
§ 24. Rate distortion: achievability bounds

24.1 Recap

Compute R(D).
Recall from the last lecture:

R(D) =
1

lim sup
n→∞

logM
n

∗(n,D), (rate distortion function)

Ri(D) =
1

lim sup
n→∞

ϕSn
n

(D , (information rate distortion function)

and

)

ϕS(D

n

) ≜
PŜ∣S ∶E[

ˆinf I
ˆd(S,S)]≤D

(S;S)

( ) =
∶ [ ( )]≤

( n ˆϕS D inf I S ;Sn

P ˆn ∣ nS S E Sn ˆd ,Sn D
)

or ( ˆAlso, we showed the general converse: F any M,D)-code X →W

Ô

log

→X we have

M ≥ ϕX

R

( )

⇒ logM∗(n,D

D Ri D

)

D

≥ (D)

will

Ô⇒

ϕSn

In this lecture, we prove the achiev

(

abilit

) ≥

y

(

bound

)

and establish the identity R D Ri D
for stationary memoryless sources.

First we show that Ri D

( ) = ( )

the multi-letter optimization

Theorem 24.1 (Single-letterization)

( ) can be easily calculated for memoryless source without going through
problem.

. For stationary memoryless source Sn and separable distortion
d,

Ri(D) = ϕS(D

Proof. By definition

)

(PŜ

(

∣S

)

)n. Thus Ri

( ≤ ) =

( )

w

≤

e ha

(

ve

)

that ϕSn D nϕS D by choosing a product channel: PŜn Sn
D ϕS D .

∣
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For the converse, take any PŜn∣Sn such that the constraint E ˆd Sn, Sn D is satisfied, we have

n
ˆ ˆI(Sn;Sn

[ ( ≤

) ≥
j
∑
=
I

1

(Sj , Sj

)]

) (Sn independent)

≥ ˆϕ
j
∑
n

=
S

1

(E[d(Sj , Sj

≥
1

)])

nϕS
⎛

⎝n

n

∑
j=1

E[d(Sj , Ŝj)]
⎞

⎠
(convexity of ϕS)

≥ nϕS(D) (ϕS non-increasing)

24.2 Shannon’s rate-distortion theorem

Theorem 24.2. Let the source Sn
i.i.d.

be stationary and memoryless, Sn PS, and suppose that
distortion metric d and the target distortion D satisfy:

1. d sn, ŝn is non-negative and separable

∼

2. D

( )

>D0

3. Dmax is finite, i.e.
Dmax ≜ inf E

ŝ

Then

[d(S, ŝ)] <∞.

R D Ri D inf
PŜ∣S E ˆd S,S

Remarks:

( ) = ( ) =
∶ [ ( )]≤

ˆI(S;S). (24.1)
D

• Note that Dmax <∞

( ) =∞

does not imply that d(⋅, ⋅) only takes values in R, i.e. theorem permits
d a, â .

• It should be remarked that when Dmax =∞ typically R(D) =∞. Indeed, suppose that d ,
is a metric (i.e. finite valued and satisfies triangle inequality). Then, for any x0

(⋅ ⋅)

∈ An we have

ˆ ˆd X,X d X,x0 d x0,X .

Thus, for any finite codebook c

(

1

)

M

≥ (

{ , . . . , c } we hav

)

e

−

max

(

j d

)

E ˆd X,X E d X,x0 maxd x
j

(x0, cj) <∞ and therefore

[ ( )] ≥ [ ( )] − ( 0, cj) =∞ .

