
§ 11. Hypothesis testing asymptotics I

Setup:

H0 ∶X
n ∼ PXn H1 ∶X

n ∼ QXn

test PZ

specification

∣X ∶ X nn → {0,1

1 − α

}

= π1∣0 β

Stein’s

= π0∣1

11.1 regime

1 − α = π1∣0 ≤ ε

β = π0

Note: interpretation of this specification,

∣ →
nVε

1 0 at the rate 2−

∣

usually a “miss”(0 1) is much worse than a “false alarm”
(1 0).

Definition 11.1 (ε-optimal exponent). V

∣

ε is called an ε-optimal exponent in Stein’s regime if

Vε

Vε

= sup{E ∶ n nE
0, n n0, PZ Xn s.t. α 1 ε, β 2 ,

⇔ =
1

lim

∃ ∀ ≥ ∃ ∣ > − < −

inf
n

}

→∞ n
log

1

β1 ε PXn ,QXn

where βα(P,Q

: Chec

= min

− ( )

Exercise

) PZ∣X ,P (Z=0

k the equivalence.

)≥αQ(Z = 0).

Definition 11.2 (Stein’s exponent).

V = lim
→
Vε.

ε 0

Theorem 11.1 (Stein’s lemma). Let PXn = PnX i.i.d. and QXn = QnX i.i.d. Then

Vε =D(P ∥Q), ∀ε ∈ (0,1

Consequently,

).

V =D(P ∥Q).

Example: If it is required that α ≥ 1 − 10−3, and β ≤ 10−40

≳ −
−

, what’s the number of samples needed?
log 10 40

Stein’s lemma provides a rule of thumb: n .D(P ∥Q)
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Proof. Denote F = log dP dP, and FndQ = log nX

dQXn
= ∑ni=1 log dP

dQ(Xi) – iid sum.

Recall Neyman Pearson’s lemma on optimal tests (likelihood ratio test): τ ,

α = P F τ , β Q F τ e

∀

−τ

Also notice that by WLLN, under P ,

(

as

>

n

) = ( > ) ≤

→∞,

1

n
Fn =

1

n

n

∑
i=1

log
dP (Xi)

dQ(Xi)

P
Ð→EP [log

dP
D

dQ
] = (P ∥Q). (11.1)

Alternatively, under Q, we have

1

n
Fn

P
Ð→EQ[log

dP
D Q P (11.2)

dQ

1. Show V ) =

=
ε ≥

(

D(P ∥

−

Q
)

D.

] = − ( ∥ )

Pick τ n D δ , for some small δ 0. Then the optimal test achieves:

α P

>

= (Fn

β e−n(D−
> n(D − δ))→ 1, by (11.1)

δ)

then pick n large enough (depe

≤

≥

nds
→

on ε, δ) such that α 1 ε, we have the exponent E D δ
achievable, Vε E. Further let δ 0, we have that Vε

≥ − = −

≥D.

2. Show Vε D P Q D.

a) (weak

≤

con

(

v

∥

erse)

) =

∀(α,β) ∈R(PXn ,QXn), we have

−h(α) +
1

α log
β
≤ d(α∥β) ≤D(PXn∥QXn) (11.3)

where the first inequality is due to

d(α∥β) = α log
α

β
+ ᾱ log

ᾱ 1
h

β̄
= − (α) + α log

β
+ ᾱ log

1

β̄

and the second is due to the weak converse Theorem 10.4 pro

≥ 0 and
´
≈
¹¹¹¹¹¹¹¹¸

0 for
¹¹¹¹¹¹¹¹¹¶

small β

ved in the last lecture (data
pro
∀

cessing inequality for divergence).
achiev

≥

able

−

exponent

≤

E <
−
Vε, by definition, there exists a sequence

≤

of tests PZ Xn such

that αn 1 ε and βn 2 nE . Plugging it in (11.3) and using h log 2, we have
∣

− log 2 + (1 − ε)nE ≤ nD(P ∥Q)⇒ E ≤
D(P ∥Q)

1 − ε
+

log 2
.

