
§ 2. Information measures: mutual information

2.1 Divergence: main inequality

Theorem 2.1 (Information Inequality).

D(P ∥Q) ≥ 0 ; D(P ∥Q) = 0 iff P = Q

Proof. Let ϕ

D P

(x)

Q

≜ x logx, which is strictly convex, and use Jensen’s Inequality:

( ∥ ) =∑
X
P (x)

P
log

(x)

Q(x)
=∑
X
Q(x)ϕ(

P (x)

Q(x)
) ≥ ϕ(∑

X
Q(x)

P (x)

Q(x)
) = ϕ(1) = 0

2.2 Conditional divergence

The main objects in our course are random variables. The main operation for creating new
random variables, and also for defining relations between random variables, is that of a random
transformation:

Definition 2.1. Conditional probability distribution (aka random transformation, transition prob-
ability kernel,

Y

Markov kernel, channel) K
subset of , second argument is an elemen

(

t
⋅∣⋅) has two arguments: first argument is a measurable
of . It must satisfy:

1. For any x : K x is a probability measure

X

2.

∈ X ( ⋅ ∣ ) on

For any measurable A function x↦K(A x is measurable

Y

on .

In this case we will say that K acts from to

∣ )

. In fact, we will abuse

X

notation and write PY X

instead of K to suggest what spaces
X Y

X and Y are1. Furthermore, if X and Y are connected by the
PY

∣

random transformation PY X we will write X
∣X

Y .

Remark 2.1. (Very technical!)

∣

Unfortunately,

ÐÐ

condition

Ð→

2 (standard for probability textbooks) will
frequently not be sufficiently strong for this course. The main reason is that we want Radon-Nikodym

dP
derivatives such as Y ∣X=x .dQ (y e

Y
) to b jointly measurable in (x, y) See Section ?? for more.

Example:

1. deterministic system: Y = f(X

2.

)⇔ PY ∣X=x = δf(x

decoupled system: Y

)

⊥⊥X⇔ PY ∣X=x = PY
1Another reason for writing PY ∣X is that from any joint distribution PX,Y (on standard Borel spaces) one can

extract a random transformation by conditioning on X.
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3. additive noise (convolution): Y =X +Z with Z ⊥⊥X

Multiplic

⇔ PY ∣X=x = Px+Z .

ation:

P X

Ð
PY

X ÐÐ
∣X
→ Y to get PXY = PXPY

P

∣X :

XY (x, y) = PY ∣X(y∣x

Comp

)PX(x) .

osition (Marginalization): PY PY X PX , that is PY

PY y

= ∣

P

○

Y X y x PX x

∣X acts on PX to produce PY :

( ) =
x

∑ ∣

PY X

∈X
( ∣ ) ( ) .

Will also write PX ÐÐÐ
∣

→ PY .

Definition 2.2 (Conditional divergence).

D(PY ∣X∥QY ∣X ∣PX) = Ex∼PX [D(

= ∑ ( )

PY

(

∣X=x∥QY
∥

∣X=x

∣
X

P

)] (2.1)

∈
PX x D Y ∣X=x QY X=x) . (2.2)

x

Note: H(X ∣Y

Theorem 2.2

) log D PX Y UX PY , where UX is is uniform distribution on .

(Prop

= ∣A

erties

∣ −

of

(

Div

∣

ergence)

∥ ∣ )

.

X

1. D(PY

2. (Simple

∣X∥QY X PX D PXPY X PXQY X

chain

∣ ∣

rule)

) =

D

(

Q

∣ ∥ ∣

(PXY

)

∥ XY D PY X QY X PX D PX QX

3. (Monotonicity) D PXY QXY D

) =

PY

(

QY

∣ ∥ ∣ ∣ ) + ( ∥ )

4. (Full chain rule)

( ∥ ) ≥ ( ∥ )

D PX i1⋯
n

Xn QX 11⋯Xn D PXi
i 1

∣X −

In the special case of

(

Q

∥

Q we

)

have

=∑
=

( ∥QX −1
i∣Xi−1 ∣PXi )