So that R
absolute imp

(D) =∞ for any finite D. This observation, however, should not be interpreted as
ossibility of compression for such sources. It is just not possible with fixed-rate

codes. As an example, for quadratic distortion and Cauchy-distributed S, Dmax since S
has infinite second-order moments. But it is easy to see that Ri D for any D 0, . In
fact, in this case Ri a h ever touc

(

h
) <

(D) is yperbola-like curve that n es either axis. A

=

non-trivial

∞

compression can be attained with compressors Sn W of bounded

∞

entropy H

∈ (

W

∞)

(but
unbounded alphabet of W ). Indeed if we take W to b
that differential entropy of

→

e a ∆-quantized version of S and
( )

notice

question: Is H
( ) ≤ ( ) <∞

(W ) = nRi(
S is finite, we get from (23.2) that Ri ∆ H W . Interesting
D) + o(n) attainable?
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• Techniques in proving (24.1) for memoryless sources can be applied to prove it for “stationary
ergodic” sources with changes similar to those we have discussed in channel coding.

Before giving a formal proof, we illustrate the intuition non-rigorously.

24.2.1 Intuition

ˆTry to throw in M points c1, . . . , c
n

M which are drawn i.i.d. according to a product
Qn ˆdistribution ˆ where Q ˆ is

C

some
= {

distribution
} ∈

on
A

A. Examine the simple encoder and decoder pair:
S S

encoder : f(sn) = argmin
∈[

sn

]
d( , cj

j M
) (24.2)

decoder : g j cj (24.3)

The basic idea is the following: Since the

(

co

) =

dewords are generated independently of the source,
the probability that a given codeword offers good reconstruction is (exponentially) small, say, ε.
However, since we have many codewords, the chance that there exists a good one can be of high
probability. More precisely, the probability that no good codeword exist is (1 − ε)M , which can be
very close to zero as long as M grows faster than 1 .ε

To explain the intuition further, let us consider the excess distortion of this code: P d
D]

Sn ˆ, Sn

. Define
Psuccess P c , s.t. d Sn, c D

[ ( ) >

Then

≜ [∃ ∈ C ( ) ≤ ]

Pfailure ≜P
P
[

T

∀ci

ci

is

∈

the

C, d(Sn

[

, ) >D]

≈ ∀ ∈ C

c

, d(Sn, c) >D

n

n ˆn

∣ ∈

(24.4)

(

Sn Tn] (24.5)

ˆ n )

=P[d(S ,S

≈

1 P d S

)

set

>

of

∣

typ with empirical distribution PS P

D Sn ∈

ical strings

T ]

S

M P Qnn P n (24.6)

=( −
´¹
[
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

(
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

n ˆ,
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Sn) ≤D∣Sn ∈

Sn ˆ,Sn S Ŝ

T M
n

( = )

since

]

2−nE(
Sn

Q

⊥⊥ ˆ

))

Sn, this should be small

) (24.7)

≈(1 − ˆ MS

¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

large

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

deviation!

¶

b

) (24.8)

where it can e shown (similar to information

(

projection) that

E(QŜ) = ∶
min

PŜ∣S E[d( ˆS,S)]≤
D

D
(PŜ∣S∥QŜ

n E Q

∣PS) (24.9)

Thus we conclude that ∀Q ,∀δ > 0 we can pick M = 2 ( ( ˆ δ
ˆ S
S

)+ ) and the above code will have
arbitrarily small excess distortion:

P n
failure P[∀c ∈ C, d

S

= (S , c

We optimize Q ˆ to get the smallest possible M :

) >D]→ 0 as n→∞.

minE
QŜ

(QŜ) = min
PŜ∣S ∶E[d

min

( )]≤
minD(P ˆ Q ˆ PS (24.10)S

S,
∣S Sˆ QS D Ŝ

∥ ∣ )

= ˆI S;S
ˆP

=

ˆ

ϕ

∣
SS (S, )]≤DS ∶E[d

S

( )

(D)
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24.2.2 Proof of Theorem 24.2

Theorem 24.3
∀

(Performance
∀ > ∀

bound
∈ A

of average-distortion codes). Fix PX and suppose d x, x̂ 0
ˆfor l x, x̂. PY ∣ ˆal X , γ 0, y0 , there exists a code X W X, where W M 1

(

and
) ≥

E[d( ˆX,X E d X,Y E d X, y0 e

→ → ∈ [ + ]

ˆd X,X

)] ≤

d

[

X

(

, y0

)]

a.s.

