
§ 17. Channels with input constraints. Gaussian channels.

17.1 Channel coding with input constraints

Motivations: Let us look at
since supP I

X

infinite
(X;X + Z

second moment.
)

In
=

realit
∞

the additive Gaussian noise. Then the Shannon capacity is infinite,
achieved by X 0, P and P . But this is at the price of

⇒

y, limitation of
operations constraints on input distribution.

∼

transmission
N ( )

pow
→

er
∞

constraints on the encoding

Definition 17.1. An (n,M, ε)
[ ]→

-code satisfies the input
A

constraint

⇒

F Ann if the encoder is f
M Fn. (Without constraint, the encoder maps into n).

⊂ ∶

An

Fn

Codewords all land in a subset of An

b b
b

b b
b b

b b b
b b

b

Definition 17.2 (Separable cost constraint). A channel with separable cost constraint is specified
as follows:

1. A,B: input/output spaces

2. P ∣ ∶ An → BnY n Xn , n = 1,2, . . .

3. Cost c ∶ A→ R̄

Input constraint: average per-letter cost of a codeword xn (with slight abuse of notation)

(
1

xnc ) = c
k

∑
n

n =1

(xk) ≤ P

Example: A = B = R

• Average power constraint (separable):

1

n

n

∑
i=1

∣xi∣
2 ≤ P ⇔ ∥xn∥2 ≤

√
nP

• Peak power constraint (non-separable):

max
1≤

xi A xn A
i≤n

∣ ∣ ≤ ⇔ ∥ ∥∞ ≤
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Definition 17.3. Some basic definitions in parallel with the channel capacity without input
constraint.

• A code is an (n,M, ε,P )-code if it is an (n,M, ε)-code satisfying input constraint Fn ≜ {xn
1

∶

cn ∑ (xk

n

≤ P

• Finite-

)

fundamen

}

tal limits:

M∗

∗
(

(

n, ε,P ) = max

max

∶ ∃(

) =

M

Mmax n, ε,P

{ ) }

{M

• ε-capacity and Shannon capacity

∶ ∃(

n,M, ε,P

n,M, ε,P )

-code

max-code}

1
Cε(P ) = lim inf

n→∞
logM

n
∗ n, ε,P

C(P ) = lim
↓
Cε P

ε 0

( )

• Information capacity

( )

Ci(P ) =
1

lim inf
n→∞

n

∶
sup n

n P nX E[∑nk= c1 (Xk)]≤
I(X ;Y

nP
)

• Information stability: Channel is information stable if for all (admissible) P , there exists a
sequence of channel input distributions PXn such that the following two properties hold:

1 i.P.
iP Xn;Y n Ci P (17.1)

n
n nX ,Y

P

( ) → ( )

[c(Xn) > P + δ

Note: These are the usual definitions, except that

]→ 0 ∀δ > 0 . (17.2)

in Ci P
I(

, we are permitted to maximize
Xn;Y n

( )

) using input distributions from the constraint set {P n
Xn ∶ E[∑k

the
=1 c Xk nP instead of

distributions supported on Fn.

Definition 17.4 (Admissible constraint). P is an admissible constraint if

(

x

)] ≤ }

0 s.t. c x0

P PX E c X P . The set of admissible P ’s is denoted by c, and can
∃

be either
P0 P0 infx c x .

∈ A

in the
(

form
P0, or , , where

) ≤

⇔ ∃ ∶ [ ( )] ≤

(

Clearly

∞)

,

[

if P

∞)

c, then there

≜

is

∈A

no

(

co

)

∉ D de (even a useless one,

D

with 1 codeword) satisfying the
input constraint. So in the remaining

Proposition 17.1. Define f P

∈ D

1. f is concave and non-de

(

cre

)

we always assume P c.

supP I . Then
X E c X P X;Y

asing.

=

The

∶ [

domain

( )]≤ (

of f , dom

)

f x f x c.

2. One of the following is true: f(P ) is continuous and finite

≜

on

{ ∶ ( ) > −∞} = D

(P0,∞), or f =∞ on (P0,∞).