Xn =∏i Xi

D

5. (Conditioning

(PX1⋯Xn∥QX1⋯QXn) =D(PX1⋯Xn∥PX1⋯PXn D PXi QXi

= ○

increases divergence) Let P

) +∑ ( ∥

Y ∣X and QY ∣X be two kernels, let P

)

and ∣
Y

QY QY X PX . Then
= PY ∣X○PX

D(PY ∥QY ) ≤ D(PY

e

∣X∥QY ∣X
quality iff D

∣ )

Pictorially:

(

PX

PX ∣Y ∥QX ∣Y ∣PY ) = 0

PX

PY |X

QY |X

PY

QY
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6. (Data-processing for divergences) Let PY = PY ∣X ○ PX

PY = ∫ PY ∣X
QY

( ⋅ ∣ )

= ∫ PY ∣X

Pictorially:

( ⋅ ∣

x X

x)

dP

dQX
}Ô⇒D(PY ∥QY ) ≤D(PX∥QX) (2.3)

X Y

P X

Q Y

P Y

Q X

P Y | X
Ô⇒D(PX∥QX) ≥D(PY ∥QY )

Proof. We only illustrate these results for the case of finite alphabets. General case follows by doing
a careful analysis of Radon-Nikodym derivatives, introduction of regular branches of conditional
probability etc. For certain cases (e.g. separable metric spaces), however, we can simply discretize
alphabets and take granularity of discretization to 0. This method will become clearer in Lecture 4,
once we understand continuity of D.

1. E PY X
x∼PX [D(PY ∣X=x∥QY ∣X=x)] = E(X,Y )∼PXPY ∣X

[log ∣

QY ∣X

PX
PX

]

2. Disintegration: E(X,Y ) [log PXY
QXY

] = E(X,Y ) [log
PY ∣X

QY ∣X
+ log PX

QX

3. Apply 2. with X and Y interchanged and use D 0.

]

4. Telescoping PXn = n
i=1 PX ∣

n
Xi−1 and QXn i

i i 1

(

Q

⋅∥

X

⋅)

i X

≥

−1 .

5. Inequality follows from monotonicity. To get

=

conditions

= ∣

for equality, notice that by the chain
rule for D:

∏ ∏

D(PXY ∥QXY ) =D PY ∣X QY ∣X PX D PX PX

=

0

D

(

P

∥ ∣

P

) + (

X Y Y Y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸

( ∥QX ∣ ) +D(PY

=

∥

Q

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
)

Y

and hence we get the claimed result from positivit

∣

y

∣

of D.

∥ )

6. This again follows from monotonicity.

Corollary 2.1.

D(PX1⋯Xn∥QX1⋯QXn) ≥ ∑D

iff PX

(PXi∥QXi) or
n

n j 1 PXj

Note: In general we can have D

= =∏ =

(PXY ∥Q ) ≶ ( ∥ ) + ( ∥ )

( ∥ ( ) =
XY

( ∥

D P
)
X

<

QX
(

D
∥

PY
)

QY . For example, if X Y
under

=

P and Q, then
≠

D PXY D QX
(
Y D PX QX 2D PX QX . Conversely, if PX QX and

PY QY but PXY QXY we have D PXY QXY 0 D PX QX D PY QY .

=

=

Corollary 2.2. Y = f(X D PY QY

∥

D PX

) >

Q

= ( ∥ ) + ( ∥ )

)⇒ ( ∥ ) ≤ ( ∥ X), with equality if f is 1-1.
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Note: D(PY ∥QY ) =D(PX QX f is 1-1. Example: PX Gaussian,QX Laplace, Y X .

Corollary 2.3 (Large deviations

∥ )⇒/

estimate). For any subset

=

E we have

= = ∣ ∣

d PX E QX E D PX QX

⊂ X

Proof. Consider Y = 1

])

{X .

