§ 13. HYPOTHESIS TESTING ASYMPTOTICS 11

Setup:
H():Xn"'PXn HlanNQXn (lld)
test Pyxn: X" - {0,1}
specification: 1 -a = 7r§|76) < 9 ko B = Wéﬁ) <ok
Bounds:

e achievability (Neyman Pearson)

a=1-m=Pxn[Fn>T], B =mop = Qxn[Fn > 7]

e converse (strong)
V (o, B) achievable, a — v < Pxn[F > log~]

where

F=1lo
& 40 xn

(X™),

13.1 (Ey, Ey)-Tradeoff

Goal:
l-a<2 o g<combr

Our goal in the Chernoff regime is to find the best tradeoff, which we formally define as follows
(compare to Stein’s exponent in Lecture 11)

E(Eo) = sup{E1 : 3ng, Yn 2 ng, APz xn s.t. a>1- g ko g < ommEr

el 1
= liminf — log
n=ee 7 By gonmo (P, QM)

Define
agQm
dpPm
Log MGF of T under P (again assumed to be finite and also T # const since P # Q):
¥p(\) =logEp[e]
~log Y P(2) Q(x)* = log [ (dP)'(dQ)"

Y5(8) = sup A — ¥p(N)
AeR

d d o
T =log d—g(X), T, = log d—g(xk), thus log S (X™) = 3" T}
k=1
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Note that since ¥p(0) = ¥»p(1) = 0 from convexity p(A) is finite on 0 < A < 1. Furthermore,
assuming P «< @ and @ < P we also have that A » ¥ p(A) continuous everywhere on [0,1] (
on (0,1) it follows from convexity, but for boundary points we need more detailed arguments).
Consequently, all the results in this section apply under just the conditions of P «< ) and @ «< P.
However, since in previous lecture we were assuming that log-MGF exists for all A, we will only
present proofs under this extra assumption.

Theorem 13.1. Let P < Q, Q < P, then

Bo(0) =vp(0),  Ei(0) = wp(0) -0 (13.1)

parametrized by —D(P|Q) < 0 < D(Q|P) characterizes the best exponents on the boundary of
achievable (Ey, E7).

Note: The geometric interpretation of the above theorem is shown in the following picture, which rely
on the properties of ¥p(X) and 5 (8). Note that ¢p(0) = ¢p(1) = 0. Moreover, by Theorem 11.3
(Properties of 1% ), 6 = Ey(0) is increasing, 0 — E;(6) is decreasing.

Yp(A)

Eo=vp(0)

Ey =¢p(0) —0

slope 6 >~!

Remark 13.1 (Rényi divergence). Rényi defined a family of divergence indexed by A # 1

A
DA(PIQ) =+ logTEq [(ﬁ) ]z 0.

which generalizes Kullback-Leibler divergence since Dy (P|Q) 22, D(P|Q). Note that ¥p(A) =
(A=1)Dx(Q|P) =-AD1-A(P|Q). This provides another explanation that ¢ p is negative between 0

and 1, and the slope at endpoints is: ¢5(0) = -D(P|Q) and ¢'5(1) = D(Q|P).

Corollary 13.1 (Bayesian criterion). Fiz a prior (my,m1) such that mg+m =1 and 0 < mp < 1.
Denote the optimal Bayesian (average) error probability by

* a :
P7(n)= inf momo+mimop

with exponent

Eélimllog ! .
w8 P ()

Then
B = maxmin(Eo(6), E1(6)) = w5(0) =~ inf v (M),

regardless of the prior, and ¥}5(0) = C(P,Q) is called the Chernoff exponent.
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Proof of Theorem 13.1. The idea is to apply the large deviation theory to iid sum };'_; T}. Specifi-
cally, let’s rewrite the bounds in terms of T

e Achievability (Neyman Pearson)
let 7 =—-n#, W%T(L))zP[ZTkzne] Wéﬁ)zQ[ZTk<n9:|
k=1 k=1

e Converse (strong)

n
let Y= 2_n9, 7T1|0 + 2_n97T0|1 > P I:Z Tk 2> n@]
k=1

Achievability: Using Neyman Pearson test, for fixed 7 = —n#, apply the large deviation
theorem:

l-a= ﬂf}} =P LEI Ty > ne] =2 WpO)ro(n)  for 9> EpT = —-D(P|Q)

