
§ 20. Advanced channel coding. Source-Channel separation.

Topics: Strong Converse, Channel Dispersion, Joint Source Channel Coding (JSCC)

20.1 Strong Converse

We begin by stating the main theorem.

Theorem
=

20.1.
< <

For any stationary memoryless channel with either
Cε C for 0 ε 1.

Remark: In Theorem 16.4, we showed that C C C

∣A∣ <∞ or ∣B∣ <∞ we have

≤ ε ≤ . Now we are asserting that equality1 ε
holds for every ε. Our previous converse arguments showed that communication with an arbitrarily
small error probability is possible only when using rate R C

−

; the strong converse shows that when
you try to communicate with any rate above capacity R C, then the probability of error will go to
1 (typically with exponential speed in n). In other words,

<

>

ε∗(n, exp nR
⎪⎪
⎧

0 R < C

1 R C

where ε∗(n,M) is the inverse of M∗(n, ε

( ))→ ⎨
⎪⎪⎩

) defined in (16.3).

>

In practice, engineers observe this effect in the form of waterfall plots, which depict the dependence
of a given communication system (code+modulation) on the SNR.

Pe

1
10−1

10−2

10−3

10−4

SNR
10−5

Below a certain SNR, the probability of error shoots up to 1, so that the receiver will only see
garbage.

Proof. We will give a sketch of the proof. Take an (n,M, ε)-code for channel PY ∣X . The main trick
is to consider an auxiliary channel QY ∣X which is easier to analyze.

Xn Y nW Ŵ
PY n|Xn

QY n|Xn
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Sketch 1: Here, we take QY n∣Xn = (PY
∗)n, where PY

∗ is the capacity-achieving output distribution
(caod) of the channel PY ∣X .1 Note that for communication purposes, QY n∣Xn is a useless channel; it
ignores the input and randomly picks a member of the output space according to (PY

∗)n, so that
Xn and Y n are decoupled (independent). Consider the probability of error under each channel:

Q[Ŵ =W ] =
1

(Blindly guessing the sent codeword)

P[Ŵ =W ] =

M

1 − ε

Since the random variable 1{ ˆ = } has a huge mass underW W P and small mass under Q, this looks

like a great binary hypothesis test to distinguish the two distributions, P n n ˆ and Q n n ˆ .WX Y W WX Y W
Since any hypothesis test can’t beat the optimal Neyman-Pearson test, we get the upper bound

β1−ε(
1

P ˆ ,Q ˆWXnY nW WXnY nW ) ≤ (20.1)
M

(Recall that βα(P,Q) = infP [E]≥αQ[E]). Since the likelihood ratio is a sufficient statistic for this
hypothesis test, we can test only between

PWXnY nŴ
P

QWXnY nŴ

=
WPXn∣WPY n∣XnPŴ ∣Y n

PWPXn∣W (P ∗
Y )nPŴ ∣Y n

=
PW ∣XnPXnY nPŴ ∣Y n

PW ∣XnPXn(P ∗
Y )nPŴ ∣Y n

=
PXnY n

PXn(PY
∗)n

Therefore, inequality above becomes

β1−
n

ε(PXnY n , PXn(PY
∗) ) ≤

1
(20.2)

M

Computing the LHS of this bound need not be easy, since generally we know PY X and PY , but
can’t assume anything about P Xn

Xn which depends on the code. (Note that is the output

∗

of the
encoder and uniformly distributed on the codebook for deterministic encoders). Certain

∣

tricks are
needed to remove the dependency on codebook. However, in case the channel is “symmetric” the
dependence on the codebook disappears: this is shown in the following example for the BSC. To
treat the general case one simply decomposes the channel into symmetric subchannels (for example,
by considering constant composition subcodes).