( [ ]∥ [ ≤ ( ∥ )

∈E}

2.3 Mutual information

Definition 2.3 (Mutual information).

I(X;Y ) =D(PXY ∥PXPY

Note:

)

• Intuition: I(X;Y ) measures the dependence between X and Y , or, the information about X
(resp. Y ) provided by Y (resp. X)

• Defined by Shannon (in a different form), in this form by Fano.

• Note: not restricted to discrete.

• I(X;Y ) is a functional of the joint distribution PXY , or equivalently, the pair PX , PY X .

Theorem 2.3 (Properties of I).

( ∣ )

1. I(X;Y ) =D(PXY ∥PXPY ) =D(PY ∣X∥PY ∣PX) =D(PX ∣Y ∥PX ∣PY

2. Symmetry: I

)

(X;Y I Y ;X

3. Positivity: I(X;Y

) = ( )

) ≥ 0; I(X;Y ) = 0 iff X

4.

⊥⊥ Y

I(f(X);Y ) ≤ I

5. “More data

(X;Y

Mor

); f one-to-one ⇒ I(f

e info”: I X1,X2;Z I

(X);Y I X;Y

⇒ ( ) ≥ (X1;Z

) = ( )

Proof. 1. I(X;Y ) = E log PXY

)

PXPY
= E log

PY ∣X

PY
= E log

PX∣Y .PX

2. Apply
(

data-processing inequality twice to the map x, y y, x to get D PX,Y PXPY
D PY,X X

∥

∥PY P
( ) → ( ) ( ) =

).

3. By definition.

4. We will use the data-processing property of mutual information (to be proved shortly, see
Theorem 2.5). Consider the chain of data processing: (x, y) ↦ (f(x), y) ↦ (f
Then

−1(f(x)), y).

I(X;Y ) ≥ I

5. Consider f

(f(X);Y ) ≥ I(f−1(f(X));Y ) = I

(X

(X;Y

1,X2 .

)

) =X1

Theorem 2.4 (I v.s. H).
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⎧

( ) =
⎪⎪
⎨
H( )

⎪⎪+∞

X X discrete
1. I X;X

⎩ otherwise

2. If X, Y discrete then
I(X;Y ) =H

If only X discrete then
I X;Y

(X) +H(Y ) −H(X,Y

H X H X Y

)

3. If X, Y are real-valued vectors, have

(

joint

) =

pdf

(

and

) −

al

(

l thr

∣

e

)

e differential entropies are finite
then

I(X;Y ) = h(X h Y h X,Y

If X has marginal pdf pX and conditional pdf

) +

pX

( ) − (

∣Y (x∣y) then

)

I(X;Y ) = h(X) − h(X ∣Y

4.

) .

If X or Y are discrete then I X;Y min H X ,H Y , with equality iff H X Y 0 or
H Y X 0, i.e., one is a deterministic

( ) ≤

function
( (

of
)

the
(

other.
)) ( ∣ ) =

Proof.

(

1.

∣

By

) =

definition, I(X;X) = D

D δx PX log 1

(PX ∣X∥PX ∣ x∥

∥
X)

(

PX) = Ex∼XD(

) =

δ P . If PX is discrete, then

X discrete,

atoms
( I

X x) and (X;X) H . If PX is notP

denote the set of of PX . Let ∆
but

= (

x,

)

x x
since

A = { ∶ ( ) > }

PX PX E

= {( ) ∶ ∈/ A} ⊂ X ×X

then let

( )

x

=

PX
(A

x

) >

0

. Then PX,X ∆ P c
X 0

we have by taking

(

E

×

∆ that

)( ) ≜ ∫X
PX(dx1 PX dx2 1 x1, x2 E

)(∆

)∫

= (PX × PX ) = 0.

X

Thus

(

PX

)

,X

{(

PX

) ∈

PX

}

and thus

I(X;X D

≪/ ×

) = (PX,X∥PXPX) = +∞ .