8= wéﬁ) =Q [Z Ty, < ne] = 97O+ - for 9 <EQT = D(Q|P)
k=1
Notice that by the definition of T" we have
U = logEq[e" (/)] < log Bp (e8P ] = (1 + 1)
= 15(0) = SAuﬂgw—zﬂp(M 1) =¢p(0) -0
thus (Eo, Eq) in (13.1) is achievable.
Converse: We want to show that any achievable (FEy, E1) pair must be below the curve

(Eo(6),E1(0)) in the above Neyman-Pearson test with parameter 6. Apply the strong converse
bound we have:

2—nE0 n 2—n02—nE1 > 2—nw;(0)+o(n)

=min(Ey, E1 +6) <¢p(0), Vn,0,-D(P|Q) <0< D(Q|P)
= either Fy <¢p(0) or By <¢p(0) -0

13.2 Equivalent forms of Theorem 13.1

Alternatively, the optimal (Ey, F1)-tradeoff can be stated in the following equivalent forms:

Theorem 13.2. 1. The optimal exponents are given (parametrically) in terms of X €[0,1] as
Ey=D(P\|P),  Ei1=D(R[Q) (13.2)

where the distribution Py is tilting of P along T, cf. (12.14), which moves from Py = P to
Py =Q as X\ ranges from 0 to 1:

dPy = (dP)"™(dQ)* exp{-¥p(\)}
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2. Yet another characterization of the boundary is

Ei(Ey)=,, min  D(@1Q).  0<EsD(@IP) (13.3)

Proof. The first part is verified trivially. Indeed, if we fix A and let (\) £ Ep, [T'], then from (11.13)
we have

D(P\|P) =9¢p(0),
whereas

dPy dPy dP *
D(PQ) = Er, loz 531 - B, oz 52 701 = DRAIP) ~En, [T] = i (6) =6.
Also from (11.12) we know that as A ranges in [0, 1] the mean 6 = Ep, [T'] ranges from —D(P|Q) to
D(Q|P).
To prove the second claim (13.3), the key observation is the following: Since @ is itself a tilting
of P along T' (with X = 1), the following two families of distributions

dp)\ = exp{)\T - @DP(A)} -dP (13.4)
dQx = exp{\'T —¢pg(\")} - dQ (13.5)

are in fact the same family with Qy = Py41.
Now, suppose that @* achieves the minimum in (13.3) and that Q" # @, Q* # P (these cases
should be verified separately). Note that we have not shown that this minimum is achieved, but it

will be clear that our argument can be extended to the case of when @), is a sequence achieving the
infimum. Then, on one hand, obviously

D|Q)=_—min  D(Q'|Q)<D(P|Q)

Q":D(Q'||P)<Ey
On the other hand, since Ey < D(Q|P) we also have
D(Q"[P) < D(Q[P).
Therefore,

dQ* dQ
&74P dQ*

Eq:[T] =Eq-[lo 1=D(Q7[P)-D(Q"|Q) € [-D(P|Q), D(Q[ P)]. (13.6)

Next, we have from Corollary 12.1 that there exists a unique Py with the following three properties:-

Ep, [T] =Eq-[T] (13.7)
D(P\|P) < D(Q"|P) (13.8)
D(PA\Q) < D(QY|Q) (13.9)

Thus, we immediately conclude that minimization in (13.3) can be restricted to Q* belonging to the
family of tilted distributions { Py, A € R}. Furthermore, from (13.6) we also conclude that A € [0, 1].
Hence, characterization of Ej (Ep) given by (13.2) coincides with the one given by (13.3). O