Furthermore, both properties hold for the function P ↦ Ci(P ).
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Proof.
↦

In (1)
(

all
)

statements are obvious, except for concavity, which follows from the concavity
of
[

P
(
X

)] ≤

I X;Y
+

¯. For any PXi such that E c Xi Pi, i 0,1, let X λPX0 λPX1 . Then
E ¯ ¯ ¯ ¯c X λP0 λP1 and I(X;Y ) ≥ λI

[

(X0;Y0)+

(⋅)

λI X1;Y1 . Hence f λP0 λP1 λf P0 λf P1 .
The second claim follows from conca

( )

vity of f .

( )] ≤ = ∼ +

To extend these results to Ci P observe that for

(

every

)

n

( + ) ≥ ( )+ ( )

P ↦
1

n
sup

PXn ∶E[c(Xn)]≤P
I(Xn;Y n)

is concave. Then taking lim infn→∞ the same holds for Ci(P ).

An immediate consequence is that memoryless input is optimal for memoryless channel with
separable cost, which gives us the single-letter formula of the information capacity:

Corollary 17.1 (Single-letterization). Information capacity of stationary memoryless channel with
separable cost:

Ci(P ) = f(P ) = sup
E[c(

I X;Y .
X)]≤P

( )

Proof. Ci(P
that for any

)

P
≥ f P is obvious by using PXn P n

X . For “ ”, use the concavity of f , we have

Xn ,
( ) = ( ) ≤ (⋅)

I(Xn;Y n) ≤∑
n

j=
I

1

( j)
1

Xj ;Y ≤∑
n

j=
f

1

(E[c(Xj)])≤nf(
n

n

∑
j=1

E[c(Xj)]) ≤ nf(P ).

?
17.2 Capacity under input constraint C P Ci P

Theorem 17.1 (General weak converse).

( ) = ( )

Cε(P ) ≤
Ci(P )

1 − ε

Proof. The argument is the same as before: Take any (n,M, ε,P ) ˆ-code, W → Xn → Y n → W .
Apply Fano’s inequality, we have

−h( ˆε) + (1 − ε) logM ≤ I(W ;W ) ≤ I(Xn;Y n) ≤ sup I(Xn;Y n nf
P nX ∶E[c(Xn)]≤P

) ≤ (P )

Theorem
X ∀ > ∀

17.2 (Extended Feinstein’s
( )

Lemma). Fix a random transformation PY X . PX , F
, γ 0, M , there exists an M,ε max-code with:

∣ ∀ ∀ ⊂

• Encoder satisfies the input constraint: f M F ;

• Probability of error bound:

∶ [ ]→ ⊂ X

εPX(F ) ≤ P[i(X;Y ) < log γ] +
M

γ
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Note: when F

Proof. Similar

=

to

X , it reduces to the original Feinstein’s Lemma.

the proof of the original Feinstein’s Lemma, define the preliminary decoding
regions Ec = {y ∶ i(c; y) ≥ log γ} for all c ∈ X

{

. Sequentially pick codew
−
ords {

} ≜ /∪

c1, . . . , cM from the
j 1set F and the final decoding region D1, . . . ,DM where Dj Ecj = Dk. The stoppingk 1

}

criterion
is that M is maximal, i.e.,

∀x0 ∈ F,P
M

⇔ ∀ ∈ X

Y [Ex0/ ∪j=

[ / ∪

1 Dj

= ∣ =

x

M

∣X = 0] < 1 − ε

⇒

x0 , PY Ex0

∼

j 1 D

[{

j X

(

x0 1 ε 1 x0 F 1 x0 F c

average over x0 PX , P i X;Y

] < ( − ) [

) ≥ log γ}/ ∪M

∈ ] + [ ∈ ]

= D ] ≤ (1 − ε)P (F ) + P (F cj 1 j X X

From here, we can complete the proof by following the same steps as in the pro

)

of

= 1 − εPX(F

of Feinstein’s

)

lemma (Theorem 15.3).

Theorem 17.3 (Achievability). For any information stable channel with input constraints and
P > P0 we have

C(P ) ≥ Ci(P ) (17.3)

Proof. Let us consider a special case of the stationary memoryless channel (the proof for general
information

≥

stable channel follows similarly). So we assume PY n Xn P n
Y X .

Fix n 1.
[ (

Since
)] <

the channel is stationary memoryless, we have
such that c X P , Pick logM n I X;Y 2δ and log γ

∣

= ( ( ) − ) =

P
=

n
Y n

(

∣Xn

)

=
∣
(PY ∣X)

( ( ) − )

. Choose a PX
E n X;Y δ .