+ [ ( )] −M/γ +E[ )

(

1{i(

) ≤ (

d(

)

X,y0 X;Y )>log γ}]

Notes:

• This theorem says that from an arbitrary PY X such that Ed
code with average distortion D plus some extr

∣
a terms whic

regime.

(X,Y ) ≤D, we can extract a good
h will vanish in the asymptotic

• The proof uses the random coding argument. The role of the deterministic y0 is a “fail-safe”
codeword (think of y0 as the default reconstruction with Dmax E d X, y0 ). We add y0 to
the random codebook for damage control, to hedge the (highly
that we end up with a horrible codebook.

=

un
[

lik
(

ely and
)]

unlucky) event

Proof. Similar to the previous intuitive argument, we apply random coding and generate the
codewords randomly and independently of the source:

C = {
i.i.d.

c1, . . . , cM PY X

and add the
=

“fail-safe”
( ( ))

codeword cM+1 = y0. We adopt

} ∼

the same

⊥⊥

encoder-decoder pair (24.2) – (24.3)
ˆand let X g f X . Then by definition,

d( ˆX,X) = min
j

let

∈[M+1]
d(X, cj) ≤ d(X,y0).

To simplify notation, Y be an independent copy of Y (similar to the idea of introducing unsent
codeword X in channel coding):

PX,Y,Y = PX,Y PY

where P =

[ ] = ∫ [

PY .
≥

Recall
]

the formula for computing the expectation of a random variable U 0, a :Y
E a
U 0 P U u du. Then the average distortion is

∈ [ ]

Ed( ˆX,X) = E min
j

EX

∈

E

[ +
(24.11)

M ]
d(X, cj

1

= [
∈
min
[ + ]

d(X

)

, cj
j M 1

)∣X] (24.12)

=
d

EX
0

(X,y0)
P min d X, cj u X du (24.13)

j M 1

≤
d X,y

E
0

X

∫ [
∈[ + ]

( ) > ∣ ]

∫
0

( )
P[ min

j

d X,y
E

0

X P d

∈[
d

M

,

]
(X, cj

X

) > u∣X]du (24.14)

= ∫
0

( )
[ ( Y ) > u∣X]Mdu (24.15)

= EX ∫
d(X,y0)

0
(1 − P[d(X,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Y
¸
)
¹¹¹¹¹¹¹¹¹¹¹¹¹¹
≤
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
u∣X

¹¹¹¹¹¹¹¹¹¹¹¶
]

≜δ(X,u

)Mdu (24.16)

)
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Next we upper bound 1 δ X,u M as follows:

(1 δ

( − ( ))

− (X,u))M ≤ e−M/γ

e−M/γ
+ ∣

≤

1

−

=

1 γδ(X,u)∣+

+ ∣ −

(24.17)

γE[exp{−i(

+ [ ( ) >

X

∣

;Y 1 d ,Y u X

M

+
(24.18)

e− /
X

γ P i X;Y log γ X

)} { ( )≤ }∣ ]∣

] + P[d(X,Y

where

) > u∣X] (24.19)

• (24.17) uses the following trick in dealing with 1 δ M for δ 1 and M 1. First, recall
the standard rule of thumb:

)
⎪⎪
⎧

( − n 0, ε
1 ε

( −

nn

) ≪ ≫

n
≫ 1

1, εnn 1

In order to argue firm bounds of similar flav

≈

or,

⎪⎪
⎨

⎩

consider

≪

1 −
union bound

δM ≤ (1 − δ)M ≤ e−δM

≤

log 1

/γ(

δ δ

≤

e−M

+

γ

∣

δ 1

(

∧ ) + ∣ ∀

− ∣

1 − γδ∣+ ( γ > 0

γ

( )

e−M

− ) ≤ −

/ 1 γδ +
)

• (24.18) is simply change of measure using i(x; y) =
P

log Y (y)
(i.e., conditioning-unconditioningPY X y x

trick for information density, cf. Proposition 15.1.
∣ ( ∣ )

• (24.19):

