§ 24. RATE DISTORTION: ACHIEVABILITY BOUNDS

24.1 Recap

Compute R(D).
Recall from the last lecture:

1
R(D) =limsup —log M*(n,D), (rate distortion function)

n—-oco N

1
R;(D) =limsup —pgn(D), (information rate distortion function)

n—oo N
and
ps(D) = inf  1(5;89)
Pg s E[d(S5,8)]<D
gn(D) = inf I(S™ S™)

Pgn gnE[d(S7,87)]<D

Also, we showed the general converse: For any (M, D)-code X - W — X we have

log M > px (D)
= log M (n,D) > pgsn(D)
= R(D) > R;(D)

In this lecture, we will prove the achievability bound and establish the identity R(D) = R;(D)
for stationary memoryless sources.

First we show that R;(D) can be easily calculated for memoryless source without going through
the multi-letter optimization problem.

Theorem 24.1 (Single-letterization). For stationary memoryless source S™ and separable distortion
d,

Ri(D) = ps(D)

Proof. By definition we have that pgn(D) < npg(D) by choosing a product channel: P*n|5n =
(PS\S)R' Thus R;(D) < ¢s(D).
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For the converse, take any Pg, g, such that the constraint E[d(S™,5™)] < D is satisfied, we have

1(S;,5)) (S™ independent)

M=

I(S™;8™) >
J

3
—_

J

> 1¢s(E[d(5jvgj)])

1& A
2NPg (E Z E[d(S;, Sj)]) (convexity of ¢g)
=1

>nps(D) (¢s non-increasing)

24.2 Shannon’s rate-distortion theorem

Theorem 24.2. Let the source S™ be stationary and memoryless, S”i'i&d'Pg, and suppose that
distortion metric d and the target distortion D satisfy:

1. d(s™,8") is non-negative and separable
2. D> Dy

3. Dmax 18 finite, i.e.
Dinx = nf E[d(S,5)] < oo.

Then

R(D) = Ry(D) = inf 1(S;9). (24.1)
Py ¢E[d(S,5)]<D

Remarks:

e Note that Dyax < 0o does not imply that d(-,-) only takes values in R, i.e. theorem permits
d(a,a) = oo.

e It should be remarked that when Dy,ax = oo typically R(D) = co. Indeed, suppose that d(,-)
is a metric (i.e. finite valued and satisfies triangle inequality). Then, for any xy € A" we have

d(X,X) > d(X,x0) - d(z0, X).
Thus, for any finite codebook {c1,...,cap} we have max; d(xo,c;) < oo and therefore

E[d(X,X)] > E[d(X,z0)] - mjaxd(aco, ¢j) =00,

So that R(D) = oo for any finite D. This observation, however, should not be interpreted as
absolute impossibility of compression for such sources. It is just not possible with fixed-rate
codes. As an example, for quadratic distortion and Cauchy-distributed S, Dyax = oo since S
has infinite second-order moments. But it is easy to see that R;(D) < oo for any D € (0,00). In
fact, in this case R;(D) is a hyperbola-like curve that never touches either axis. A non-trivial
compression can be attained with compressors S™ — W of bounded entropy H (W) (but
unbounded alphabet of ). Indeed if we take W to be a A-quantized version of S and notice
that differential entropy of S is finite, we get from (23.2) that R;(A) < H(W) < co. Interesting
question: Is H(W) =nR;(D) + o(n) attainable?
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e Techniques in proving (24.1) for memoryless sources can be applied to prove it for “stationary
ergodic” sources with changes similar to those we have discussed in channel coding.

Before giving a formal proof, we illustrate the intuition non-rigorously.
24.2.1 Intuition

Try to throw in M points C = {¢1,...,cp} € A" which are drawn i.i.d. according to a product
distribution Qgﬁ where (g is some distribution on A. Examine the simple encoder and decoder pair:

encoder : f(s") =argmind(s",c;) (24.2)
je[M]

decoder : g(j) =¢; (24.3)

The basic idea is the following: Since the codewords are generated independently of the source,
the probability that a given codeword offers good reconstruction is (exponentially) small, say, €.
However, since we have many codewords, the chance that there exists a good one can be of high
probability. More precisely, the probability that no good codeword exist is (1 — €)™, which can be
very close to zero as long as M grows faster than %

To explain the intuition further, let us consider the excess distortion of this code: P[d(S™,S™) >
D]. Define

Psyccess =P[3ceC, s.t. d(S",¢) < D]