With the input constraint set F 1
n = {xn ∶

I
x

extended
∑c k P , and iid input distribution P n

Xn Pn X ,
we apply the Feinstein’s Lemma, there exists

( ) ≤

an
}

(n,M, εn, P )max-code with the enco
=

der
satisfying input constraint F and the error probability

εn P
´¹¹¹¹¹¹¹¹

n n
X P

→
¸
(F

1
¹¹¹¹¹¹¹¹¶
) ≤

0 as n
´

b
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
(i(X ; n( (X;Y

y
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

Y

stationary

≤ I

WLLN and

)

memoryless

) − δ)) + exp

→ →∞ assumption

(−nδ

0

)

Also, since E[c(X)] < P , by WLLN, we have

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

P

¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
→
¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Xn(Fn) = P ( 1 cn ∑ (xk) ≤ P )→ 1.

⇒

εn 1 o 1 o 1

⇒

ε

∀

n 0 as n

ε,

( + ( )) ≤ ( )

→ →∞

∃n0, s.t. ∀n ≥ n0,∃(n,M, εn, P )max-code, with εn ≤ ε

Therefore

1
Cε(P ) ≥ logM I X;Y 2δ, δ 0, PX s.t. E c X P

⇒ Cε(
n

P

C

∶
sup

= ( ) − ∀ > ∀ [ ( )] <

) ≥
PX E[c(X)]<

lim
δP

ε P sup I

→
X

X

(I ;Y ) − 2δ
0

)

⇒ ;Y

(

Ci P Ci P
PX E c X P

where the last equalit

(

y

)

is

≥

from

∶ [ (

the

)]<

con

(

tinuit

)

y

=

of C

( −) = ( )

i on (P0,∞) by Proposition 17.1. Notice
that
( (

for general information
P i Xn;Y n) ≤ n(Ci − δ))→

stable channel, we just need to use the definition to show that
0, and all the rest follows.
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Theorem 17.4 (Shannon capacity). For an information stable channel with cost constraint and
for any admissible constraint P we have

C P Ci P .

Pro

ε(

of. The

( ) = ( )

C P

= >

) ≤
(
case of P P0 is treated in the homework. So assume P P0. Theorem 17.1 shows

Ci P )
1−ε , thus C(P ) ≤ Ci(P ). On the other hand, from Theorem 17.3 we have C(P ) ≥

Ci(P ).

Note: In homework, you will show that C(P0) = Ci(P0) also holds, even though Ci(P ) may be
discontinuous at P0.

17.3 Applications

17.3.1 Stationary AWGN channel

+

Z ∼ N (0, σ2)

X Y

Definition 17.5 (AWGN). The additive Gaussian noise (AWGN) channel is a stationary memoryless
additiv
= +

e-noise channel
∼ N

with
(

separable
) ⊥⊥

cost constraint: R, c x x2, PY X is given by
Y X Z, where Z

=

0, σ
+

2 X, and average power constraint EX2 P .
In other words, Y n Xn Zn, where Zn 0, I

A = B = ( ) =

≤
∣

n .

Gaussian
Note: Here “white” = uncorrelated = indep

∼ N (

enden

)

t.
Note: Complex AWGN channel is similarly defined: A = B = C, (x) = ∣x∣2 nc , and Z C 0, In

Theorem 17.5. For stationary (C)-AWGN channel, the channel capacity is equal to

∼

information
capacity, and is given by:

N ( )

C(P ) =
1

Ci(P ) =
2

log (1 +
P

σ2
) for AWGN

C(P ) = Ci(P ) = log (1 +
P

for
σ2

) C-AWGN

Proof. By Corollary 17.1,
Ci = sup I X;X Z

P 2
X EX P

Then use Theorem 4.6 (Gaussian saddlepoin

∶

t) to

≤

conclude

(

X

+ )

∼ N (0, P ) (or CN (0, P )) is the unique
caid.
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Note: Since Zn ∼ N (0, σ2)

∥

, then with high probability,
Zn∥2 concentrates around

√
nσ2. Similarly, due the power

constraint and the fact that Zn ⊥⊥ Xn, the received vector
Y n lies in an `2-ball of radius