→
´
n
¹¹¹¹¹¹¹¹¹¹¹¹¹
(1
¸
−
¹¹¹¹¹¹¹¹¹¹¹¹¹
ε

0, as n→

)

Therefore

¶
∞

Vε ≤
D(P ∥Q)

1 ε

Notice that
→

this is weaker than what we hoped to prove, and this weak converse result is
tigh

(

t
∥

for
)

ε 0, i.e., for Stein’s exponent we di

−

d have the desired result V lim
D

= ε→0 Vε
P Q .

≥
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b) (strong converse) In proving the weak converse, we only made use of the expectation of
Fn in (11.3), we need to make use of the entire distribution (CDF) in order to obtain
stronger results.

Recall the strong converse result which we showed in the last lecture:

∀(α,β) ∈R(P,Q),∀γ, α γβ P F log γ

Here, suppose there exists a sequence of tests P nE
Z X

−

n
whic

≤

h

(

achiev

>

e αn

)

1 ε and βn 2− .
Then

1 − ε − γ2 nE α γβ

∣

n n PXn F

≥ − ≤

log = n(D +

n log γ .

Pick γ δ), by (11.1)

−

the

≤

RHS

−

goes to

≤

0, an

[

d w

>

e have

]

1 ε 2n(D+δ)2 nE

1

− o 1

⇒D

− − ( )

+ δ −E

≤

≥ log
n

(1 − ε + o(1))→ 0

⇒E ≤D as δ →

⇒

0

Vε ≤D

Note: [Ergodic] Just like in last section of data compression. Ergodic assumptions on PXn and
QXn allow one to show that

Vε =
1

lim
n→∞

D PXn QXn

n

the counterpart of (11.3), which is the key for picking

(

the

∥

app

)

ropriate τ , for ergodic sequence Xn is
the Birkhoff-Khintchine convergence theorem.
Note: The theoretical importance of knowing the Stein’s exponents is that:

E n, P nVε o n
Xn E 1 ε QXn E 2− + ( )

Thus knowledge of Stein’s

∀

exp

⊂ X

onent Vε

[

allo

]

ws

≥

one

−

to

⇒

prove

[

exp

] ≥

onential bounds on probabilities of
arbitrary sets, the technique is known as “change of measure”.

11.2 Chernoff regime

We are still considering i.i.d. sequence Xn, and binary hypothesis

H0 ∶X
n ∼ PnX H1 Xn QnX

But our objective in this section is to have both types

∶

of error

∼

probability to vanish exponentially
fast simultaneously. We shall look at the following specification:

1 − α

β

=

=

π nE
1∣0 →

→

0 at the rate 2 0

π0∣1 0 at the rate 2

−

−nE1

Apparently, E0 (resp. E1) can be made arbitrarily big at the price of making E1 (resp. E0)
arbitrarily

(

small.
)

So the problem boils down to the optimal tradeoff, i.e., what’s the achievable
region of E0,E1 ? This problem is solved by [Hoeffding ’65], [Blahut ’74].
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The optimal tests give the explict error probability:

αn = P [
1

n
Fn > τ] , βn = Q [

1
Fn

n
> τ

and we are interested in the asymptotics when n

]

→∞, in which scenario we know (11.1) and (11.2)
occur.

Stein’s regime corresponds to the corner points. Indeed, Theorem 11.1 tells us that when fixing
αn 1 ε, namely E0 0, picking τ D P Q δ (δ 0) gives the exponential convergence rate

(

of βn as E1 D P Q . Similarly, exchanging the role of P and Q, we can achieves the point
E0

=

,E1

− = = ( ∥ ) − →

points,

= ( ∥ )

Here

)

w
=

e need
Note:

(D(Q P ,0 . More generally, to achieve the optimal tradeoff between the two corner
to

is

∥

i
)

ntro
)

duce a powerful tool – Large Deviation Theory.
a roadmap of the upcoming 2 lectures:

1. basics of large deviation (ψX , ψX
∗ , tilted distribution Pλ)

2. information projection problem

∶
min

[ ]≥
D(Q∥P ) = ψ γ

Q EQ X γ

∗( )

3. use information projection to prove tight Chernoff bound

P [
1

X
k

∑
n

k γ
n 1

≥ ] = 2−nψ
∗(γ)+o(n)

=

4. apply the above large deviation theorem to (E0,E1 to get

(E0(θ) = ψP
∗ (θ), E1

)

(θ) = ψP
∗ (θ) − θ) characterize the achievable boundary.