Then
Phaiture 2P[Ve¢; € C,d(S",¢) > D] (24.4)
~P[Ve; €C,d(S™,¢) > D|S" €T, ] (24.5)
( T}, is the set of typical strings with empirical distribution Pgn ~ Pg )
=P[d(S",5") > DIS" e T,]"  (Pgu g0 = PEQY) (24.6)
=(1- P[d(S",5")<D|S"eT,] M (24.7)

since S™ 1 8™, this should be small

n(1 -2 E@Qs) )M (large deviation!) (24.8)
where it can be shown (similar to information projection) that

E(Qg) = min D(Pg5|QglPs) (24.9)

Pg sE[d(S,5)]<D

Thus we conclude that VQg,Vd > 0 we can pick M = 27(E(@3)+9) and the above code will have
arbitrarily small excess distortion:

Ptoiture =P[VceC,d(S",c) > D] - 0 as n — oo.
We optimize Q¢ to get the smallest possible M:

min F(Q¢s) = min min D( Pz o||Q | Ps 24.10
Qs (@s) Py g E[d(8,9)]<D Qs (PyslQslFs) ( )

= min  1(S;9)
Pg gE[d(S,8)]<D

= ps(D)
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24.2.2 Proof of Theorem 24.2

Theorem 24.3 (Performance bound of average-distortion codes). Fixz Px and suppose d(x,z) >0
for all z,%. VPy|x, V¥ >0, Vyo € A, there ezists a code X -~ W — X, where W ¢ [M +1] and

E[d(X,X)] <E[d(X,Y)]+E[d(X,y0)]e™ + E[d(X,y0)1(i(x.v)s1ogn ]
d(X,X)<d(X,y0) a.s.

Notes:

e This theorem says that from an arbitrary Py |y such that Ed(X,Y) < D, we can extract a good
code with average distortion D plus some extra terms which will vanish in the asymptotic
regime.

e The proof uses the random coding argument. The role of the deterministic yg is a “fail-safe”

codeword (think of yy as the default reconstruction with Dyax = E[d(X,y)]). We add yo to
the random codebook for damage control, to hedge the (highly unlikely and unlucky) event
that we end up with a horrible codebook.

Proof. Similar to the previous intuitive argument, we apply random coding and generate the
codewords randomly and independently of the source:

C= {Cl, .. .,CM}i'i"vd'Py 1 X

and add the “fail-safe” codeword cps41 = yo. We adopt the same encoder-decoder pair (24.2) — (24.3)
and let X = g(f(X)). Then by definition,

d(X,X)= min d(X,c;)<d(X, o).
( ) ) ]GI[IJEI-EI] ( 7cj)— ( 7y0)

To simplify notation, let Y be an independent copy of Y’ (similar to the idea of introducing unsent
codeword X in channel coding):

P

XYYy ~ Pxy Py

where Py = Py. Recall the formula for computing the expectation of a random variable U € [0, a]:
/0 [U > u]du. Then the average distortion is

Ed(X,X)=E min d(X,c;) (24.11)
je[M+1]

:EXELJ?KH d(X, ¢;)|x] (24.12)
d(vaO)

=Ex '/0 P[]eﬁ\l}&] d(X,cj) > u‘X]du (24.13)
d(vaO)

<Ey fo I:Jrer[l]l\}[l A(X, ¢;) > u[ X |du (24.14)
d(X,yo) _

:EX/O RLAX,Y) > u XM du (24.15)
d(X,yo) _

_Ey fo 1P, Y < ulX])Mdu (24.16)

26(X,u)
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Next we upper bound (1 - 6(X,u)) as follows:

(1-8(X,u)M < ™M 1)1 - ~48(X,u)| (24.17)
= e M 4 |1 = yE[exp{-i(X; V) } 1 {a(x.v )< X[ (24.18)
< e—M/'Y + IP)[’L(X, Y) > ]0g7|X] + P[d(X,Y) > u|X] (2419)

where

e (24.17) uses the following trick in dealing with (1 -6)™ for § < 1 and M > 1. First, recall
the standard rule of thumb:

0, e,n>1
(1-€,)" » "

1, e,n«l1
In order to argue firm bounds of similar flavor, consider

union bound

1-6M < (1-6)M<eM (log(1-6) < -0)
<e MM (yg A1)+ |1 =78 (Vy>0)

<e MM 1 —~8"

e —0M

0 1/y )

upper bound e~%M

Py (y)
Py x (ylz)

e (24.18) is simply change of measure using i(x;y) = log (i.e., conditioning-unconditioning

trick for information density, cf. Proposition 15.1.

o (24.19):

