
§ 12. Information projection and Large deviation

12.1 Large-deviation exponents

Large deviations problems make statements about the tail probabilities of a sequence of distri-
butions. We’re interested in the speed of decay for probabilities such as P 1 n

n k 1Xk γ for iid
Xk.

In the last lecture we used Chernoff bound to obtain an upper bound on
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via the
log-MGF and tilting. Next we use a different method to give a formula for the exponent as a convex
optimization problem involving the KL divergence (information projection). Later in Section 12.3
we shall revisit the Chernoff bound after we have computed the value of the information projection.
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Upper Bound on P [En]: The key observation is that given any X and any event E, PX(E) > 0
can be expressed via the divergence between the conditional and unconditional distribution as:
log 1

PX(E) =D(PX ∣X∈E∥PX). Define P̃Xn = PXn∣∑Xi>nγ , under which ∑Xi > nγ holds a.s. Then
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Next we prove (12.2). First, notice that the lower bound argument (12.4) applies equally well,
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12.2 Information Projection

The results of Theorem 12.1 motivate us to study the following general information projection
problem: Let be a convex set of distributions on some abstract space Ω, then for the distribution
P on Ω, we wan

E
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.
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∗
Remark: If we view the picture above in the Euclidean setting, the “triangle” formed by P ,

Q and Q (for Q∗,Q in a convex set, P outside the set) is always obtuse, and is a right triangle
only when the convex set has a “flat face”. In this sense, the divergence is similar to the squared
Euclidean distance, and the above theorem is sometimes known as a “Pythagorean” theorem.

E =

The
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[ ] ≥ }

set of Q’s that
∶ →

we will particularize to is the “half-space” of distributions
Q EQ X γ , where X Ω R is some fixed function. This is justified by relation (to be

established) with the large deviation exponent in Theorem 12.1. First, we solve this I-projection
problem explicitly.

Theorem 12.3. Given distribution P on Ω and X ∶ Ω→ R let

A = inf ψX
′ = essinfX = sup{a ∶X ≥

= ′ = = { ∶ ≤

a P -a.s. (12.10)

B supψX esssupX inf b X b P -a.s.

}

} (12.11)

1This can be found by taking the derivative and matching terms (Exercise). Be careful with exchanging derivatives
and integrals. Need to use dominated convergence theorem similar as in the “local behavior of divergence” in
Proposition 4.1.
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1. The information projection problem over E = {Q ∶ EQ[X
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where the last inequality holds with equality if and only if Q Pλ. In addition, this shows the
minimizer
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=

that even in corner case of γ = B
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minimizer is a point mass Q δB, which is also a tilted measure (P∞), since
, cf. Theorem 11.4.3.

2Note that unlike previous Lecture, here P and Pλ are measures on an abstract space Ω, not on a real line.
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Another version of the solution, given by expression (12.13), follows from Theorem 11.3.
For the third claim, notice that there is nothing to prove for γ

have just shown
ψX γ min D Q P
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while from the next corollary we have

( ) =
∶ [ ]≥

( ∥ )

inf D Q P inf
′
ψX .

Q

∗ γ
EQ X γ γ γ

′

The final step is to notice that ψ

∶ [ ]>
( ∥ ) =

>
( )

X is increasing and continuous by Theorem 11.3, and hence the
right-hand side infimum equalis ψ

∗

X
∗ (γ). The case of minQ∶EQ[X]=γ is handled similarly.

Corollary 12.1. ∀Q with EQ[X] ∈ (A,B), there exists a unique λ ∈ R such that the tilted distribu-
tion Pλ satisfies

EPλ
D Pλ

[

P

[

(

X] = EQ ]

∥ ) ≤D

and furthermore the gap in the last inequality equals

(

X

Q∥P

D

)

(Q Pλ D Q P D

Proof. Same as in the proof of Theorem 12.3, find the unique

∥ ) =

λ

(

s.t.

∥

E

)

P

−

λ
X

(Pλ∥P .

[ ] =

( ∥ ) = ∗ ( [ ]) = [ ] − ( )

ψX
Then P

′

)

(λ) = EQ
D Pλ ψX

D Q P D Q Pλ

[X].

( ∥ ) = ( ∥ ) +

EQ X λEQ X ψX λ . Repeat the steps (12.15)-(12.20) obtaining
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Remark: For any Q, this allows us to find a tilted measure Pλ that has the same mean yet
smaller (or equal) divergence.

12.3 Interpretation of Information Projection

The following picture describes many properties of information projections.

b

b

b

• Each set {Q ∶ EQ[X] = γ} corresponds to a slice. As γ varies from A to B, the curves fill the
entire space minus the corner regions.
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• When γ < A or γ > B, Q

• As γ varies, the Pλ’s trac

≪/ P .

e out a curve via ψ∗(γ) = D(Pλ∥P ). This set of distributions is
called a one parameter family, or exponential family.

Key Point: The one parameter
∗ ∈ E

family curve intersects each γ-slice Q EQ X γ
“orthogonally” at the minimizing Q , and the distance from P to Q is given by ψ λ . To see
this, note that applying Theorem 12.2 to the convex set gives us D Q
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Chernoff bound revisited: The proof of upper bound in Theorem 12.1 is via the definition of
information projection. Theorem 12.3 shows that the value of the information projection coincides
with the rate function (conjugate of log-MGF). This shows the optimality of the Chernoff bound
(recall Theorem 11.2.7). Indeed, we directly verify this for completeness: For all λ ≥ 0,
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Remark: The Chernoff bound is tight precisely because, from information projection, the lower

bound showed that the best change of measure is to change to the tilted
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12.4 Generalization: Sanov’s theorem
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Note:
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X
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E
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for half-spaces Q

∗
EQ X γ . The general
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Indeed, by first tilting from P to Q∗ we find

P [P̂ ∈ E1 ∩ E2] ≤ ˆ

≤

2−nD(Q∗∥P )Q∗[P
− ( ∥ ) ∗

∈ E

[ ∈ E

1

and

]

(12.21)

2 nD

∩ 2

Q∗ P ˆQ P 2

E ]

(12.22)

from here proceed by tilting from Q∗ to Q∗∗ and note that D(Q∗∥P )+D(Q∗∗∥Q∗) =D(Q∗∗∥P ).

Remark: Sanov’s theorem tells us the probability that, after observing n iid samples of a
distribution, our empirical distribution is still far away from the true distribution, is exponentially
small.
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