11.3 Basics of Large deviation theory

Let Xn be an i.i.d. sequence and Xi ∼ P . Large deviation focuses on the following inequality:

[∑
n

P X o
i

i 1

≥ nγ] = 2−nE(γ)+ (n)

what is the rate function E

=

(γ) = − limn→∞
1
n logP [∑

n
i=1Xi γn ≥ ]? (Chernoff’s ineq.)

124



To motivate, let us recall the usual Chernoff bound: For iid Xn, for any λ 0,

P [∑
n

P
=

[
n

Xi ≥ nγ] = exp λ

≥

i 1

(
i
∑
=
Xi

1

) ≥ exp(nλγ

Markov

)]

≤ exp

exp

(− X
i
∑
n

nλγ)E [exp(λ i
1

nλγ n logE exp

=

λX

)]

Optimizing over λ 0 gives the non-asymptotic

= {−

upp

+ [ ( )]} .

≥ er bound (concentration inequality) which holds
for any n:

P [ X
i
∑
n

=
i

1

≥ nγ] ≤ exp{ − n sup
λ≥

λγ
0
( − logE [exp(λX

log MGF

)])}.

Of course we still need to show the lower bound.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Let’s first
(

in
)

troduce the two key quantities: log MGF (also known as the cumulant generating
function) ψX λ and tilted distribution Pλ.

11.3.1 log MGF

Definition 11.3 (log MGF).

ψX λ log E exp λX , λ R.

Per the usual convention, we will also

( )

denote

= (

ψ

[

P λ

(

ψ

)])

X λ if

∈

X P .

Assumptions: In this section, we shall restrict

( )

to

=

the

(

distribution

) ∼

PX such that

1. MGF exists, i.e., ∀λ ∈ R, ψX(λ) <∞,

2. X

Example

≠const.

:

• Gaussian: X ∼ N (
2

0,1)⇒ ψX(λ) = λ .2

• Example
( ) =∞

of
∀

R.V.
] ≠

such that ψ 3
X

ψ
(λ) does not exist: X = Z with Z ∼ Gaussian. Then

X λ , λ 0.

Theorem 11.2 (Properties of ψX).

1. ψX is convex;

2. ψX is continuous;

3. ψX is infinitely differentiable and

ψX
′ (λ) =

E[XeλX]
e

E eλX
−ψX(λ)E XeλX .

In particular, ψX(0) = 0, ψ

[ ]
= [ ]

X
′ 0 E X .

4. If a

( ) = [ ]

≤X ≤ b a.s., then a ≤ ψX
′ ≤ b;
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5. Conversely, if
A = inf

∈
ψX
′ (λ), B = supψ

λ R λ∈
X

R

′ (λ),

then A X B a.s.;

6. ψX is strictly

≤ ≤

convex, and consequently, ψX
′ is strictly increasing.

7. Chernoff bound:
P X γ exp λγ ψX λ , λ 0.

Remark 11.1. The slope of log MGF

( ≥

enco

) ≤

des the

(−

ran

+

ge of

(

X

))

. Indee

≥

d, 4) and 5) of Theorem 11.2
together show that the smallest closed interval containing the support of PX equals (closure of) the
range of ψX

′ . In other words, A and B coincide with the essential infimum and supremum (min and
max of RV in the probabilistic sense) of X respectively,

A

B

= essinfX ≜ sup{a ∶X ≥ a a.s.

esssupX inf b X b a.s.

}

Proof. Note: 1–4 can be proved righ

=

t now. 7 is

≜

the

{

usual

∶ ≤

Chernoff

}

bound. The proof of 5–6 relies
on Theorem 11.4, which can be skipped for now.