1= yElexp{-i(X;Y )} qx,v)<uy| X ] < 1= vE[exp{-i(X;Y) }1{a(x,v)<ui(X;v)<logy} X ]
< 1-E[1g(x,y)<ui(X;v)<log} 1 X ]
=Pld(X,Y)>uor i(X;Y) >logv|X]
<PA(X,Y) >ulX]+Pli(X;Y) > log~v|X]

Plugging (24.19) into (24.16), we have

E[d(X,X)] <Ex fod(x’yO)(e—M/‘Y +P[i(X;Y) > logy|X] +P[d(X,Y) > u|X])du
<E[d(X, yo)]e_M/'y +E[d(X,y0)P[i(X;Y) >logv|X]] + Ex /Ooo Pld(X,Y) > u|X])du
= E[d(X,y0)]e ™ + E[d(X,%0)1ix v )s10g1] + Ed(X, V)]
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As a side product, we have the following achievability for excess distortion.
Theorem 24.4 (Performance bound of excess-distortion codes). VPy|x, Vv >0, there exists a code
X - W - X, where W € [M] and
P[d(X,X) > D] < e My P{d(X,Y)>D}u{i(X;Y) >log~}]

Proof. Proceed exactly as in the proof of Theorem 24.3, replace (24.11) by P[d(X, X)>D]=P[Vje
[M],d(X,¢;) > D] =Ex[(1-P[d(X,Y) < D|X])™], and continue similarly. O

Finally, we are able to prove Theorem 24.2 rigorously by applying Theorem 24.3 to iid sources
X =5"and n — oo:

Proof of Theorem 24.2. Our goal is the achievability: R(D) < R;(D) = ¢s(D).

WLOG we can assume that Dy.x = E[d(S, 50)] achieved at some fixed §p — this is our default
reconstruction; otherwise just take any other fixed sequence so that the expectation is finite. The
default reconstruction for S™ is 57 = (8o, ...,80) and E[d(S™,5()] = Dmax < oo since the distortion
is separable.

Fix some small 6 > 0. Take any Pg g such that E[d(S,S)] < D -6. Apply Theorem 24.3 to

(X,Y) = (8™, 8") with
PX = PSn
Py|x = Pgngn = (Pé\s)n
log M = n(I(S;S) +26)
logy = n(I1(S;8) +0)
1 & A
d(X,Y)= _Zd(sjasj)
nj:l

an

Yo = Sp
we conclude that there exists a compressor f: A" - [M +1] and g: [M + 1] - A", such that

E[d(S", g(f(S™)))] < E[d(S",$™)] + E[d(S", 5)]e” ™7 + E[d(S", 50)L{i(sm:5m)>1og 1) )

< D=6+ Doy e P L R[d(S™,50)1E, ], (24.20)
-0 -0 (later)
where
N 12 R N
B, = {i(S™;8") > logy} = {— Si(S;585) > 1(S;8) + 5} ML P[E,] -0
n j=1

If we can show the expectation in (24.20) vanishes, then there exists an (n, M , D)-code with:
M =2"US8)2) B op_§40(1)<D.
To summarize, V Pg g such that E[d(S,S)] < D - § we have that:
R(D) <1(S;8)

1)
L R(D) < ps(D-) = ¢ps(D). (continuity, since D > Dy)
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It remains to show the expectation in (24.20) vanishes. This is a simple consequence of the

L
uniform integrability of the sequence {d(S™,3%)}. (Indeed, any sequence V;, = V is uniformly
integrable.) If you do not know what uniform integrability is, here is a self-contained proof.

Lemma 24.1. For any positive random variable U, define g(6) = suppyprp<s E[ULH]. Thent

EU<oo:g(5)ﬂ>0.

Proof. Forany b> 0, E[Uly] <E[Uly.p ]+bd, where E[U1 55y ] Lty by dominated convergence
theorem. Then the proof is completed by setting b =1/ V. O

Now d(S™,35() = % > Uj, where U; are iid copies of U. Since E[U] = Dpax < 00 by assumption,
applying Lemma 24.1 yields E[d(S",5})1E,] = %ZE[UleH] < g(P[E,]) = 0, since P[E,] — 0.
We are done proving the theorem. O

Note: It seems that in Section 24.2.1 and in Theorem 24.2 we applied different relaxations in
showing the lower bound, how come they turn out to yield the same tight asymptotic result?
This is because the key to both proofs is to estimate the exponent (large deviations) of the
underlined probabilities in (24.7) and (24.16), respectively. To get the right exponent, as we know,
the key is to apply tilting (change of measure) to the distribution solving the information projection

problem (24.9). In the case, when Py = (Q¢)" = (Pg)" is chosen as the solution to rate-distortion
i(X;Y).

