condi-
tioned on l Ψt X

2n m.

Proof. Note that Ψ (X2n 0,1 . It is equivalent to show that for all

(

[

s

) ∼ (/

t) ∈ { } m 0,1 m,

)

P Ψt(X

∗

2n) = sm] =

=

2 mP l Ψ n
t X

2 m .

∈ { }

Proceed by induction on t. The base case of t 1

−

follows from Lemma 28.2 (the distribution of the
Y part). Assume Ψt−1 is an

=

extractor. Recall that

[

Ψ

(()) =]

+ + ⊥⊥
t X

2n Ψ n n k
1 X2n ,Ψt 1 U ,Ψt 1 V

and write the

[

length

()

as

=

L

]

L1 L2 L3, where L2 L3 L1 by Lemma 28.2. Then
− − −

P Ψt X
2n sm

() = (() () ())

∣

= ∑
m

P m

=
[Ψt(X

2n) = s ∣L1 k P L1 k
k 0

m−k
Lemma

=
m

28.2
∑ ∑ P[L = k Y

=] [=]

]P[k = sk∣L = k]P[Ψ − (Un) = sk 1
k

+r

=
1

0 r=
1 t 1 k

0
+ ∣L1 = k]P[Ψt−1

m m k
induction

(V n−k) = smk+r+1∣L1 = k]

= ∑ ∑
−

P −

= =
[L1 = k]2

k2−rP[L2 = r∣L
m−k

1 = k]2
−(−r)P[L3 =m − k − r∣L1

0 r 0

.

= k]

=

k

2−mP[L =m]
1If X2n is iid Bern(p), then V n−k is iid Bern(p2/(p2 + q2)), since L ∼ Binom(n, 2pq) and P[Y k = y,Un = u,V n−k =

v∣L = k] = 2−k ⋅ (n
k
)−1 ⋅ (p2

p2+q2
)m(q2 n

2+ 2) −k−m, where m = w(v). In general we cannot say much more than the fact
p q

that V n−k is exchangeable.

288

i.i.d.
Next we compute the rate of Ψt. Let X2n ∼ Bern(p). Then by SLLN, 1

2n l(Ψ1(X
2n)) ≜ Ln

2n

converges a.s. to pq. Assume that 1
2n l(Ψt−1(X

2n))
a.s.
ÐÐ→rt−1(p). Then

1 L
l

2n
(Ψt−1(X

2n)) =
n

2n
+

1

2n
l(Ψt−1(U

n)) +
1

2n
l(Ψt−1(V

n−Ln)).

Note that Un
i.i.d.
∼ Bern(2pq), V n−Ln ∣Ln

i.i.d.
∼ Bern(p2/(p2 + q2)) and Ln

a.s.
ÐÐ→∞. Then the induction

hypothesis implies that 1 Ð
a

l2n (Ψt−1(U
n)) Ð

.s
→
.
rt−1(2pq) and 1

2(n−Ln) l(Ψt−1(V
n−Ln))

a.s.
ÐÐ→rt−1(p

2/(p2 +

q2)). We obtain the recursion:

rt(p) = pq +
1

2
rt−1(2pq) +

p2 + q2

2
rt−1 (

p2

Trt 1 p , (28.1)
p2 q2 −

where the

+

another.

) ≜ (

≤

operator T maps a continuous function on [0,1] to Note

)()

that f g pointwise
then Tf Tg. Then it can be shown that rt converges monotonically from below to the fixed-point
of T

=

, which turns out to be exactly the binary entropy function

∼ (

h. Instead of directly

≤

verifying
i.i.d.

Th

(

h

⊕

, next we give a simple proof: Consider X1,X2 Bern p . Then 2h p H X1,X2

H X1 X2,X1) =H(X1 ⊕X2) +H(X1∣X1 ⊕X2) = h(p
2

) () = () =

+ q2) + 2pqh(1
2) + (p2 + q2)h(p2

p2+q2).
The convergence of rt to h are shown in Fig. 28.1.

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Figure 28.1: Rate function rt for t = 1,4,10 versus the binary entropy function.