!Small subtlety: In Corollary 12.1 we ask Eo+[T] € (A, B). But A, B — the essential range of T' — depend on the
distribution under which the essential range is computed, cf. (12.10). Fortunately, we have Q <« P and P <« @, so
essential range is the same under both P and Q. And furthermore (13.6) implies that Eq«[T] € (A, B).
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Note: Geometric interpretation of (13.3) is as follows: As A increases from 0 to 1, or equivalently,
6 increases from —D(P|Q) to D(Q|P), the optimal distribution traverses down the curve. This
curve is in essense a geodesic connecting P to ) and exponents Fy,F; measure distances to P and
(. It may initially sound strange that the sum of distances to endpoints actually varies along the
geodesic, but it is a natural phenomenon: just consider the unit circle with metric induced by the
ambient Euclidean metric. Than if p and ¢ are two antipodal points, the distance from intermediate
point to endpoints do not sum up to d(p,q) = 2.

{Q: DQ|P) < Eok]
D(P|Q)

D@ Q) -

D(Q'|P) DQIP)

Non-linearity of the boundary corresponds V distribution @' in the tilted family,
to the scenario when the triangle inequality it minimizes Ey, E; simultaneously.
is not 7=" d a unique optimal path from P to )

space of distrition on X

4

13.3* Sequential Hypothesis Testing

Review: Filtrations, stopping times

e A sequence of nested o-algebras Fyc Fj c Fo--- ¢ Fpe-- ¢ F is called a filtration of
F.

A random variable 7 is called a stopping time of a filtration F, if a) 7 is valued in
Z. and b) for every n > 0 the event {7 <n} e F,.

e The o-algebra F, consists of all events E such that En{r <n} e F, for all n > 0.

e When F, =0{Xj,...,X,} the interpretation is that 7 is a time that can be deter-
mined by causally observing the sequence X;, and random variables measurable
with respect to F, are precisely those whose value can be determined on the basis
of knowing (X1,...,X;).

e Let M, be a martingale adapted to F,, i.e. M, is F,-measurable and E[M,|F\] =
M yin(n,k)- Then M, = M in(n,r) 1s also a martingale. If collection {M,} is uniformly
integrable then

E[MT] = E[M(J] :

e For more details, see [C11, Chapter V].
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Different realizations of X}, are informative to different levels, the total “information” we receive
follows a random process. Therefore, instead of fixing the sample size n, we can make n a stopping
time 7, which gives a “better” (Ey, F1) tradeoff. Solution is the concept of sequential test:

e Informally: Sequential test Z at each step declares either “Hy”, “H;” or “give me one more
sample”.

e Rigorous definition is as follows: A sequential hypothesis test is a stopping time 7 of the
filtration F, = 0{X1,...,X,,} and a random variable Z € {0,1} measurable with respect to
Fr.

e Each sequential test has the following performance metrics:

a=P[Z =0], B=Q[Z=0] (13.10)
lo = Ep[7], li = Eg[7] (13.11)

The easiest way to see why sequential tests may be dramatically superior to fixed-sample size
tests is the following example: Consider P = %50 + %51 and Q = %60 + %6_1. Since P [ @, we also
have P" | Q™. Consequently, no finite-sample-size test can achieve zero error rates under both
hypotheses. However, an obvious sequential test (wait for the first appearance of +1) achieves zero
error probability with finite average number of samples (2) under both hypotheses. This advantage
is also seem very clearly in achievable error exponents.

D(P||Q)

D(Q||P)
Theorem 13.3. Assume bounded LLRZ

P(x)
Q(x)

where cy is some positive constant. If the error probabilities satisfy:

‘log ’Sco,Vac
—loE -1 E
7T1|0S2 0 0, 7T0‘1§2 1=

for large ly, 11, then the following inequality for the exponents holds

EoEr < D(P|Q)D(Q|P).

