
§ 26. Multiple-access channel

26.1 Problem motivation and main results

Note: In network community, people are mostly interested in channel access control mechanisms
that help to detect or avoid data packet collisions so that the channel is shared among multiple
users.

The famous ALOHA protocal achieves

∑Ri
i

where C is the (single-user) capacity of the channel.

≈ 0.37C

1

In information theory community, the goal is to achieve

Ri C
i

The key to achieve this is to use coding so that

∑

collisions

>

are resolvable.
In the following discussion we shall focus on the case with two users. This is without loss of

much generality, as all the results can easily be extended to N users.

Definition 26.1.

• Multiple-access channel: P n n n
Y n An,Bn , n 1,2, . . . .

• a (n,M1,M2, ε

{ ∣ ∶ A × B → Y = }

) code is specified by

f1 ∶ [M
n n

∶ Y →

1

n

] ,

g

→ A f2 ∶ [M2]→ B

[M1] × [M2]

1Note that there is a lot of research about how to achieve even these 37%. Indeed, ALOHA in a nutshell simply
postulates that everytime a user has a packet to transmit, he should attempt transmission in each time slot with
probability p, independently. The optimal setting of p is the inverse of the number of actively trying users. Thus, it is
non-trivial how to learn the dynamically changing number of active users without requiring a central authority. This
is how ideas such as exponential backoff etc arise.
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W1,W2 ∼ uniform, and the codes achieves

P[{W1 ≠ ˆ ˆW1}⋃{W2 ≠W2

• Fundamental limit of capacity region

}] ≤ ε

R∗(n, ε) = {(R ,R ) ∶ ∃ a (n,2nR1
1 2 ,2nR2 , ε) code

• Asymptotics:

}

Cε = [ lim inf
n

R∗

closure

→
n,

denotes

∞
( ε

where [⋅] the of a set.

)]

Note: lim inf and lim sup of a sequence of sets {An :

lim inf An = {ω ∶ ω ∈ An,
n

}

∀n ≥ n0

lim supAn
n

}

= {ω

•

∶ ω infinitely occur}

lim ε ε
ε 0

Theorem 26.1 (Capacity region).

C = C = ⋂
>
C

Cε =co
PA

⋃ Penta
,PB

(PA, PB) (26.1)

=[
=
⋃ Penta PA U , PB U PU (26.2)

PU,A,B PUPA∣UPB∣U

( ∣ ∣

where

∣ )]

(

co
⋅ ⋅)

is the set operator of constructing the convex hull followed by taking the closure, and
Penta , is defined as follows:

Penta PA, PB

⎧⎪⎪⎪
R1,R2

≤ ≤ ( ∣ ) ⎪⎫

( ) =
⎪⎪
⎨( ) ∶

0 R I A;Y B

⎩

0 ≤
1

R2 ≤ I(
⎪

B;Y A
R1 +R2 ≤ I(A,B

∣

;Y
)

⎪⎪
⎬

)
⎪

Penta

⎪⎪⎭

(PA∣U , PB∣U ∣PU) ⎨

⎧⎪⎪⎪
B

0
≤

= ( ≤

U
R1,R2) ∶

0 R1

R2

≤

≤

I A;Y ,
I

R

( ∣

U

) ⎫

(B;Y ∣A,U

1 R2 I A,B;Y

⎪
) ⎬

⎪⎪

Note: the two forms in

⎪⎪⎩
⎪

(

(26.1
) ≤

) and (26.2)
(

are
) ≤

equivalent without

+ ≤

cost

(

constrain

∣ )

ts.

⎪⎪⎭
⎪

In the case when
constraints such as Ec1 A P1 and Ec2 B P2 are present, only the second expression yields the
true capacity region.
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26.2 MAC achievability bound

First, we introduce

∀

a lemma which will be used in the proof of Theorem 26.1.

Lemma 26.1.
(

PA, PB
)

, PY ∣A,B such that PA,B,Y = PAPBPY ∣A,B, and ∀γ1, γ2, γ12 > 0, ∀M1,M2,
there exists a M1,M2, ε MAC code such that:

ε ≤P[{i12(A,B;Y ) ≤ log γ

−
12}⋃{i1(A;Y ∣B) ≤ log γ

−
1}⋃{i2(B;Y ∣A) ≤ log γ

−
2

+ (M − 1)(M − 1)e γ12 + (M − 1)e γ1 + (M − 1)e γ2
1 2 1 2

}]

(26.3)

Proof. We again use the idea of random coding.
Generate the codebooks

c1, . . . , cM1 ∈ A, d1, . . . , dM2

where the codes are drawn i.i.d from distributions: c1, . . . , cM1

∈ B

′
∼ i.i.d. PA, d1, . . . , dM2 i.i.d. PB.