√
n(P + σ2). Since the noise

can at most perturb the codeword by
√
nσ2 in Euclidean

distance, if we can pack M balls of radius
√
nσ2 into the

`2-ball of radius
√
n(P σ2 centered at the origin, then this

gives a good codebook
+

and
)

decision regions. The packing
number is related to the volume ratio. Note that the volume
of an ` n n

2-ball of radius r in R is given by cnr for some
cn(n(P+σ2 2

constan cn. Then
))n

t
/

cn(nσ2)n/2 = (1 + P
σ2 )

n/2
. Take the log

and divide by n, we get 1
2 log (1 + P

σ2 ).

c1

c2

c3

c4

c5

c6 c7

c8

cM

· · ·

√
n(P

+
σ 2
)

√
nσ2

Theorem 17.5 applies to Gaussian noise. What if the noise is non-Gaussian and how sensitive is
the capacity formula 1 log 1 SNR to the Gaussian assumption? Recall the Gaussian saddlepoint2
result we have studied in

(

Lecture
+

where we showed that for the same variance, Gaussian noise
is the worst which shows that the capacity of any non-Gaussian noise is at least 1 log 1 SNR .2
Conversely, it turns out the increase of the capacity can be controlled by how non-Gaussian the
noise is (in terms of KL divergence). The following result is due to Ihara.

( + )

Theorem 17.6
<

(Additiv
of X and EZ2

1

∞

e Non-Gaussian noise). Let Z be a real-valued random variable independent
. Let σ2 = VarZ. Then

2
log (1 +

P

σ2
) ≤ sup

PX ∶EX2≤P
I(X;X +Z) ≤

1

2
log (1 +

P
D

σ2
) + (PZ∥N (EZ,σ2)).

Proof. Homework.

Note: The quantity D(PZ∥N (EZ,σ2))

N ( )

is sometimes called the non-Gaussianness of Z, where
EZ,σ2 is a Gaussian

[

with
]

the same mean and variance as Z. So if Z has a non-Gaussian density,
say, Z is uniform on 0,1 , then the capacity can only differ by a constant compared to AWGN,
which still scales as 1

2
D( (

log SNR in the high-SNR regime. On the other hand, if Z is discrete, then
PZ∥N EZ,σ2)) =∞ and indeed in this case one can show that the capacity is infinite because

the noise is “too weak”.

17.3.2 Parallel AWGN channel

Definition
A = B =

17.6 (Parallel AWGN). A parallel AWGN channel with L branches is defined as follows:
RL; c(x) = ∑Lk=1 ∣xk∣

2; PY L∣XL ∶ Yk = Xk + Zk, for k = 1, . . . , L, and Z 2
k 0, σk are

independent for each branch.

Theorem 17.7 (Waterfilling). The capacity of L-parallel AWGN channel is given

∼

by

N ( )

C =
1

2

L

∑
j=1

log+
T

σ2
j

where log+(x) ≜ max(logx,0), and T ≥ 0 is determined by

P =∑
L

j=1

∣T − σ2
j ∣
+
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Proof.

Ci(P ) = sup
P LX

∶∑E[X2
i ]≤

I
P

(XL;Y L

L

)

≤
∑

sup
Pk≤P,Pk≥0 k

∑
=

=
L

∑
sup

Pk≤P,Pk≥0 k

∑
=

1

[
sup

1 E X2
k
]≤

I
Pk

(Xk;Yk

( +
Pk

)

log 1
1 2 σ2

k

the question b

)

oils down to the last maximization
ian multipliers

∑

for
(

the
+

constrain
) −

t Pk P by λ
solve max 1 Plog 1 k

2 µkPk2 σ
k

∑ ≤

+ λ(P −∑Pk).

µk, µkPk 0

with equality if Xk ∼ N (0, Pk) are independent. So
problem – power allocation

≥

: Denote the Lagrag
and for the constraint Pk 0 by µk. We want to

First-order condition on Pk gives that

1

2

1

solution

= λ
σ2
k + Pk

therefore the optimal is

− =

Pk = ∣T − σ2
k∣
+ T

k

∑
L

, T is chosen such that P =
=1

∣ − σ2
k∣
+

Note: The figure illustrates the power allocation via water-filling. In this particular case, the second
branch is too noisy (σ2 too big) such that it is better be discarded, i.e., the assigned power is zero.