2This assumption is satisfied for discrete distributions on finite spaces.
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with optimal boundary achieved by the sequential probability ratio test SPRT(A, B) (A, B are large

positive numbers) defined as follows:

T=inf{n:S, > B or S, <-A}

L, [0 iS>B
1L ifS, <-4

where . POXL)
Sp =) log k
1;1 Q(Xk)

is the log likelihood function of the first k observations.

Note: (Intuition on SPRT) Under the usual hypothesis testing setup, we collect n samples, evaluate
the LLR S,,, and compare it to the threshold to give the optimal test. Under the sequential setup
with iid data, {S, : n > 1} is a random walk, which has positive (resp. negative) drift D(P|Q)
(resp. —D(Q|P)) under the null (resp. alternative)! SPRT test simply declare P if the random
walk crosses the upper boundary B, or () if the random walk crosses the upper boundary —A.

Proof. As preparation we show two useful identities:

e For any stopping time with Ep[7] < co we have
Ep[S:]=Ep[7]D(P|Q)

and similarly, if Eg[7] < co then

Eq[S-] = -EQ[7]D(Q[P).

To prove these, notice that

M, =S, -nD(P|Q)

is clearly a martingale w.r.t. F,. Consequently,

is also a martingale. Thus .
E[M,] =E[My] =0,

or, equivalently,

E[Smin(T,n)] = E[min(Tv TL)]D(P”Q) .

(13.12)

(13.13)

This holds for every n > 0. From boundedness assumption we have |S,| < nc and thus
|Smin(n,7)| < 7, implying that collection {Syin(n,r),7 > 0} is uniformly integrable. Thus, we
can take n — oo in (13.13) and interchange expectation and limit safely to conclude (13.12).

Let 7 be a stopping time. The Radon-Nikodym derivative of P w.r.t. Q on o-algebra F; is

given by
dP|r, _

dQ|z,

Indeed, what we need to verify is that for every event E € F, we have

exp{S-}.

Ep[1p] = Eq[exp{S-}1E] (13.14)
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To that end, consider a decomposition

1g = Z 1Eﬂ{'r:n} .

n>0

By monotone convergence theorem applied to (13.14) it is sufficient to verify that for every n

EP[lEﬁ{T=n}:| =Eq [eXp{ST}lEﬁ{'r:n}] : (13.15)

This, however, follows from the fact that En {r =n} ¢ F, and jg"; n = exp{S,} by the very

definition of .5,,.

We now proceed to the proof. For achievability we apply (13.14) to infer
7Tl|0 = P[ST < _A]
- Eqlexp{$,}1{S, <-A}]
<e

Next, we denot 79 = inf{n : S,, > B} and observe that 7 < 7y, whereas expectation of 7y we estimate
from (13.12):
EP[T] < EP[T()] = EP[ST()] <B+c,

where in the last step we used the boundedness assumption to infer
S’T'() < B+

Thus

B+Co B
lo =Ep[7] < Ep[n N
0=Ep[T] <Ep[719] < D(P|Q) D(P|Q)

Similarly we can show o) < e Bandl < W for large A. Take B = gD(P|Q),A=11D(Q|P),
this shows the achievability.

for large B

S/ S —
under P, S,, — nD(P]|Q) is a martingale

Converse: Assume (Ey, F) achievable for large ly,l; and apply data processing inequality of
divergence:

d(P(Z=1)[Q(Z =1)) < D(P|Q)| -,

= Ep[S;] = Ep[r]D(P|Q) from (13.12)
=loD(P|Q)

notice that for lgEy and [;E; large, we have d(P(Z = 1)|Q(Z = 1)) ~ [ E;, therefore [1E; §
loD(P| Q). Similarly we can show that loEy $ 11 D(Q|P), finally we have

EoE; < D(P|Q)D(Q|P), as I, l1 — oo
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