The decoder operates in the following way: report (m,m ) if it is the unique pair that
∼

satisfies:

(P12)

(

i12 cm, dm ; y

P1)

log γ12

i1

( ′ ) >

(cm; y∣dm′) > log γ1

P2 i2 dm′ ; y cm log γ2

Evaluate the expected error probabilit

( )

y:

( ∣ ) >

EP (cM1 M
e 1 , d 2

1 ) = P[{(W1,W2) violate (P12

impostor W1,W2

) or (P1) or (P2)}

′ ′ that satisfy P12 and P1 and P2

by symmetry of random co

⋃

des,

{∃

we have

( ) ( ) ( ) ( )}]

Pe = E[Pe∣W1 =m,W2 =m
′] = P[{(m,m′) violate (P12) or (P1) or (P2)}

⋃{∃ impostor (i ≠m,j ≠m′) that satisfy (P12) and (P1) and (P2)}]

⇒ Pe ≤ P[{i12(A,B;Y ) ≤ log γ12}⋃{i1(A;Y ∣B) ≤ log γ1}⋃{i2(B;Y ∣A) ≤ log γ2}] + P[E12] + P[E1] + P[E2]
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where

P[E12] = P[{∃(i ≠m,j ≠m′) s.t. i12(

≤ ( − )( − ) [ (

cm, dm′ ; y

M1 1 M2 1

) > log γ12

P i12

}]

A,

=

B;Y ) > log γ12

E

]

[e i12 A,B;Y

≤ −
1 i12 A,B;Y log γ12

γ12

− ( )

P

{ ( ) > }]

[ ]

e

E2 = P[{∃(j
M

≠ ′) ( ∣ ) > }]

≤ ( 2 − 1)

m s.t. i2 dj ; y ci log γ2

P[i2(

=

B;Y A log γ

e−
2

E [ i2(B;Y
A

∣A)
∣ ) >

≤

1{i2(B;Y ∣

[ − ∣ ] = −
A log

γ

]

A

EA e 2 A

) > γ2

e γ2

similarly P

}∣ ]

[E1] ≤ e
−γ1

Note: [Intuition] Consider the decoding step when a random codebook is used. We observe Y
and need to solve an M -ary hypothesis testing problem: Which of PY A cm,B dm

duced the sample Y ?
′ m,m

pro
′ M1 M2

Recall that in P2P channel coding, we had a similar problem and

{

the

∣

M-ary

= =

hyp

}

othesis

∈[

testing

]×[ ]

problem was converted to M binary testing problems:

PY ∣ =
1

X cj vs PY−j ≜∑
i≠j

PY X
1

∣ =ci PY
M

I.e. distinguish cj (hypothesis H0) against the average

−

distribution

≈

induced by all other codewords
(hyp

=

othesis
○

H1), which for a random coding ensemble cj PX is very well approximated by
PY PY ∣X PX . The optimal test for this problem is roughly

∼

PY ∣X=c
PY

≳ log(M − 1) Ô⇒ decide PY ∣X=cj (26.4)

since the prior for H0 is 1
M , while the prior for H1 is M−1 .M

The proof above followed the same idea except that this time because of the two-dimensional
grid structure:
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there are in fact binary HT of three kinds

(P12) ∼ test PY ∣A=cm,B=
1

dm′
vs

(M1 − 1)(M2 − 1)
∑
i≠m

∑
j≠m′

PY ∣A=ci,B=dj ≈ PY

(P1) ∼ test PY ∣A=cm,B=dm′
vs

1

−
∑ PY ∣A= ′

≈ PY ∣
≠

ci,B=dm B d
M1 1 i m

= m′

(P2) ∼
1

test PY ∣A=cm,B=dm′
vs P

′
Y c

2 1
=c

M m

j
∣A

m
= m,B=dj PY ∣A

And analogously to (26.4) the optimal tests are

−

giv

∑
≠

en by comparing

≈

the respective information
densities with logM1M2, logM1 and logM2.

Another observation following from the proof is that the following decoder would also achieve
exactly the same performance:

• Step 1: rule out all cells i, j with i12 ci, dj ;Y logM1M2.

• Step 2: If the messages remaining

( )

are

(

NOT all

)

in

≲

one row or one column, then FAIL.

• ˆStep 3a: If the messages remaining are all in one column m′ then declare W2 =m
′

( ∣ ) ≲

. Rule out
all entries in that column with i1 ci;Y dm′ logM1. If more than one entry remains, FAIL.

ˆOtherwise declare the unique remaining entry m as W1 m.

• Step 3b: Similarly with column replaced by row, i1 with

=

i2 and logM1 with logM2.

The importance of this observation is that in the regime when RHS of (26.3) is small, the
decoder always finds it possible to basically decode one message, “subtract” its influence and then
decode the other

(

message.
)

Whic
C

h of the possibilities 3a/3b appears more often depends on the
operating point R1,R2 inside .