1. Fix θ ∈ (0,1). Recall Holder’s inequality:

[∣ ∣] ≤ ∥ ∥ ∥ ∥ ≥
1

E UV U p V q, for p, q 1,
p
+

1
1

q

where
/

the
=

L -norm of RV is defined by ∥U∥ = (

= /

E∣U ∣p)1/p. Applying

=

to E[e(
¯θλ1

p
+θλ2 X

p
) with

¯p 1 θ, q 1 θ, we get

E[exp((λ /p + ∥
¯

λ /q)X)] ≤ ∥ exp(λ X/p)∥ exp(λ X/q)∥ = E[exp(λ X)]θ

]

1 2 1 p 2 q 1 E exp λ2X
θ,

¯ ¯
i.e., eψX(θλ1+θλ2

[ (

) ≤ eψX(λ1)θeψX(λ2

)]

)θ.

2. By our assumptions on X, domain of ψX is R, and by the fact that convex function must be
continuous on the interior of its domain, we have that ψX is continuous on R.

3. Be careful when exchanging the order of differentiation and expectation.

Assume λ > 0 (similar for λ 0).
First, we show that E

≤

[∣XeλX ∣] exists. Since

e∣X

Xe

∣

λX

≤ X

∣

e + e−X

∣ ≤ e∣(λ+1)X ∣ ≤ e(λ+1)X + e−(λ+1)X

by assumption on X, both of the summands are absolutely integrable in X. Therefore by
dominated convergence theorem (DCT), E XeλX exists and is continuous in λ.

Second, by the existence and continuity of

[∣

E
∣]

[∣XeλX ∣], u↦ E[∣XeuX ∣] is integrable on [0, λ],
we can switch order of integration and differentiation as follows:

eψX(λ) = E[eλX] = E [1 + ∫
λ λ
XeuXdu]

Fubini
= 1 + ∫ E

(
0

ψ

[XeuX

)

0
]du

⇒ X
′ (λ eψX λ) = E[XeλX]
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thus ψX
′ (λ) = e−ψX(λ)E[XeλX] exists and is continuous in λ on R.

Furthermore,
↦ [ ]

using similar application of DCT we can extend to λ C and show that
λ E eλX is a holomorphic function. Thus it is infinitely differentiable.

∈

4.

a ≤X ≤ b⇒ ψ′ (
E

X λ) =
[XeλX]

E[eλX]
∈ [a, b].

5. Suppose PX[X > B
But then Pλ X B
know from Theorem

]

11.4

> 0 (for contradiction), then PX
ε 0 for λ (see Theorem

.2 that EPλ X ψX

[ > ε >
[ ≤

X > B + 2ε] 0 for some small 0.

Pλ might still have some

+ ]→

very small

→

mass

∞

[ ] =

at

′ ( ≤

11.4.3 below). On the hand, we
λ)

other
B. This is not yet a contradiction, since

− >

a very negative value. To show that this cannot
happen, we first assume that B ε 0 (otherwise just replace X with X − 2B). Next note that

B ≥ EPλ[X] = EPλ[
≥ [

X1 X

EPλ

<B−ε

X1

{

X B ε

}] +EPλ[ ] + [ ]

{ < − }] +EPλ
EPλ X 1 X B ε

[

X1{B ≤B+ε} EPλ X1{X

X1 X

−ε X > +ε

B

≤

ε ]

B }

≥ − [∣ ∣ (B

{

{ < − }] + + ε)

>

Pλ

+

[X

}

> B + ε

1

] (11.4)

therefore we will obtain a contradiction if we can show

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

that

¹¹¹¹¹¹¹¹¹¹
→
¸

EP

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

λ
X 1 X B ε 0 as λ .

To
′ (

that
) ≥

end,
−

notice that convexity of ψX implies that ψX
B ε

′
[∣ ∣

↗ B. Thus,
{

for
ψ λ

< −
all

}
λ λ0 we ha

∞

ve

X

]→ →

≥

2 . Thus, we have for all λ ≥ λ0

ψX(λ) ≥ ψX(λ0) + (λ − λ0)(B −
ε

2
) = c + λ(B −

ε
,

2
) (11.5)

for some constant c. Then,

E [∣X ∣1{X < B − ε}] = E[∣X ∣eλX ψ
Pλ

− X(λ)1{X < B − ε}]

≤

(11.6)

E[∣X ∣eλX−c−λ(B−
ε
2
)1{X < B − ε}] (11.7)

≤ E[∣X ∣eλ(B−ε)−c−λ(B−
ε
2
)] (11.8)

= E[∣X ∣]e−λ
ε c
2
− → 0 λ (11.9)

where the first inequality is from (11.5) and the second from X

→∞

< B − ε. Thus, the first term
in (11.4) goes to 0 implying the desired contradiction.
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6. Suppose ψX is not strictly convex. Since we know that ψX is convex, then ψX must be
“flat”

(

(affine)
+ ) =

near
(

some
) +

point, i.e., there
∈

exists a small neighborhood of some λ0 such that
ψX λ0 u ψX λ0 ur for

[

some
( −

r
)] =

R. Then ψPλ u ur for all u in small neighborhood
of

[

zero,
=

or
] =

equivalently E
[

u X r
Pλ

=

e
] =

1 for u small. The
X

(

11.1 implies
Pλ r 1, but then P

) =

following Lemma
X r 1, contradicting the assumption X ≠ const.

Lemma 11.1. E[euS

Proof. Expand in Taylor

] = 1 for all u ε, ε then S 0.

series around

∈ (−

u

)

0 to obtain

=

E S 0, E S2 0. Alternatively, we can
extend the argument we gave for differentiating ψ the function z zS

X λ to show that E e is
holomorphic on the entire complex plane1

=

. Thus by uniqueness,

[ ] = [ ] =

( )

E
↦ [ ]

[euS] = 1 for all u.

Definition 11.4 (Rate function). The rate function ψX R R is given by the Legendre-
Fenchel transform of the log MGF:

∗ ∶ → ∪ {+∞}

ψX
∗ (γ) = supλγ ψX

λ

Note i a

∈R

: The maxim zation (11.10) is nice convex optimization

− (λ) (11.10)

problem since ψX is strictly convex,
so we are maximizing a strictly concave function. So

∗
we can find the maximum by taking the

derivative and finding the stationary point. In fact, ψX is the dual of ψX in the sense of convex
analysis.

Theorem 11.3 (Properties of ψX
∗ ).

1. Let A = essinfX and B = esssupX. Then

ψX
∗ (γ)

⎪
⎧⎪⎪ λγ − )

= ⎨

ψX(λ for some λ s.t. γ = ψ′

⎪

X(λ , A

⎪⎪

1
< γ < B

⎩

log

)

+∞
P ( BX=γ) γ = A or

, γ A or γ B

2. ψX
∗ is strictly convex and strictly positive except ψX

∗ (E[X 0.

< >

3. ψX
∗ is decreasing when γ ∈ (A,E X

]) =

[ ]), and increasing when γ ∈ [E[X],B)

1More precisely
{

,
∶
if
∣

we
∣
only [ ] ∣ ∣ ≤
< }

know that E eλS is finite for λ 1 then the function z S] is holomorphic in
the vertical strip z

↦ E
Rez

[ez
1 .
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Proof. By Theorem 11.2.
−

4, since ≤ ≤ ≤ ′ ≤

↦ ( )

A X B a.s., we have A ψX B. When γ A,B , the strictly
concave function

>

λ
<

λγ ψ
↦
X λ

−

has a
(

single
)

stationary point which achieves the unique
When B

)

maxim
γ (resp. A), λ λγ ψX λ

∈ (

um.

≤

increases (resp. decreases) without bounds. When γ = B,
since X B a.s., we have

ψX
∗ (B) = sup

∈
λB − log(E[exp(λX)]) = − log inf

∈
E B

λ
[exp X

R λ R
(λ

log lim

(

= −
→∞

E[exp(λ(X −B))] = − logP (X = B),
λ

− ))]

by monotone convergence theorem.
By Theorem

∗
11.2.6, since ψX is strictly con

(

v
)

ex,
=

the derivativ
∗
e
(

of
)

ψ
≥
X and ψX are inverse to each

other. Hence ψ
[
X

]

is
=

strictly
′ ( )

convex. Since ψX 0 0, we have ψX γ 0. Moreo

∗

ver, ψX
∗ (E[X

.
]) 0

follows from E X ψX 0
=

11.3.2 Tilted distribution

As early as in Lecture 3, we have already introduced tilting in the proof of Donsker-Varadhan’s
variational characterization of divergence (Theorem 3.6). Let us formally define it now.

Definition 11.5 (Tilting). Given X P , the tilted measure Pλ is defined by∼

Pλ(dx) =
eλx

P dx eλx λ

eλX
−ψX

E
( )P dx (11.11)

In other words, if P has a pdf p,

{

then

∶

the

[

pdf

]

of

(

Pλ

) =

is given by p λx

}

λ

(

x

)

e ψX λ

∈

p x .

Note: The set of distributions Pλ λ R parametrized by λ is called a

−

standar

( )

d exponential
family, a very useful model in statistics. See [Bro86, p. 13].

( ) = ( )

Example:

• Gaussian: P = N (0,1) with density p(x) = 1√
2π

exp(−x2/2). Then Pλ has density
exp(λx)

exp(λ2/2)
1√
2π

exp(−x2/2) = 1√ exp x λ 2 2 . Hence Pλ2π

• Binary : P is uniform on 1 . Then

(−(

Pλ

−

1

) / )

eλ

= N (λ,1).

{± } ( ) =
eλ+e−λ which puts more (resp. less) mass on 1 if

λ > 0 (resp. < 0). Moreover, Pλ
D
Ð→δ1 if λ→∞ or δ−1 if λ→ −∞.

• Uniform: P is uniform on [0, 1]. Then Pλ is also supported on [0, 1] with pdf pλ(x) =
λ exp(λx)

.
eλ 1

Therefore as λ increases, Pλ becomes increasingly concentrated near 1, and Pλ δ1 as λ
.

−
.

Similarly, Pλ δ0 as λ

So we see that Pλ shifts

→

the mean

→ −∞

of P to the right (resp. left) when λ > 0 (resp. < 0).

→

Indeed,

→

this

∞

is a general property of tilting.

Theorem 11.4 (Properties of Pλ).

1. Log MGF:
ψPλ(u

2. Tilting trades mean for divergence:

) = ψX(λ + u) − ψX(λ)

EPλ
D Pλ

[

P

=

(

X]

∥ ) =

ψX E
ψX

′

∗
(λ)

(

P X if λ 0. (11.12)

ψX
′
≷ [ ] ≷

(λ)) = ψX
∗ (EPλ[X]). (11.13)
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3.

P (X > b

P X a

) > 0⇒ ∀ε > 0, Pλ(X ≤ b − ε)→ 0 as λ

0 ε 0, Pλ X a ε 0 as λ

→∞

D D
Therefore if Xλ Pλ,

(

then

< ) > ⇒ ∀ > ( ≥ + )→

∼ XλÐ→ essinfX = A as λ→ −∞ and Xλ

→

esssup

−∞

X B as λ .

Proof. 1. By definition. (DIY)

Ð→ = →∞

2. EPλ[X] =
E[X exp(λX)]
E[exp(λX)] = ψ′X(λ), which is strictly increasing in λ, with ψ′X(0) = EP [X].

D(Pλ∥P ) = EPλ log dPλ
dP = EPλ log

exp(λX)
λ λ ψE exp λX EPλ X ψX λ λψX ψX λ ψX X λ ,

where the last equality follows from
[

Theorem
( )] =

11.3
[

.1.
]− ( ) = ′ ( )− ( ) = ∗ ( ′ ( ))

3.

Pλ(X ≤ b − ε) = EP [eλX−ψX λ

≤ [

1 X b ε

E eλ(b−ε ψ
P

( )

)− X(λ
[

)1

≤ − ]]

[X ≤ b

e−λεeλb−ψX

λε

(λ)
− ]]

≤

ε

≤
e−

exp(−
the

→ 0
P [X > b

where

]
as λ→∞

λb
[ > ] ≤

+

last inequality is due to the usual Chernoff bound (Theorem 11.2.7): P X b
ψX(λ)).
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