Note: [Significance of the waterfilling theorem] In the high SNR regime, the capacity for 1 AWGN
channel is approximately 1

2 logP , while the capacity for L parallel AWGN channel is approximately
L
2 log(PL ) ≈ L logP for large P . This L-fold increase in capacity at high SNR regime leads to the2
powerful technique of spatial multiplexing in MIMO.

Also notice that this gain does not come from multipath diversity. Consider the scheme that a
single stream of data is sent through every parallel channel simultaneously, with multipath diversity,
the effective noise level is reduced to 1

L , and the capacity is approximately log(LP ), which is much

smaller than L
2 log(P forL ) P large.

17.4* Non-stationary AWGN

Definition
A = B =

17.7
( ) =

(Non-stationary
∶ =

AW
+

GN). A non-stationary
∼ N (

A
)

WGN channel is defined as follows:
R, c x x2, PYj ∣Xj Yj Xj Zj , where Zj 0, σ2

j .
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Theorem 17.8. Assume that for every T the following limits exist:

C̃i(T ) =
1

lim
n→∞ n

n

∑
j=1

1

2
log+

T

σ2
j

P̃ (T ) = lim
n→∞

1

n 1

∣ j
j
∑
n

2

=
T − σ ∣+

then
(

the
C̃i T )

capacity of the non-stationary AWGN channel is given by the parameterized form: C T
˜with input power constraint P T .

( ) =

Proof. Fix T > 0. Then it is clear from

( )

the waterfilling solution that

sup I(Xn;Y n) =∑
n 1

j=1 2
log+

T

σ2
j

, (17.4)

where supremum is over all PXn such that

E[c(Xn)] ≤
1 n

2
j

j

∣T

˜

− σ
n 1

∣+ . (17.5)

Now, by assumption, the LHS of (17.5) converges

∑

to

=

P (T ). Thus, we have that for every δ > 0

˜ ˜Ci P T δ Ci T (17.6)

˜ ˜Ci

(

P

(

T

) −

δ

) ≤

Ci

(

T

)

(17.7)

Taking δ → 0 and invoking continuity of

(

P

( ) + ) ≥ ( )

↦ Ci(P ), we get that the information capacity satisfies

Ci(P̃ (T

The channel is information stable. Indeed, from

)) = C̃i(T ) .

(16.17)

Var(i(
e

X ;Yj)) =
log2

j
2

Pj

Pj + σ2
j

≤
log2 e

2

and thus
n

∑
j=1

1
Var

n2
(i(Xj ;Yj)) <∞ .

From here information stability follows via Theorem 16.9.

Note: Non-stationary AWGN is primarily interesting due to its relationship to the stationary
Additive Colored Gaussian noise channel in the following discussion.

17.5* Stationary Additive Colored Gaussian noise channel

Definition 17.8 (Additive colored Gaussian noise channel ). An Additive Colored Gaussian noise
channel is defined as follows: A = B = R, c x x2, PY
Gaussian process with spectral density fZ

( ) = ∶ = +

(ω) > 0, ω ∈ [−
j ∣Xj Yj Xj Zj , where Zj is a stationary
π,π].
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Theorem 17.9. The capacity of stationary ACGN channel is given by the parameterized form:

C(T ) =
1

2π
∫

2π

0

1

2
log+

T

fZ(ω)
dω

P (T ) =
1

2π
∫

2π

0
∣T − fZ(ω)∣

+
dω

Proof. Take n ≥ 1, consider the diagonalization of the covariance matrix of Zn:

Cov(Zn) = Σ = U∗Σ̃U, such that Σ̃ = diag(σ1, . . . , σn

Since Cov(Zn) is positive semi-definite, U is a unitary matrix. Define Xn

)

UXn and Y n UY n,
the channel between X

̃

̃n and Y u
= ̃

̃n is th s
=

Ỹ n = X̃n

Cov UZn
+

Therefore e equiv

)

Zn

(

U

=

,

UCov(Zn

w have the alent channel as follows:

)U∗ = Σ̃

Ỹ n = X̃n + Z̃n, Z̃nj ∼ N (0, σ2
j ) indep across j

By Theorem 17.8, we have that

̃ =
1

C lim
n→∞ n

n

∑
j=1

log+
T

σ2
j

=
1

2π
∫

2π

0

1

2
log+

T

fZ(ω)
dω. ( by Szegö, Theorem 5.6)

lim
n→∞

1
T

j
∑
n

n =1

∣ − σ2
j ∣
+ = P (T )

Finally since U is unitary, C = C̃.