1 − γE[exp{−i(X;Y )}1{d(X,Y )≤u}∣X] ≤ 1 − γE[exp{−

≤ − [

i(X;Y )}1{d(X,Y

∣

)≤

]

u,i(X;Y γ}∣X

1 E 1

) log ]

=

{d

≤

P[d(X,Y
(

)

X

>

,Y )≤u,i(X;Y log γ X

u or i(X

)

;

≤

Y ) >

}

log γ∣X

P d X,Y u X P i X;Y log

]

γ X

Plugging (24.19) into (24.16), we have

≤ [ ( ) > ∣ ] + [ ( ) > ∣ ]

E[d( ˆX,X)] ≤ ∫
d(X,y

E
0)
(e−M γ

X
/ + P[i(X;Y ) > log γ∣X] + P[d(X,Y

0
) > u∣X])du

≤ E[d(X,y0)]e
−M

M

/γ +E[d(X,y0)P[i(X;Y ) > log γ∣X]] +EX ∫
∞
P[d(X,Y

d d

) > u X

X

∣ ])du

= E[ ( , y0)]e
− /γ +E[ ( )

0

X,y0 1{i(X;Y )>log γ}] +E[d(X,Y )]
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As a side product, we have the following achievability for excess

∀

distortion.

Theorem

→ →

24.4 (Performance

∈ [ ]

bound of excess-distortion codes). PY X , γ 0, there exists a code
ˆX W X, where W M and

∣ ∀ >

P[d( ˆX,X) >D] ≤ e−M/γ + P[{d X,Y D i X;Y log γ

Pr
[

o
]

ˆof. Proceed exactly as in the proof of Theorem

(

24.3

)

, replace

> } ∪ {

(24.11

(

) b

)

y

>

P d X

}]

,X D P j
M ,d

[

(X, cj ,
( ) > ] = [∀ ∈

) >D] = EX[(1 − P[d(X Y ) ≤D∣X])M ], and continue similarly.

=

Finally, we
→

ar
∞

e able to prove Theorem 24.2 rigorously by applying Theorem 24.3 to iid sources
X Sn and n :

Proof of Theorem 24.2. Our goal is the achievability: R(D) ≤

= [ ( )]

Ri D ϕS D .
WLOG we can assume that Dmax E d S, ŝ0 achieved at some

( ) =

fixed
(

ŝ0

)

– this is our default
reconstruction; otherwise just take an
default reconstruction for Sn is ŝn0
is separable.

Fix some small δ 0. Take an

=

y

(

y other fixed sequence so that the expectation is finite. The
ŝ0, . . . , ŝ and E d Sn ŝn0 , 0 Dmax since the distortion

> ˆ

( ) = ( )

P ˆ suchS S

)

that E

[

d

(

S,S

)] =

D δ. Apply

<∞

Theorem 24.3 to

ˆX,Y Sn, Sn with
∣ [ ( )] ≤ −

PX = PSn

PY ∣X = P n

= (

ˆn PSn ˆS S S

ˆlogM

=

n

∣

(

I(

(

S;

=

S

( ∣ )

log γ

) 2δ

ˆn I S;S

1

+ )

) + δ

d X,Y

)

( ) = ˆd ,
j
∑
n

=
(Sj Sj

n 1

y0 ŝn0

)

we conclude that there exists a compressor f

=

n M 1 and g

E n f Sn E ˆd S , g d Sn, Sn E

∶

d

A

Sn

→

, ŝ

[

n
0 e

+

−M

]

/γ E d

∶ [ ˆM 1 n, such that

[ ( ( ( )))] ≤ Sn,

+

ŝn0

]

1

→

i

A

Sn ˆ;Sn

≤

log γ

D

[ ( )] + [ ( )] + [ ( ) ( )> }]

− δ +D

{

where

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

exp
max e

¸

−
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

(nδ
¹¹¹¹¹¹¹¹¹¹¶

)

→0

+E
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
[d(

→
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Sn

¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, ŝn0)1

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
En

0 (later)
¹¹¶
], (24.20)

En

⎧

= {i(Sn ˆ;Sn) >
1

log γ} =
⎪
⎨
⎪

⎪⎪⎩
n

n

∑
j=1

i(Sj ; Ŝj) > I(S; Ŝ) + δ

⎫⎪⎪
⎬
⎪⎪⎭

WLLN
ÔÔ⇒ P[En]→ 0

If we can show the expectation in (24.20) vanishes, then there exists an (n,M,D)-code with:

M = 2n(I(S;Ŝ)+2δ), D D δ o 1 D.