2. E log PXY
PXPY

= E [log 1
PX

+ log 1
PY

− log 1
PXY

].

3. Similarly, when PX,Y and PXPY have densities pXY and pXpY we have

D(PXY ∥PXPY ) ≜ E [
pXY

log h X h Y h X,Y
pXpY

4. Follows from 2.

] = ( ) + ( ) − ( )

Corollary 2.4 (Conditioning reduces entropy). X discrete: H X Y H X , with equality iff
X Y .
Intuition: The amount of entropy reduction = mutual information

( ∣ ) ≤ ( )

⊥⊥

Example: X =
i.i.d.

U Y , where U,Y ∼ Bern(1OR 2). Then X ∼ Bern(3
4) and H(X) = h(1

4) < 1bits =

H(X ∣Y = 0), i.e., conditioning on Y = 0 increases entropy. But on average, H(X ∣Y ) = P [Y = 0]H(X ∣Y =

0) + P [Y = 1]H(X ∣Y = 1) = 1 bits <H(X), by the strong concavity of h2

Note: Information, entropy and Venn diagrams:

(⋅).

1. The following Venn diagram illustrates the relationship between entropy, conditional entropy,
joint entropy, and mutual information.
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I(X;Y )H(Y |X) H(X|Y )

H(X,Y )

H(Y ) H(X)

2. If you do the same for 3 variables, you will discover that the triple intersection corresponds to

H(X1) +H(X2) +H(X3) −H(X1,X2) −H(X2,X3

which is sometimes denoted I X;Y ;Z . It can be both

) −H(X1,X3 H X1,X2,X3 (2.4)

( ) positive and

) +

negativ

(

e (why?).

)

3. In
(

general,
)

one can treat random
∪

variables as sets (so that r.v. Xi corresponds to set Ei and
X1,X2 corresponds to E1 E2). Then we can define a unique signed measure µ on the finite

algebra generated by these sets so that every information quantity is found by replacing

I H

e

→ µ ;→ ∩ ,

As an example, we hav

/ → ∪ ∣→ ∖ .

H(X1∣X2,X3) = µ

I

(E1

X1,X2;X3 X4 µ E

∖ (E2

1 E2

∪E ))

( ∣ ) = ((( ∪ )

3 , (2.5)

E3 E4 . (2.6)

By inclusion-exclusion, quantity (2.4) corresponds to µ(E

∩

1

) ∖ )

is not necessarily a positive measure.
∩E2 ∩E3), which explains why µ

Example: Bivariate Gaussian. X,Y — jointly Gaussian

I(
1

X;Y ) =
2

log
1

1 − ρ2
XY

where ρXY ≜
E[(X−EX)(Y −EY )]

1σXσY
∈ [− ,1] is the correlation

coefficient. -1 0 1
ρ

I(X;Y )

Proof. WLOG,
=

by shifting and scaling if necessary, we can assume EX EY 0 and EX2 EY 2 1.
Then ρ EXY . By joint Gaussianity, Y ρX Z for some Z 0,1 ρ2 X. Then using the
divergence formula for Gaussians (1.16), w

=

e get

= = = =

+ ∼ N ( − ) ⊥⊥

I(X;Y ) = D(PY ∣

= (N

X

1
E

(

P

E
∥ Y ∣PX

D ρX,1

)

− ρ2)∥N (0,1))

= [
2

log
1

1 − ρ2
+

log e

2
((ρX)2 + 1 − ρ2 − 1)]

=
1

2
log

1

1 − ρ2

25



Note: Similar to the role of mutual information, the correlation coefficient also measures the
dependency between random variables which are real-valued (more generally, on an inner-product
space) in certain sense. However, mutual information is invariant to bijections and more general: it
can be defined not just for numerical random variables, but also for apples and oranges.