Note: Noise is born white, the colored noise is essentially due to some filtering.
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17.6* Additive White Gaussian Noise channel with Intersymbol
Interference

Definition
( ) =

17.9 (AWGN with ISI). An AWGN channel with ISI is defined as follows: A = B = R,
c x x2, and the channel law PY n∣Xn is given by

Yk =∑
n

=
hk−jXj +Zk , k 1

1

= , . . . , n
j

where Zk ∼ N (0,1) is white Gaussian noise, {hk, k = −∞, . . . ,∞} are coefficients of a discrete-time
channel filter.

Theorem 17.10.
response H ω

{ }

( )

Suppose that the sequence hk is an inverse Fourier transform of a frequency
:

hk =
1

(

2
∫

2π
eiωkH ω dω .

π 0

Assume also that H ω) is a continuous function on [0, 2π

( )

]. Then the capacity of the AWGN channel
with ISI is given by

C(T ) =
1

2π
∫

2π

0

1

2
log+(T ∣H(ω)∣2)dω

P (T ) =
1

2π
∫

2π

0
∣T −

1
+

Proof. (Sketch) At the decoder apply the inverse filter

∣

with

∣ dω
H(ω)∣2

frequency response ω ↦ 1 .H(ω) The
equivalent channel then becomes a stationary colored-noise Gaussian channel:

Ỹj = ˜Xj

˜where

+Zj ,

Zj is a stationary Gaussian process with spectral density

1
fZ̃(ω) = .

H ω 2

Then apply Theorem 17.9 to the resulting channel.
Remark: to make the above argument rigorous

∣

on

(

e

)∣

must simply carefully analyze the non-zero
error introduced by truncating the deconvolution filter to finite n.

17.7* Gaussian channels with amplitude constraints

We have examined some classical results of additive Gaussian noise channels. In the following, we
will list some more recent results without proof.

Theorem
= +

17.11 (Amplitude-constrained
∣ ∣ ≤

capacity of AWGN channel). For an AWGN channel
Yi Xi Zi with amplitude constraint Xi A and energy constraint ∑ni=

2
1Xi nP , we denote the

capacity by:
C A,P max I X;X Z .

≤

PX X A,EX 2 P

Capacity achieving input distribution

(

P

) =
∶∣ ∣≤

ete,

∣

with

∣ ≤
(

∗ is discr finitely

+

many

)

atoms on A,A . Moreover,

the convergence speed of limA→∞ (
X

C A,P

[− ]

) = 1
2 log(1 + P ) is of the order e−O(A2).

For details, see [Smi71] and [PW14, Section III].
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17.8* Gaussian channels with fading

Fading channels are often used to model the urban signal propagation with multipath or shadowing.
The received signal Yi is modeled to be affected by multiplicative fading coefficient Hi and additive
noise Zi:

Yi HiXi Zi, Zi 0,1

In the coherent case (also known

=

as CSIR

+

– for channel

∼ N (

state

)

information at the receiver), the
receiv
(

er
)

has access to the channel state information of Hi, i.e. the channel output is effectively
Yi,Hi . Whenever Hj is a stationary ergodic process, we have the channel capacity given by:

C( ) =
1

P E[ log 1 P H 2

2

and
(

the
)

capacity achieving input distribution is the

( +

usual

∣ ∣

P

)]

X 0, P . Note that the capacity
C P is in the order of log(P ) and we call the channel “energy efficient”.

In the non-coherent case where the receiver does not have

=

the

N (

information

)

of Hi, no simple
expression for the channel capacity is known. It is known, however, that the capacity achieving
input distribution is discrete, and the capacity

C P O log logP , P (17.8)

This channel is said to be “energy

(

inefficien

) = (

t”.

) →∞

With introduction of multiple antenna channels, there are endless variations, theoretical open
problems and practically unresolved issues in the topic of fading channels. We recommend consulting
textbook [TV05] for details.
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