28.5 Bernoulli factory

Given a stream of Bern(p) bits
((

with
))

unknown p, for what kind of function f 0,1 0,1 can
we simulate iid bits from Bern f p . Our discussion above deals with f p

∶ [] → []

() ≡ 1 . The most famous2
example is whether we can simulate Bern 2p from Bern p , i.e., f p 2p 1. Keane and O’Brien
[KO94] showed that all f that
away from 0 or 1”: for all 0 p

() () () = ∧

doubling the bias is impossible.
The above result deals with

<

w

<

can be sim ts
1, min{f(

ulated are either constan or “polynomially bounded
p 1 f p p,1 p n

h

), for some n 1. In particular,

at f(p) can be sim

−

ulated

()} ≥

in

{

pri

−

nciple.

}

What type

≥

of computational
devices are needed for such as task? Note that since r1 p is quadratic in p, all rate functions rt
that arise from the iteration (28.1) are rational functions (ratios of polynomials), converging to
the binary

<

entropy function as Fig. 28.1 shows. It turns

(

out

)

< (

that for any rational function f that
satisfies 0 f 1 on 0,1), we can generate independent Bern(f(p)) from Bern(p) using either of
the following schemes [MP05]:

289

1. Finite-state machine (FSM): initial state (red), intermediate states (white) and final states
(blue, output 0 or 1 then reset to initial state).

2. Block simulation: let A k
0,A1 be disjoint subsets of {0, 1} . For each k-bit segment, output 0 if

falling in A0 or 1 if falling in A1. If neither, discard and move to the next segment. The block
size is at most the degree of the denominator polynomial of f .

The next table gives examples of these two realizations:

Goal Block simulation FSM

f(p) = 1/2 A0 = 10;A1 = 01

1

0

0

1

1

0

01

f(p) = 2pq A0 = 00,11;A1 = 01,10 0 1

0

1

0
1

0
1

pf(p) =
3

p3+q3 A0 = 000;A1 = 111

0

1

0

1

0

1

1

0

0

1

1

0

Exercise: How to generate f(p) = 1/3?
It turns out that the only

()

t
=

yp
√
e of f that can be simulated using either FSM or block simulation

is rational function. For f p p, which satisfies Keane-O’Brien’s characterization, it cannot be
simulated by FSM or block simulation, but it can be simulated by pushdown automata (PDA),
which are FSM operating with a stack [MP05].

What is the optimal
h

entropy bound
(p)

Bernoulli factory with the best rate is unclear. Clearly, a converse is the

eh(bf(p)) , which can trivial (bigger than one).

28.6 Related problems

28.6.1 Generate samples from a given distribution

The problem of how to turn pure bits into samples of a given distribution P is in a way the opposite
direction of what we have been considering so far. This can be done via Knuth-Yao’s tree algorithm:

290

Starting at the root, flip a fair coin for each edge and move down the tree until reaching a leaf node
and

(

outputting
) ≤ [] ≤

th
(

e sym
) +

bol. Let L denote the number of flips, which is a random variable. Then
H P E L H P 2bits.

Examples:

• To generate P = [1/2,1/4,1/4] on {a, b, c}, use the finite tree: E[L] = 1.5.

a

0

b

1

c

1

1

• To generate P = [1/3,2/3] on {a, b} (note that 2/3 =

[] =

0.1010 . . . ,1/3 = 0.0101 . . .), use the
infinite tree: E L 2 (geometric distribution)

a

0

b

0

a

0

⋮

1

1

1

28.6.2 Approximate random number generator

The goal is to design f ∶ X n → {0,1}k s.t. f(Xn

distances (TV or KL). One formulation is that D
) is
(

close to fair coin flips in distribution in certain
Pf(Xn)∥Uniform) = o(k

less
).

Intuitions: The connection to loss data compression is as follows: A good compressor
squeezes out all the redundancy of the source. Therefore its output should be close to pure bits,
otherwise we can compress it furthermore. So good lossless compressors should act like good
approximate random number generators.

291

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