Example: Additive white Gaussian noise (AWGN) channel. X ⊥⊥ N — independent Gaussian

+X Y

N

I(X;X +N) = 1
2 log (1 +

σ2
X

σ2
N

signal-to-noise ratio

)

(SNR)

Example: Gaussian vectors. X ∈ Rm,Y

°

∈ Rn — jointly Gaussian

I(X;Y) =
1

2
log

det ΣX det ΣY

det Σ X,Y

where ΣX ≜ E [(X −EX)(X −EX denotes

[ ]

)′] the covariance matrix
the the covariance matrix of the random vector

In
[X,Y] ∈ Rm

the special case of additive noise: Y X N for N

+
of X ∈ Rm, and Σ X,Y] denotes

=

n.
X, we have

[

( + ) =
1

I X;X N

+ ⊥⊥

2
log

det(ΣX +ΣN)

det ΣN

Σ Σ why?
since det Σ[X,X+N] = det ( X X

Σ det ΣX
X Σ det ΣN.

X

Example
+ΣN

: Binary symmetric channel

)

(BSC)
=

.

+X Y

N

X Y

1

0

1

0
1− δ

1− δ

δ

X ∼ Bern(
1

2
Y

), N ∼ Bern(δ)

=

=

X N

I(X;Y ) log

+

2 − h(δ

Example: Addition over finite groups. X is uniform

)

on G and independent of Z. Then

I(X;X +Z) = log ∣G∣ −H

Pr

(Z

oof. Show that X

)

+Z is uniform on G regardless of Z.
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2.4 Conditional mutual information and conditional
independence

Definition 2.4 (Conditional mutual information).

I(X;Y ∣Z) =D(

=

PXY ∣Z∥PX ∣ZPY ∣Z ∣PZ) (2.7)

Ez

where the product of two random transformations

∼PZ [I(X;Y ∣Z = z)] . (2.8)

is PX Z zPY Z z x, y PX Z x z PY Z y z ,
under which X and Y are independent conditioned on

(

Z.
∣ = ∣ = )( ) ≜ ∣ ( ∣ ) ∣ ( ∣ )

Note: I(X;Y ∣Z) is a functional of PXY Z .

Remark 2.2 (Conditional independence). A family of distributions can be represented by a directed
acyclic graph.

{

A
∶

simple example
=

is a Markov chain (line graph), which represents distributions that
factor as PXY Z PXY Z PXPY ∣XPZ∣Y }.

⎧⎪⎪⎪⎪
→ Z ⇔

⎪
PXZ∣Y = PX ∣

⎪

X → Y Y ⋅

⎪ ⇔ =

P

⎪

Z Y

⎪
⎪⎪⎪⎪

∣

⎪ ⇔

PZ XY

∣

Y Z =

PZ∣Y

⎪⎪⎪⎪
⎨

PX PX ⋅

⇔

PY X P
Cond. indep.

⎪⎪⎪
⎪⎪ ⇔

X,

⊥⊥

Y,Z

∣

form a Mark

∣ ⋅ Z

ov

∣Y

chain
notation

X Z Y

Theorem 2.5 (Further properties

⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎩
⎪⎪
⎪

⇔ PXY Z = PY ⋅ PX ∣Y ⋅ PZ∣

⇔ → →

Y

Z Y X

of Mutual Information).

1. I(X;Z ∣Y ) ≥ 0, with equality iff X → Y Z

2. (Kolmogorov identity or small chain rule)

→

I(X,Y ;Z) = I(X;Z) + I(Y ;Z ∣X

I Y ;Z I X;Z Y

)

3. (Data Processing) If X

= ( ) + ( ∣ )

→ Y

a) I X;Z I X;Y

→ Z, then

b) I

( ) ≤ (

(X;Y ∣Z) ≤ I X

)

( ;Y

4. (Full chain rule)

)

I(Xn;Y ) = I
k

∑
n

=1

(Xk;Y ∣Xk−1)

Proof. 1. By definition and Theorem 2.3.3.