26.3 MAC capacity region proof

Proof. 1. Show

Take 1,R2

C

(R ) ∈

is

C

convex.

ε/2, and take (R1
′

( / )

,R2

We merge the n,2nR1 ,2nR2 , ε 2 code

′

way: in the c

)

an
sharing first n hannels, use

∈ Cε/2.

d the (n,2nR1 ,2nR2 , ε/2) code in the following time-
the first set of codes, and in the last n channels, use

the second set of codes.
Thus we formed a new (2n,2R1+R1

′

,2R2+R2
′

, ε) code, we know that

1

2
Cε/2 +

1
ε

2
C /2 ⊂ Cε

take limit at both sides
1

2
C +

1

2
C ⊂ C

also we know that C ⊂ 1
2C +

1 ,2C therefore C = 1
2C +

1 is2C convex.

Note: the set addition is defined in the following way:

A + B ≜ {(a + b) ∶ a ∈ A, b ∈ B}
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2. Achievability

STP: ∀PA, PB,∀(R1,R2) ∈ Penta(PA, PB),

Apply Lemma 26.1 with:

∃(n,2nR1 ,2nR2 , ε)code.

PA → PnA, PB → Pn n

= =

B, PY ∣A,B → PY ∣A,B

M1 2nR1 , M2 2nR2 ,

log γ12 n I A,B;Y δ , log γ1 n I A;Y B δ , log γ2 n I B;Y A δ .

we have that

=

there

( (

exists a

) − )

(M1,M2, ε

= ( ( ∣ ) − ) = ( ( ∣ ) − )

) code with

ε ≤P[{
1

n

n

∑
k=1

i12(Ak,Bk;Yk) ≤ log γ12 − δ}⋃{
1

n

n

∑
k=1

i1(Ak;Yk∣Bk) ≤ log γ1 − δ}

⋃{
1
∑
n

i (B ;Y ∣A ) ≤ log γ − δ}]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2
k=

k k k
n 1

2nR

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

nR2

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

e

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2

γ12

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2nR

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
○
¸
1

1 1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

e

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

γ1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2nR

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

2

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

1 e

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

γ2

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

+ ( − )( − ) − + (

2

− ) − + − ) −

○

(

by WLLN,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

< (

the first
∣ ) −

part goes to
+

zero,
<

and
(

for an

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

y

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

R

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

,

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

) −
1 R2 such that R1 I A;Y B δ

and R2 I B
(

;Y A
) ∈

δ and R1 R2 I A,B;Y δ, the second part goes to zero as well.
Therefore, if R1,R2 interior of the Penta, there exists

(

a

)

(M1,M2, ε

< ( ∣ ) −

= o(1)) code.

3. Weak converse

1
Q[W1 = Ŵ1,W2 = Ŵ2] = P ˆ ˆ, W1 W1,W2 W2 1 ε

M1M2

d-proc:

[ = = ] ≥ −

d(1 − ε∥
1

M1M2
) ≤ inf

Q∈(∗)
D(P ∥Q) = I(An,Bn;Y n)

⇒R1 +R2 ≤
1
I

n
(An,Bn;Y n) + o(1)
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To get separate bounds, we apply the same trick to evaluate the information flow from the
link between A→ Y and B → Y separately:

Q1[W2 = Ŵ2] =
1

M2
, P[W2 = Ŵ2] ≥ 1 − ε

d-proc:

d(1 − ε∥
1

inf D P Q I Bn;Y n An1
M2 Q1 1

⇒ ≤
1

R2

) ≤
∈(∗ )

( ∥ ) = ( ∣ )

I
n

(Bn;Y n∣An) + o(1

similarly we can show that

)

R2 ≤
1

n
I(An;Y n∣Bn) + o(1)

For memoryless channels, we know that 1 In (An,Bn;Y n) ≤ 1

→
k I Ak,Bk;Yk . Similarly, sincen

given Bn the channel An Y n is still memoryless we have

n n

∑ ( )

I An;Y n Bn I A n
k;Yk B I Ak;Yk Bk

k 1 k 1

Notice that each (Ai,B

( ∣ ) ≤ ∑
=

( ∣ ) = ∑

i B

=

) pair corresponds to (PAk , P k
), k

( ∣ )

∀ define

0 R1,k I Ak;Yk Bk
Pentak(PAk , PBk (

⎪⎩
⎪
⎨
⎪⎪
⎪⎧

) =
⎪
R1,k,R2,k) ∶ 0

R

≤ ≤ ( ∣ )

≤ R2,k ≤ I(B

1,k

∣ ⎬
⎪⎪
⎪⎫

)

therefore

+R2,k ≤ I(
k;Yk Ak
Ak,Bk;Yk)

⎪⎪⎪⎭

(
1

R1,R2) ∈ [
n
∑
k

Pentak]

⇒C ∈ co
PA

⋃ Penta
,PB
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