ˆTo summarize, ∀P ˆ S D δ weS∣ such that d S, have that:S E

= − + ( ) ≤

R D I

[

S

(

ˆ;S

)] ≤ −

Ô
δ
⇒
↓0
R

( ) ≤ ( )

(D) ≤ ϕS(D−) = ϕS(D). (continuity, since D >D0
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It remains to show the expectation in (24.20) vanishes. This is a simple consequence of the
L

uniform integrability of the sequence d Sn, ŝn0 . (Indeed, any sequence V
1

n V is uniformly
integrable.) If you do not know what uniform integrability is, here is a self-contained proof.

Lemma

<∞⇒

24.1.

( )Ð

F

Ð

or

→

any positive random

{ (

variable

)}

U , define g(δ) = sup

→

H ∶ [H]≤
1

→
P δ E .

δ

] Then

g

[U1H

E 0
U δ 0.

b
Proof. For any b > 0, E[U1H] ≤ E[U1{U>b}]+bδ, where E[

√
U1{U>b}]ÐÐ

→
Ð
∞
→

= /

0 by dominated convergence

theorem. Then the proof is completed by setting b 1 δ.

Now d(Sn, ŝn0) =
1 ∑Uj , where

[ (

Uj are
)

iid
]

copies of U . Sincen E U Dmax by assumption,
applying Lemma 24.1 yields E d Sn, ŝn 1 = 1

0 En

[ ] = <∞

n ∑E[Uj1En] ≤ g(P[En]) → 0, since P[En] → 0.
We are done proving the theorem.

Note: It seems that in Section 24.2.1 and in Theorem 24.2 we applied different relaxations in
showing the lower bound, how come they turn out to yield the same tight asymptotic result?

This is because the key to both proofs is to estimate the exponent (large deviations) of the
underlined probabilities in (24.7) and (24.16), respectively. To get the right exponent, as we know,
the key is to apply tilting (change of measure) to the distribution solving the information projection
problem (24.9). In the case, when P

(

Q n n
ˆ PY ˆ is chosen as the solution to rate-distortionS S

ˆoptimization inf I S;S

= ( ) = ( )

), the resulting tilting is precisely given by 2−i(X;Y ).

24.3* Covering lemma

Goal:

In other words:

1In fact, ⇒ is ⇔.
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Approximate P with Q such that for any function f , x, we have:

P[f(An,Bn) ≤ x] ≈ Q f

∀

[ (An,Bn) ≤ x], ∣W ∣ ≤ 2nR.

what is the minimum rate R to achieve this?
Some remarks:

1. The minimal rate will depend (although it is not obvious) on whether the encoder An W
kno
(⋅

ws
⋅)

about the test that the tester is running (or equivalently whether he knows the function
f , ).

→

2. If the function is known to be of the form f(An,Bn) = ∑nj=1 f1(Aj ,Bj), then evidently the job
of the encoder is the following: For any realization of the sequence An, we need to generate a
sequence Bn such that joint composition (empirical distribution) is very close to PA,B.

3. If R =H(A), we can compress An and send it to “B side”, who can reconstruct An perfectly
and use that information to produce Bn through PBn An .

4. If R H B , “A side” can generate Bn according to P

∣

n
A,B and send that Bn sequence to the

“B side”.

5. If A

= ( )

⊥⊥ B, we know that R 0, as “B side” can generate Bn independently.