2.
PXY Z
PXY PZ

=
PXZ
PXPZ

⋅
PY ∣XZ
PY ∣X
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3. Apply Kolmogorov identity to I(Y,Z;X):

I(Y,Z;X) = I

I

(X;Y ) + I
´
(
¹
X;Z

X

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸
=0

;Z I X;Y

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
∣Y
¹¹¹¹¶
)

= ( ) + ( ∣Z

4. Recursive application of Kolmogorov identity.

)

Example: 1-to-1 function I X;Y
In general, I(

I X; f Y
Note:

>

X;Y Z
⇒ (

Y
) =

∣ ) ≷ I(X; ). Examples:
a) “ ”: Conditioning does not always

(

decrease

( ))

M.I. To find counterexamples when X,Y,Z do
not
→

form
→

a Markov chain,
→

notice
←

that there is only one directed acyclic graph non-isomorphic to
X Y Z, namely X Y Z. Then a counterexample is

i.i.d. 1
X,Z ∼ Bern(

I

) Y =X ⊕Z

Z

(X;Y

I X;Y I X;X Z Z H X

)

log

=
2

⊥⊥

(

Then

∣ ) =

0 since X Y

2

b) “<”: Z = Y . I(
⇒

X;Y

( ⊕ ∣ = ( ) =

∣Y ) = 0.

)

Note:
(

(Chain rule for Chain =

∑ ∣ − ) = ∑

I
( ∣

rule
− )

for H)
(

Set
∣

Y X
−
n. Then H Xn I Xn;Xn

n
= I X ;Xn Xk 1 n

= H X Xk 1
k Xk

1 k 1 k , since H Xk X
n

k , 1 0.
( ) = ( ) =

Remark 2.3 (Data processing for mutual information via data

) =

processing of divergence). We
proved data processing for mutual information in Theorem 2.5 using Kolmogorov’s identity. In fact,
data processing for mutual information is implied by the data processing for divergence:

I(X;Z) =D(PZ∣X∥PZ ∣PX) ≤D(PY ∣X∥PY ∣PX I X;Y ,

PZ Y PZ Y
where note that for each x, we have PY X x

∣

PZ X x and PY

) =

∣

(

PZ . Therefore

)

if we have a
bi-variate functional of distributions P Q processing, then we can define an
“M.I.-like” quantity ID(

which satisfies data
via X;Y P

∣ =

P

ÐÐÐ→ ∣ =

Y X Y PX Ex PX PY

ÐÐ

X

Ð→

processing on Markov chains. A

D( ∥ )

in at f -divergence

)

ric
defined (1.15)). Th

≜ D

h
(

class of examples
) ≜

arises
∼

ing

D

is

(

by taking
satisfies

∣ ∥

data-pro

∣

cess going

∣ =x∥PY )

D =

which will satisfy data
Df (an f -divergence,

to be shown in Remark 4.2.

2.5 Strong data-processing inequalities

For many random transformations PY ∣X , it is possible to improve the data-processing inequality (2.3):
For any PX ,QX we have

D(PY ∥QY ) ≤

<

ηKLD(PX∥QX) ,

where ηKL 1 and depends on the channel PY ∣X only. Similarly, this gives an improvement in the
data-processing inequality for mutual information: For any PU,X we have

U →X Y I U ;Y ηKLI U ;X .

For example, for PY ∣X = BSC(δ

→

v

Ô⇒ ( ) ≤

) we ha e η = (1 − 2δ)2
KL . Strong

(

data-pro

)

cessing inequalities
quantify the intuitive observation that noise inside the channel PY ∣X must reduce the information
that Y carries about the data U , regardless of how smart the hook up U →X is.

This is an active area of research, see [PW15] for a short summary.
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2.6* How to avoid measurability problems?