Example. For a BSC(δ)n, recall that

PY n∣
n

Xn(y ∣xn) = PnZ(y
n − xn), Zn ∼ Bern(δ)n

PY
∗ n yn 2−n

From the Neyman Pearson test,

(

th

)

e

(

optimal

) =

HT takes the form

(
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

n n

βα PXnY n , PXn

P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸

(
P

P

Q
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Y
∗)
¹¹¹¹¹

n

¶
) = Q [

X Y
log

PXn(P ∗
Y )n

≥ γ] where α = P [log
PXnY n

γ
PXn(PY

∗)n
≥ ]

For the BSC, this becomes

PXnY n
log

PXn(P ∗
Y )n

= log
PZn(y

n − xn)

2−n

1Recall from Theorem 4.5 that the caod of a random transformation always exists and is unique, whereas a caid
may not exist.
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So under each hypothesis P and Q, the difference Y n −Xn takes the form

Q ∶ Y n −Xn ∼ Bern(
1 n

2
P Y n Xn Bern δ

)

n

Now all the relevant distributions are kno

∶

wn,

−

so w

∼

e can

(

compute

)

βα

Bern n
Y )

1
βα(PXnY n , PXn(P ∗ n) = βα( (δ) ,Bern(

2
)n)

= 2−nD(Bern(δ)∥Bern( 1 o
2
))+ (n) (Stein’s Lemma Theorem 11.1)

= 2−nd(δ∥
1 o
2
)+ (n)

Putting this all together, we see that any (n,M, ε) code for the BSC satisfies

2−nd(δ∥
1
2
)+o(n) ≤

1

M
Ô⇒ logM ≤ nd(δ∥

1
o n

2

Since this is satisfied for all codes, it is also satisfied for the optimal

) +

c

(

ode,

)

so we get the converse
bound

1
lim inf
n→∞ n

logM∗(n, ε) ≤ d(δ∥
1

log 2 h δ
2

For a general channel, this computation can be much more

) =

difficult.

− ( )

The expression for β in this
case is

− ( ∣ ( ∗) ) = − ( ∣ ∥ ∗ ∣ ¯β n X
ε P

nD P n 1
Y X P P oY1 XnPY n Xn , PXn PY 2 )+ ( ) ≤ (20.3)

M

¯where PX is unknown (depending on the code).
Explanation of (20.3): A statistician observes sequences of (Xn, Y n):

Xn = [ 0 1 2 0 0 1 2 2 ]

Y n = [ a b b a c c a b ]

On
(

the mark
∥ ∗

ed
)

three blocks, test between iid samples of PY X 0 vs PY , which has exponent
D PY ∣X=0 PY . Thus, intuitively averaging over the composition of the co

∗

deword we get that the
exponent of β is given by (20.3).

∣ =

Recall that from the saddle point characterization of capacity (Theorem 4.4) for any distribution
P̄X we have

¯D

Th

(PY ∣X∥PY
∗ ∣PX) ≤ C . (20.4)

us from (20.3) and (20.1):

¯logM ≤ nD(PY ∣X∥PY
∗ ∣PX) + o(n) ≤ nC + o(n

Sketch 2: (More formal) Again, we will choose a dummy auxiliary

)

channel QY n∣Xn

However, choice of QY will depend on one of the two cases:
= (Q n

Y ) .

209



1. If ∣B∣ <∞ we take QY = PY
∗ (the caod) and note that from (16.16) we have

∑PY ∣X(y∣x0) log2 PY ∣X(y∣x0) ≤ log2 x0
y

and since
A

miny PY
∗(y) > 0 (without loss of generality), we conclude

∣B∣ ∀

that

∈ A

for any distribution of
X on we have

Var [
PY

log
∣X(Y ∣X)

QY (Y )
∣X] ≤K <∞ ∀PX . (20.5)

Furthermore, we also have from (20.4) that

E [log
PY ∣X(Y ∣X)

.
Q

∣X X
Y Y

] ≤ C ∀P (20.6)

2. If ∣A∣ <∞, then for each codeword c

( )