optimization inf I(S;5), the resulting tilting is precisely given by 2~

24.3* Covering lemma

Goal:
ii.d. ~ P} generated by nature
An
TESTER
Rate R link - (A", B") jointly ~ Pan pn = P} g7
- evaluate f(A™, B™)
B

What’s the minimum rate R needed to fool the tester?
In other words:

n fact, = is <.
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Ay — By Aq

Ay —> Bs Az

An —> Bn

p Q
Approximate P with ) such that for any function f, Vz, we have:
P[f(A" B") <]~ Q[f(A",B") <z], |[W|<2"F,

what is the minimum rate R to achieve this?
Some remarks:

1. The minimal rate will depend (although it is not obvious) on whether the encoder A" — W
knows about the test that the tester is running (or equivalently whether he knows the function

2. If the function is known to be of the form f(A", B") = ¥ fi(Aj;, B;), then evidently the job
of the encoder is the following: For any realization of the sequence A", we need to generate a
sequence B" such that joint composition (empirical distribution) is very close to P4 p.

3. If R=H(A), we can compress A" and send it to “B side”, who can reconstruct A" perfectly
and use that information to produce B" through Ppgn|sn.

4. If R= H(B), “A side” can generate B" according to P} 5 and send that B" sequence to the
“B side”.

5. If A1 B, we know that R =0, as “B side” can generate B™ independently.

Our previous argument turns out to give a sharp answer for the case when encoder is aware of
the tester’s algorithm. Here is a precise result:

Theorem 24.5 (Covering Lemma). VP4 p and R > I(A;B), let C = {c1,...,c;m} where each
codeword cj is i.1.d. drawn from distribution Pg. Ve >0, for M > 2 I(AB)*+€) e have that:

P[3c e C such that pAnyc ~Pypl—1
Stronger form: VF
P[3c: (A", c) e F]>P[(A",B") e F]+ o(1)
——
uniform in F
Proof. Following similar arguments of the proof for Theorem 24.3, we have
P[¥eeC: (A" ) ¢ F] < +P[{(A", B") ¢ F} U {i(A"; B") > log~}]

=P[(A",B") ¢ F]+0(1)
= P[VceC: (A" c)e F]>P[(A",B") e F]+0(1)
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Note: [Intuition] To generate B™, there are around 2" (B) high probability sequences; for each A™
sequence, there are around 27 (Bl4) B" sequences that have the same joint distribution, therefore, it
is sufficient to describe the class of B™ for each A™ sequence, and there are around % = onl(4;B)
classes.

Although Covering Lemma is a powerful tool, it does not imply that the constructed joint
distribution @ 4»pr» can fool any permutation invariant tester. In other words, it is not guaranteed
that

s Qanp(F) = Ph ()] ~0.
FcAnxBn permut.lnvar.

Indeed, a sufficient statistic for a permutation invariant tester is a joint type PAn@. Our code
satisfies pAn,c ~ Py p, but it might happen that JSAn7C although close to P4 p still takes highly
unlikely values (for example, if we restrict all ¢ to have the same composition Py, the tester can
easily detect the problem since Pp-measure of all strings of composition Py cannot exceed O(1/\/n)).
Formally, to fool permutation invariant tester we need to have small total variation between the
distribution on the joint types under P and Q. (It is natural to conjecture that rate R = I(A; B)
should be sufficient to achieve this requirement, though).
A related question is about the minimal possible rate (i.e. cardinality of W e [2"%]) required to
have small total variation:
TV(Qan pn,Pip) <€ (24.21)

Note that condition (24.21) guarantees that any tester (permutation invariant or not) is fooled to
believe he sees the truly iid (A", B™). The minimal required rate turns out to be (Cuff’2012):

R= min I(A,B;U)
A-U-B

a quantity known as Wyner’s common information C'(A;B). Showing that Wyner’s common
information is a lower-bound is not hard. Indeed, since Q a» g» » P}z (in TV) we have

I(QAt’l,Bt’17QAtBt|At’1,Bt’1) N I(PAt’l,Bt’laPAtBt|At’1,Bt’1) =0

(Here one needs to use finiteness of the alphabet of A and B and the bounds relating H(P) - H(Q)
with TV(P,Q)). We have (under Q!)

nR=H(W)>I(A", B";W) (24.22)
> iI(At,Bt;W) — I(Ay, Bi; AV1B) (24.23)
t;l
~ S I(Ag, By W) (24.24)
> :é’(A; B) (24.25)

where in the last step we used the crucial observation that under () there is a Markov chain
At - W d Bt

and that Wyner’s common information P4 g = C(A; B) should be continuous in the total variation
distance on P4 p. Showing achievability is a little more involved.
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