As we mentioned in Remark 2.1 conditions imposed by Definition 2.1 on PY ∣X are insufficient.
Namely, we get the following two issues:

dP
1. Radon-Nikodym derivatives such as Y ∣X=x tlydQ (y ma

Y
) y not be join measurable in (x, y

2. Set

)

The easie

{x ∶ PY ∣X=x ≪ QY

st way to avoid

} may not be measurable.

all such problems is the following:

Agreement A1: All conditional kernels PY X in these notes will be assumed
to b
X

e
×

defined
Y

by choosing a σ-finite measure µ2 on
at

∣ ∶ →

and
on such th

X Y

P

Y measurable function ρ(y∣x) ≥ 0

Y ∣X(A∣x

for all x and measurable sets A and

)

ρ

= ∫ ρ(y
A

y x µ2

∣x)µ2(dy

∫Y ( ∣ ) (dy) = 1 for

)

all x.

Notes:

1. Giv
′′ =

en another
+ ′

kernel QY ∣X specified via ρ′(y∣x) and µ′2 we may first replace µ2 and µ′2 via
µ2 µ2 µ2 and thus

′′
assume that both PY X and

dominating measure µ2 . (This modifies ρ(y∣x
∣
) to ρ(

QY ∣X are specified in terms of the same

y∣x) dµ2

dµ′′2
(y).)

2. Given two kernels PY ∣X and QY ∣X specified in terms of the same dominating measure µ2 and
functions ρP (y∣x) and ρQ(y∣x), respectively, we may set

dPY ∣X ρ

dQY ∣X
≜

P (y∣x)

ρQ y x

outside of ρQ = 0. When PY ∣X=x ≪ QY ∣X=x the ab

(

ov

∣

e

)

derivative, which is automatically measurable in (x, y

3. Given QY specified as

)

gives a version of the Radon-Nikodym
.

dQY q y dµ2

we may set

= ( )

A0

This set plays a role of x PY X x

= {x ∶ ∫{q=0}
ρ(y

QY . e the

∣x

Unlik

)dµ2 = 0

latter A

}

0 is guaranteed to be measurable
by Fubini [Ç11, Prop.

{

6.9].
∶

By
∣

“pla
= ≪

ys a
}

role” we mean that it allows to prove statements like:
For any PX

PX,Y PXQY PX A0 1 .

So, while our agreement resolves th

≪

e two measurabilit

⇐⇒

y problems

[ ] =

above, it introduces a new
one. Indeed, given a joint distribution PX,Y on standard Borel spaces, it is always true that one
can extract a conditional distribution PY ∣X satisfying Definition 2.1 (this is called disintegration).
However, it is not guaranteed that PY ∣X will satisfy Agreement A1. To work around this issue as
well, we add another agreement:
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Agreement A2: All
X

joint distributions
Y

PX,Y are specified by means of
(

data:
)

µ1,µ2 –
σ-finite measures on and , respectively, and measurable function λ x, y such that

PX,Y (E) ≜ ∫ λ(x, y)µ1(dx)µ2 dy
E

( ) .

Notes:

1. Again, given a finite or countable collection of joint distributions PX,Y ,QX,Y , . . . satisfying A2
we may without loss of generality assume they are defined in terms of a common µ1, µ2.

2. Given PX,Y satisfying A2 we can disintegrate it into conditional (satisfying A1) and marginal:

PY ∣X(A∣x) = ∫ ρ
A

(
λ

y∣x)µ2(dy) ρ(y∣x) ≜
(x, y)

(2.9)

( ) = ( ) ( ) ( ) ≜ (

p

P

(x

X A p x µ1 dx p x

)

∫ ∫Y
λ x, η)µ2(dη) (2.10)

A

with ρ(y∣x) defined arbitrarily for those x, for which p(x

b

) 0.

Remark 2.4. The first problem can also e resolved with the

=

help of Doob’s version of Radon-
Nikodym theorem

Y

[Ç11, Chapter V.4, Theorem 4.44]: If the σ-algebra on is separable (satisfied
whenever is a Polish space, for example) and PY X

v
∣ =x QY

deriv
∣X=x then

measurable ersion of Radon-Nikodym ative

Y

dP

≪ there exists a jointly

(
x

y)↦
Y ∣X

x,
=

dQY ∣X=x
(y)
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