∈ An we define its composition as

1
P̂c(x) ≜

n

1 cj x .
n j 1

By simple counting it is clear that from any

∑
=

{ = }

(n,M, ε) code, it is possible to select an n,M , ε
subcode, such that a) all codeword have the same composition P0; and b) M

( ′
′

)

> M
n∣A∣ . Note

that, logM = logM ′ +O(logn) and thus we may replace M with M ′ and focus on the analysis
of the chosen subcode. Then we set QY = PY ∣X ○ P0. In this case, from (16.9) we have

Var [log
PY ∣X(Y ∣X)

X K X P0 . (20.7)
QY Y

Furthermore, we also have

( )
∣ ] ≤ <∞ ∼

E [
PY

log
∣X(Y ∣X)

( )
∣X] =D(PY ∣X∥QY ∣P0) = I(X;Y ) ≤ C X ∼ P0 . (20.8)

QY Y

Now, proceed as in (20.2) to get

β1−
n 1

ε(PXnY n , PXn(QY ) ) ≤ . (20.9)
M

We next apply the lower bound on β from Theorem 10.5:

(
dP Y n Xn

γ −
n

n Y n X
β1 ε PXnY n , PXn(QY ) ) ≥ P[ log

∣ ( ∣ )

d∏QY (Yi)
≤ log γ] − ε

Set log γ = nC +K ′√n with K ′ to be chosen shortly and denote for convenience

d
Sn ≜

PY n
log

∣Xn(Y n∣Xn)

d∏QY (Yi)
=

n

∑
j=1

log
dPY ∣X(Yj ∣Xj)

dQY (Yj

Conditioning on Xn and using (20.6

)

P [Sn ≤ nC +K ′√

) and (20.8) we get

n∣Xn] ≥ P [Sn ≤ nE[Sn∣X
n] +K ′√n∣Xn]
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From here, we apply Chebyshev inequality and (20.5) or (20.7) to get

P [Sn ≤ nE[Sn∣X
n] +K ′√n∣Xn] ≥ 1 −

K ′2

K
.

If we set K ′ so large that 1 − K′2

K > 2ε then overall we get that

logβ1−ε(PXnY n , PXn(QY )n) ≥ −nC −K ′√n − log ε .

Consequently, from (20.9) we conclude that

logM∗(n, ε) ≤ nC +O(
√
n) ,

implying the strong converse.

In summary, the take-away points for the strong converse are

1. Strong converse can be proven by using binary hypothesis testing.

2. The capacity saddle point (20.4) is key.

In the homework, we will explore in detail proofs of the strong converse for the BSC and the AWGN
channel.

20.2 Stationary memoryless channel without strong converse

It may seem that the strong converse should hold for an arbitrary stationary memoryless channel (it
was only showed for the discrete ones above). However, it turns out that there exist counterexamples.
We construct one next.

Let output alphabet be B = [0, 1]. The input A is going to be countable, it will be convenient to
define it as

The single-letter channel PY X is

A

defined

= {(j,m) ∶ j,m ∈ Z+,0 ≤ j ≤m} .

∣ in terms of probability density function as

pY ∣X(y∣(j,m

⎧

)) =
⎪⎪
⎨

j

⎪

am,

⎩
⎪

m ≤ y ≤ j+1
m , ,

bm, otherwise ,

where am, bm are chosen to satisfy

1

m
am + (1 −

1
b

m
) m = 1 (20.10)

1 1
am log am

m
+ (1 −

m
)bm log bm = C , (20.11)

where C > 0 is an arbitary fixed constant. Note that for large m we have

am =
mC 1

1
logm

( +O(
logm

)) , (20.12)

bm = 1 −
C

logm
+O(

1
(20.13)

log2m
)
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It is easy to see that PY
∗ = Unif[0,1] is the capacity-achieving output distribution and

sup I X;Y C .
PX

Thus by Theorem 16.6 the capacity of the corresp

(

onding

) =

stationary memoryless channel is C. We
next show that nevertheless the ε-capacity can be strictly greater than C.