Our previous argument turns out to give a sharp answer for the case when encoder is aware of
the tester’s algorithm. Here is a

=

precise result:

Theorem 24.5 (Covering Lemma). ∀PA,B and R >

∀ >

I(A;B), let C = {

≥ ( ( )+
c1
)
, . . . , cM where each

codeword c is i.i.d. drawn from distribution Pn. ε 0, for M 2n I A;B ε
j B we have

}

that:

P[∃c ∈ C ˆsuch that PAn,c ≈ PA,B]→ 1

Stronger form: ∀F

P[∃c ∶ (An, c) ∈ F ] ≥ P[(An,Bn) ∈ F ] + o(1

uniform

)

in F

Proof. Following similar arguments of the proof for Theorem 24.3,

±

we have

P[∀c ∈ C ∶ (An, c) ∈/ F

P

] ≤ e−γ + P
P An,

c An, c F P An,

[{(

[(

An

= ) ∈/

,Bn) F n;Bn) > log γ
n

∈/ } ∪ { }]

] + ( )

i(A

⇒ [∀ ∈ C ∶ ( ) ∈ ] ≥ [(

B

Bn) ∈

F o 1

F ] + o(1)
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Note: [Intuition] To generate B
(
n

∣
,
)
there are around 2nH B high probability sequences; for each An

sequence, there are around 2nH B A Bn sequences that ha

(

v

)

e the same joint distribution, therefore, it
nH B

is sufficient to describe the class of Bn for each An sequence, and there are around 2 ( ) ;
2 (

A
nH B∣A) 2nI( B

classes.

)

Although Covering Lemma is a powerful tool, it does not imply that the constructed

=

joint
distribution QAnBn can fool any permutation invariant tester. In other words, it is not guaranteed
that

sup
F

Indeed,

⊂An×Bn,permut.invar.

a sufficient statistic for a permutation

∣QAn,Bn(F ) − PnA,B(F )∣→ 0 .

≈

ˆinvariant tester is a joint type PAn,c. Our code
ˆsatisfies PAn ˆ

,c PA,B, but it might happen that PAn,c although close to PA,B still takes highly
unlikely values (for example, if we restrict all c to have the same composition P0, the tester
easily detect the problem since PnB-measure

√
can

of all strings of composition P0 cannot exceed O(1/ n ).
Formally, to fool permutation invariant tester we need to have small total variation between the
distribution on the joint types under P and Q. (It is natural to conjecture that rate R I A;B

)

should be sufficient to achieve this requirement, though).
A related question is about the minimal possible rate (i.e. cardinality of W 2nR ) required

= (

to

)

have small total variation:
TV QAn,Bn , P

n
AB ε

∈ [ ]

(24.21)

Note that condition (24.21) guarantees that
believe he sees the truly iid An,Bn . The

( ) ≤

( )

any tester (permutation invariant or not) is fooled to
minimal required rate turns out to be (Cuff’2012):

R =
→
min
→

I(A,B;U
A U B

a quantity known as Wyner’s common information C

)

(A;B). Showing that Wyner’s common
information is a lower-bound is not hard. Indeed, since Q n

An,Bn PAB (in TV) we have

I(QAt−1,Bt−1 ,QAtBt At−1,Bt−1 I PAt−1,Bt

≈

−1 , PAtBt At−1,Bt−1 0

(Here one
(

needs
)

to use finiteness of the

∣

alphabet

) ≈

of

(

A and B and the

∣

bounds

)

relating

=

H P H Q
with TV P,Q ). We have (under Q!)

( )− ( )

nR =H(W ) ≥ I

∑
T

(An,Bn;W (24.22)

≥
=
I(At,B ;W

)

I A ,B ;At 1
t t t

t 1

− Bt−1 (24.23)

≈∑
T

=
I(At,Bt;W

) − ( )

t 1

) (24.24)

≳ nC(A;B) (24.25)

where in the last step we used the crucial observation that under Q there is a Markov chain

At →W → Bt

and that Wyner’s common information PA,B ↦ C(A;B) should be continuous in the total variation
distance on PA,B. Showing achievability is a little more involved.

254



MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms



