
§ 22. Capacity-achieving codes via Forney concatenation

Shannon’s Noisy Channel Theorem assures us the existence of capacity-achieving codes. However,
exhaustive search for

∣

the
X ∣

code has double-exponential complexity: Search over all codebook of size
2nR over all possible n codewords.

Plan for today: Constructive version of Shannon’s Noisy Channel Theorem. The goal is to show
that for BSC, it is possible to achieve capacity in polynomial time. Note that we need to consider
three aspects of complexity

• Encoding

• Decoding

• Construction of the codes

22.1 Error exponents

Recall we have defined the fundamental limit
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R,
which is also known as the reliability function of the channel. Determining E R is one of the most
long-standing open problems in information theory. What we know are

• Lower bound on E(R (achievability): Gallager’s random coding bound (which analyzes the
ML decoder, instead of
bound).

)

the suboptimal decoder as in Shannon’s random coding bound or DT

• Upper bound on E(R) (converse): Sphere-packing bound (Shannon-Gallager-Berlekamp), etc.

It turns out there exists a number Rcrit 0,C , called the critical rate, such that the lower and
upper bounds meet for all R ,

( )

∈ (Rcrit C
∈

), where we obtain the value of E(R). For R ∈ (0,Rcrit), we
do not even know the existence of the exponent!

Deriving these bounds is outside the scope of this lecture. Instead, we only need the positivity of
error exponent, i.e., for any R C, E R 0. On the other hand, it is easy to see that E C 0 as a
consequence of weak converse.
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rate approaches capacity from below, the comm
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unication
becomes less reliable. The next theorem is a simple application of large deviation.
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230



Theorem 22.1. For any DMC, for any R < C supX I X;Y ,

ε∗(n, exp(nR)) ≤ exp(−nE

= ( )

(R)), for some E(R) > 0.
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C so that C − R > 0. Let PX
∗ be the capacity-achieving input distribution, i.e.,

C I X ;Y . Recall Shannon’s random coding bound (DT/Feinstein work as well):

ε ≤ P (i(X;Y

As usual, we apply this bound with iid PXn

) ≤ logM τ exp τ .

= (P n n C R
X
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(− )

and τ =
( − )
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2
) + exp(−
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Since i(Xn;Y n) = ∑
−

i(
( ∗

X
(
k;
+
Yk) is an iid sum, and Ei(X;Y

)

> (C +R)/2, the first term is upper
bounded by exp nψ R

T

) = C
C

2 )) where T = i(X;Y ). The proof is complete since εn is smaller than
the sum of two exponentially small terms.

Note: Better bound can be obtained using DT bound. But to get the best lower bound on E R
we know (Gallager’s random coding bound), we have to analyze the ML decoder.

( )

22.2 Achieving polynomially small error probability

In the sequel
<

we
=

focus
− (

on
)

BSC channel with cross-over probability δ, which is an additive-noise
DMC.

≤ −
Fix R C 1 h δ bits. Let the block length be n. Our goal is to achieve error probability

εn n α for arbitrarily large
>

α > 0 in polynomial time.
To this end, fix some b 1 to be specified later and pick m = b logn and divide the block

into n

(

sub-blocks of m bits. Applying Theorem 22.1, we can find [later on how to find] anm
m, exp(Rm), εm)-code such that

εm ≤ exp(−mE(R)) = n−bE(R)

where E(R) > 0. Apply this code to each m-bit sub-block and apply ML decoding to each block.
The encoding/decoding complexity is at most n

m exp(O(m)) = nO(1). To analyze the probability of
error, use union bound:

Pe ≤
n
εm

m
≤ n−bE(R)+1 ≤ n−α,

if we choose b ≥ α+1 .E(R

Remark 22.1. The

)

final question boils down to how to find the shorter code of blocklength m in
poly(n)-time. This will be done if we can show that we can find good code (satisfying the Shannon
random coding bound) for BSC of blocklenth m in exponential time. To this end, let us go through
the following strategies:

1. Exhaustive search: A codebook is a subset of cardinality 2Rm out of 2m possible codewords.
2mTotal number of codebooks: (

2Rm
) = exp(Ω(m2Rm

too big.
)) = exp(Ω(nc logn)). The search space is
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2. Linear codes: In Lecture 16 we have shown that for additive-noise channels on finite fields we
can focus on linear codes. For BSC, each linear code is parameterized by a generator matrix,
with Rm2 2

entries. Then there are a total of 2Rm = nΩ(logn) – still superpolynomial and we
cannot afford the search over all linear codes.

3. Toeplitz generator matrices: In Homework 8 we see that it does not lose generality to focus on
linear codes with Toeplitz generator matrices, i.e., G such that Gij Gi 1,j 1 for all i, j 1.
Toeplitz matrices are determined by diagonals. So there are at most 22m

−
n
−
O 1 and we can

find the optimal one in poly(n)-time.

=
( )

>

=

Since the channel is additive-noise, linear codes + syndrome decoder leads to the same maximal
probability of error as average (Lecture 16).

Remark 22.2. Remark on de-randomization; randomness as a resource, coin flips and cooking
(brown both sides of onions)...

22.3 Concatenated codes

Forney introduced the idea of concatenated codes in 1965 to build longer codes from shorter codes
with manageable complexity. It consists of an inner code and an outer code:

1. C k
in ∶ {0,1} → {0,1}n, with rate k

n

2. Cout ∶ B
K → BN for some alphabet B of cardinality 2k, with rate K .N

The concatenated code C ∶ {0,1}kK → {0,1}nN works as follows (Fig. 22.1):

1. Collect the kK message bits into K symbols in the alphabet B, apply Cout componentwise to
get a vector in BN

2. Map each symbol in B into k bits and apply Cin componentwise to get a nN -bit codeword.

The rate of the concatenated code is the product of the rates of the inner and outer codes: R = k
n
K
N .

Cout Cin

Cin

Cin

Cin

Cin

kK k
Din

Din

Din

Din

Din

Dout
n k kK

Figure 22.1: Concatenated code, where there are N inner encoder-decoder pairs.
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22.4 Achieving exponentially small error probability

Forney proposed the following idea:

• Use an optimal code as the inner code

• Use a Reed-Solomon code as the outer code which can correct a constant fraction of errors.

Reed-Solomon (RS) codes are linear codes from FKq FNq where the block length N q 1

(

and the message
)

length is K. Similar
a , a , . . . , a − as a polynomial p( ∑ −

the
x) =

to the Reed-Muller code, RS code treats the input
K
=

1 i
0 1 K 1 i 0 aiz over Fq of

→

degree at most K 1, and enco

=

des

−

it
by its values at all non-zero elements. Therefore the RS codeword is a vector p α

−

( ( ) ∶ α ∈ Fq/{0}) ∈ FNq .
Therefore the generator matrix of RS code is a Vandermonde matrix.

The RS code has the following advantages:

1. The minimum distance of RS code N −K + 1. So if we choose K = (1 − ε)N , then RS code
can correct εN errors.2

2. The enco
(

ding and decoding (e.g., Berlekamp-Massey decoding algorithm) can be implemented
in poly N

In

) time.

fact, as we will see later, any efficient code which can correct a constant fraction of errors will
suffice as the outer code for our purpose.

Now we show that we can achieve any rate below capacity and exponentially small probability
of error in polynomial time: Fix η, ε > 0 arbitrary.

• Inner code: Let k 1 h
which is a linear n, 2k, εn
Cin can be chosen

=

to

(

be

−

a

(

(

δ) − η)
)

n. By Theorem 22.1, there exists
≤ −

a C
(
in 0,1 k 0,1 n,

-code and maximal error probability ε 2 nE η
n

)
∶

.
{

By Remark
} →

foun

{

22.1,
linear code with Toeplitz generator matrix, which can be d

}

in
2n time. The inner decoder is ML, which we can afford since n is small.

• Outer code: We pick the RS code with field size q 2k with bloc
number of message bits to be K

= = −

Then we obtain a concatenated code C

= (1 − ε)N . Then we have Cout

0,1 kK 0,1 nN with blo

∶

klength N 2k 1. Pick the
FK

2k
→ FN .

2k

∶ { } → { }

= ( − )( − ( ) − )

cklength L nN n2Cn for
some

=

constan
( )

t C and rate R 1 ε 1 h δ η . It is clear that
(

the code can be constructed in
2n poly L time and all encoding/decoding operations are poly L time.

= =

Now we analyze the probability of error: Let us conditioned on the
)

message bits (input to Cout).
Since the outer code can correct εN

2 errors, an error happens only if the number of erroneous inner

encoder-decoder pairs exceeds εN . Since the channel is memoryless, each of the N pairs makes an2
error independently1 with probability at most εn. Therefore the number of errors is stochastically
smaller than Binom(N, εn), and we can upper bound the total probability of error using Chernoff
bound:

Pe ≤ [
εN

P Binom(N, εn) ≥
2

] ≤ exp (−Nd(ε/2∥εn)) = exp (−Ω(N logN)) = exp(−Ω(L)).

where we have used εn ≤ exp(−Ω(n)) and d(ε/2∥εn) ≥
ε
2 log ε

2εn
= Ω(n) = Ω(logN).

1Here controlling the maximal error probability of inner code is the key. If we only have average error probability,
then given a uniform distributed input to the RS code, the output symbols (which are the inputs to the inner encoders)
need not be independent, and Chernoff bound is not necessarily applicable.
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Note: For more details see the excellent exposition by Spielman [Spi97]. For modern constructions
using sparse graph codes which achieve the same goal in linear time, see, e.g., [Spi96].
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