Indeed, fix
to all atoms
single-letter information

(

blo
)

cklength n
=

and
{

consider
, }

a single letter distribution PX assigning equal weights
j m with m exp 2nC . It can be shown that in this case, the distribution of a

density is given by

⎧

( ) ≈
⎪⎪
⎨

2nC, w.p. 1

i X;Y

⎩
⎪⎪

2n

0, w.p.1 − 1
2n

Thus, for blocklength-n density we have

1
i Xn;Y n 2CPoisson 1 2 .

n

Therefore, from Theorem 15.1 we get

(

that for

)→

ε

( / )

> 1 − e−1/2 there exist

logM 2nC .

(n,M, ε)-codes with

In particular,

≥

Cε ≥ 2C ∀ε > 1 − e−1/2

20.3 Channel Dispersion

The strong converse tells us that logM n, ε nC o n ε . An engineer sees this,
estimates logM∗ ≈

0,1 and
nC. However, this do

∗

es
(

n’t
)

giv
=

e an
+

y information
( ) ∀ ∈ (

ab
)

( )

out the dependence of logM
on the error probability ε, which is hidden in the o n term. We unravel this in the following

∗

theorem.

Theorem 20.2. Consider one of the following channels:

1. DMC

2. DMC with cost constraint

3. AWGN or parallel AWGN

The following expansion holds for a fixed 0 < ε < 1/2 and n

logM

→∞

∗(n, ε) = nC −
√
nV Q−1 ε O logn

wher
=

e
(

Q 1 is the inverse of the complementary standar

(

d

)

normal

+ (

CDF,

)

the channel capacity is
C I X

−
∗;Y ∗) = E[i(X∗;Y ∗)], and the channel dispersion2 is V = Var[i(X∗;Y ∗)∣X∗].

2There could be
[

m
(

ultip
∗

le
∗)∣

capacit
∗]

y-achieving input distributions, in which case PX∗ should be chosen as the one
that minimizes Var i X ;Y X . See [PPV10] for more details.
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Proof. For achievability, we have shown (Theorem 16.7) that logM∗(n, ε) ≥ nC −
√
nV Q 1 ε by

refining the proof of the noisy channel
∗ ≤ −

coding theorem
(

using the CLT.

−

The converse statement is logM logβ n
1−ε PXnY n , PXn PY . For the BSC, we showed

( )

that
the RHS of the previous expression is

( ∗) )

−
1

logβ1−ε(Bern(δ)n,Bern(
2
)n) = nd(δ∥

1

2
) +

√
nV Q−1(ε) + o(

√
n

(see homework) where the dispersion is

)

V = VarZ∼Bern(δ) [
Bern

log
(δ)

Bern(1
2)

(Z)] .

The general proof is omitted.

Remark: This
[ (

expansion
)] =∞

only applies for certain channels (as described in the theorem). If,
for example, Var i X;Y , then the theorem need not hold and there are other stable (non-
Gaussian) distributions that we might converge to instead. Also notice that for DMC without cost
constraint

Var i X ;Y X Var i X ;Y

since (capacity saddle point!) i

[ ∗

E

( ∗)∣ ∗] = [ ( ∗ ∗)]

[ (X∗;Y ∗)∣X∗ = x

20.3.1 Applications

] = C for PX∗-almost all x.

As stated earlier, direct computation of M∗(n, ε) by exhaustive search doubly exponential in
complexity, and thus is infeasible in most cases. However, we can get an easily computable
approximation using the channel dispersion via

logM∗(n, ε) ≈ nC −
√
nV Q−1 ε

Consider a BEC (n = 500, δ = 1/2) as an example of using this appro

( )

ximation. For this channel, the
capacity and dispersion are

C =

=

1

¯δ

− δ

V δ

¯Where δ = 1 − δ. Using these values, our

logM∗(500,10−3) ≈ nC −
√

approximation for this BEC becomes

nV Q−1(ε) = nδ̄ −
√

¯nδδQ−1 10−3 215.5 bits

In the homework, for the BEC(500,1/2) we obtained bounds 213

( ) ≈

≤ logM∗(500,10−3) ≤ 217, so this
approximation falls in the middle of these bounds.

Examples of Channel Dispersion
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For a few common channels, the dispersions are

( ) = ¯BEC: V δ δδ log2 2

BSC: V (δ) =
¯

¯δδ log2 δ

δ

AWGN: V (P ) =
P (P + 2)

2(P + 1)2
log2 e (Real)

P (P + 2)
log2 e (Complex)

P 1 2

L Pj
Parallel AWGN: V (P, σ2

)

) =
j
∑
=
VAWGN

( +

1

(
σ2
j

) =
log2 e

2

L

∑
j=1

RRRRRRRRRRRRR

1 −
⎛

⎝

σ2
j

2

T

⎞
RRRRR
+

L

RR

where ∑ ∣+

=
∣T − σ2

j = P is the water-filling solution of the

⎠
RRRRR

j 1

R

parallel AWGN

Punchline: Although the only machinery needed
∗
for this approximation is the CLT, the results

produced are incredibly useful. Even though logM is nearly impossible to compute on its own, by
only finding C and V we are able to get a good approximation that is easily computable.

20.4 Normalized Rate

Suppose you’re given two codes k1 → n1 and k2 → n2, how do you fairly compare them? Perhaps
they have the following waterfall plots

Pe k1 → n1 Pe k2 → n2

10−4 10−4

SNR SNRP ∗ P ∗

After inspecting these plots, one may believe that the k1 → n1 code is better, since it requires
a smaller SNR to achieve the same error probability. However, there are many factors, such as
blocklength, rate, etc. that don’t appear on these plots. To get a fair comparison, we can use the
notion of normalized rate. To each (n,2k, ε)-code, define

Rnorm =
k

log2M
∗
AWGN(n, ε,P )

≈
k

nC(P ) −
√
nV (P )Q−1

Take ε 10−4, and P (SNR) according to the water fall plot corresponding

(ε)

= to Pe = 10
can compare codes directly (see Fig. 20.1). This normalized rate gives another motivation

−4, and we
for the

expansion given in Theorem 20.2.

20.5 Joint Source Channel Coding

Now we will examine a slightly different information transmission scenario called Joint Source
Channel Coding

Sk Encoder Xn Y n Decoder Ŝk
Source Channel(JSCC) (JSCC)
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Figure 20.1: Normalized rates for various codes. Plots generated via [Spe15].
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Definition 20.1. For a Joint Source Channel Code

• Goal: P[Sk

• Encoder: f

=/ Ŝk] ≤ ε

∶ Ak

g

→ n

• Decoder:

X

∶ Yn → Ak

• Fundamental Limit (Optimal probability of error): ε∗JSCC k,n inff,g P Sk Ŝk

where the rate is R k

( ) = [ =/ ]

= (symbol per channel use).n

Note: In channel coding we are interested in transmitting M messages and all messages are born
equal. Here we want to convey the source realizations which might not be equiprobable (has
redundancy). Indeed, if Sk is

=

uniformly distributed on, say,
c

{0,1}k, then we are back to the
hannel coding

with ε n,2k
∗

Note:

∗

Here,
(

w
)

setup with M 2k under average probability of error, and εJSCC k,n coincides
defined in Section 20.1.
e look for a clever scheme to directly encode k symbols from into a length

( )

n channel
input such that we achieve a small probability of error over the channel. This feels like a mix of two
problems we’ve seen: compressing a source and coding over a channel. The

A

following theorem shows
that compressing and channel coding separately is optimal. This is a relief, since it implies that we
do not need to develop any new theory or architectures to solve the Joint Source Channel Coding
problem. As far as the leading term in the asymptotics is concerned, the following two-stage scheme
is optimal: First use the optimal compressor to eliminate all the redundancy in the source, then use
the optimal channel code to add redundancy to combat the noise in the transmission.

Theorem 20.3. Let the source Sk be stationary memoryless on a finite alphabet with entropy H.
Let the channel be stationary memoryl

{ }

ess with finite capacity C. Then

ε∗JSCC nR,n
→ < /

Note: Interpretation: Each s

⎪

⎧⎪⎪
⎨
⎪

ource sym

(

bol

)

has

→/

0 R
n

0 R >

C

C/

H

H
→∞.

information content (entropy) H bits. Each channel
use

≤

can convey C bits. Therefore to reliably

⎩

transmit k symbols over n channel uses, we need
kH nC.

Proof. Achievability. The idea is to separately compress our source and code it for transmission.
Since this is a feasible way to solve the JSCC problem, it gives an achievability bound. This
separated architecture is

Ð
f
→
1

Ð
f P

Sk W →
n2

Xn Y

Where we use the optimal compressor f1, g1 and

Ð→
∣ nX gn Ð→

2 ˆ Ð
g
→ ˆY W
1
Sk

( ) optimal channel code (maximum probability of
error) (f2, g2). Let W denote the output of the compressor which takes at most Mk values. Then

(From optimal compressor)
1 ˆlogM k

k H δ P Sk S W ε k k0
k

1
(From optimal channel code)

> + Ô⇒ [ =/ ( )] ≤ ∀ ≥

n
logMk < C − δ Ô⇒ P[Ŵ /=m∣W =m] ≤ ε ∀m,∀k ≥ k0
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Using both of these,

P[Sk =/ Ŝk(Ŵ )] ≤ P

P

[Sk

S

=/ Ŝk,W = ˆ

k Ŝk W

] + P[ =/ ˆ ]

And therefore if R H δ C δ, then

≤

ε

[

0

=/

δ 0

(

R

)]

W

+

W W

P[W =/ Ŵ ] ≤ ε + ε

Converse: channel-substitution pro

∗

of.

→

Let Q
distribution. Using

(

data

+ )

pro

<

cessing

− → Ô⇒ > C/H.

k ˆ U P ˆ where U is the uniformS Sk = Sk Sk Sk

D(PSkŜk∥
1

QSkŜk) =D(PSk∥USk) +D(PŜ∣Sk∥PŜ ∣PSk) ≥ d(1 − ε∥ ∣A∣k
)

Rearranging this gives

I(Sk; Ŝk) ≥ d(1 − ε∥
1

log

∣A∣k
) −D(PSk∥USk)

≥ −

H

+ ∣A∣ + ( k) − ∣A∣

Which follows from expanding out

=

the

(

2 H

Sk) −

kε̄ log S k log

log 2

terms.

− kε log

Now, normal

∣A

iz

∣

ing and taking the sup of both sides
gives

1

n
sup
Xn

I(Xn;Y n) ≥
1 k
H

n
(Sk) − ε log A o 1

n

letting R = k/n, this shows

∣ ∣ + ( )

C ≥ RH − εR log ∣A∣ Ô⇒ ε ≥
RH −C

R
> 0

log A

where the last expression is positive when R C H.
Converse: usual proof. Any JSCC enco

∣ ∣

>

der/deco
/

der induces a Markov chain

Sk n ˆX Y n Sk.

Applying data processing for mutual information

→ → →

I(Sk ˆ;Sk) ≤ I(Xn;Y n sup I Xn;Y n nC.
P nX

On the other hand, since P[Sk ≠ Ŝk] ≤ εn, Fano’s

) ≤

inequalit

(

y yields

) =

I(Sk ˆ;Sk) =H( ˆSk) −H(Sk∣Sk) ≥ kH − ε k
n log ∣A∣ − log 2.

Combining the two gives
nC ≥

=

kH k

k

− εn log ∣A − log 2.

Since R

∣

n , dividing both sides by n and sending n→∞ yields

lim inf
n→∞

εn ≥
RH −C

.
R log

Therefore εn does not vanish if R

∣A∣

> C/H.
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