§ 11. HYPOTHESIS TESTING ASYMPTOTICS I

Setup:

Ho: X" ~Pxn  Hp: X" ~Qxn
test PZ|X” 3Xn - {071}

specification 1 —a =y B =
11.1 Stein’s regime

1—0[2771|0§€

B=mop —~ 0 at the rate g Ve

Note: interpretation of this specification, usually a “miss”(0|1) is much worse than a “false alarm”
(1]0).

Definition 11.1 (e-optimal exponent). V¢ is called an e-optimal exponent in Stein’s regime if
Ve =sup{E : Ing, ¥n > ng, 3Pz xn s.t. a>1-¢3< o b Y

1 1
< V. =liminf — log
noo - B (Pxn,Qxn)

where (3, (P, Q) = minPZ‘X,P(Z=O)2a Q(Z =0).

Exercise: Check the equivalence.

Definition 11.2 (Stein’s exponent).

V =1limV..

e—0

Theorem 11.1 (Stein’s lemma). Let Pxn = Py i.i.d. and Qxn» = Q% i.i.d. Then
V.= D(PIQ). Vee(0.1),

Consequently,
V =D(P|Q).

Example: If it is required that o> 1-1072, and 8 < 107%°, what’s the number of samples needed?
log 10740

L . s
Stein’s lemma provides a rule of thumb: n > DPIO) -
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Proof. Denote F = log %, and F), =log jgiz =y, log %(Xi) — iid sum.

Recall Neyman Pearson’s lemma on optimal tests (likelihood ratio test): Vr,
a=P(F>T1), B=Q(F>1)<e”

Also notice that by WLLN, under P, as n — oo,

L, 1&, dP(X) e Py
EF”‘n;bng(Xi) p[long]_D(PHQ). (11.1)

Alternatively, under (Q, we have
1P dr
—F,—Eg[log—]=-D(Q|P 11.2
+ 5 Bollog ] = -D(QIP) (11.2)
1. Show V. > D(P|Q) = D.
Pick 7 =n(D -4), for some small § >0. Then the optimal test achieves:

a=P(F,>n(D-0))~1, by (11.1)
Bse—n(D—ﬁ)

then pick n large enough (depends on €, ) such that « > 1 ¢, we have the exponent £ =D -§
achievable, V. > E. Further let § - 0, we have that V. > D.

2. Show V. < D(P|Q) = D.

a) (weak converse) V(«, 3) € R(Pxn,Qxn), we have
h(a) + alog% < d(a]B) < D(Pxn|Qxn) (11.3)

where the first inequality is due to

« & 1 1
d(a||8) = alog = + a@log = = -h(a) + alog = + alog =
(o) 5 3 () 5 3

——
>0 and ~ 0 for small 3

and the second is due to the weak converse Theorem 10.4 proved in the last lecture (data
processing inequality for divergence).

V achievable exponent F < V¢, by definition, there exists a sequence of tests Py xn» such
that a,, > 1 - € and 3, < 27"F. Plugging it in (11.3) and using h < log 2, we have

D(PIQ) | log?
l1-¢ n(l-¢)

—_——
—0, as n—>oo

—log2+ (1-e)nE<nD(P|Q) = E <

Therefore
v PPl
1-¢

Notice that this is weaker than what we hoped to prove, and this weak converse result is
tight for € — 0, i.e., for Stein’s exponent we did have the desired result V' =lim._ oV >

D(P|Q).
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b) (strong converse) In proving the weak converse, we only made use of the expectation of
F, in (11.3), we need to make use of the entire distribution (CDF) in order to obtain
stronger results.

Recall the strong converse result which we showed in the last lecture:

V(a, B) e R(P,Q),Yy, a-~B<P(F>logy)

Here, suppose there exists a sequence of tests Py x, which achieve aj, 2 1-€ and 3, < 2k,

Then
1-e-~72"F <ay, — 4B, < Pxn[F, >log~].

Pick logy = n(D +§), by (11.1) the RHS goes to 0, and we have
1—e—2mP)gmE ¢ (1)
:>D+5—E2%10g(1—6+0(1))—>0
=E<Dasd—0
=>V. <D
O

Note: [Ergodic] Just like in last section of data compression. Ergodic assumptions on Px» and
@ xn~ allow one to show that

o1
Ve = lim ~D(Pxn[Qxn)
n—oo n

the counterpart of (11.3), which is the key for picking the appropriate 7, for ergodic sequence X" is
the Birkhoff-Khintchine convergence theorem.
Note: The theoretical importance of knowing the Stein’s exponents is that:

VEc X", Pxn[E]>1-¢ = Qxn[E]>2Vero(m)
Thus knowledge of Stein’s exponent V. allows one to prove exponential bounds on probabilities of
arbitrary sets, the technique is known as “change of measure”.
11.2 Chernoff regime
We are still considering i.i.d. sequence X", and binary hypothesis
Hy: X" ~ P} Hy: X"~ Q%

But our objective in this section is to have both types of error probability to vanish exponentially
fast simultaneously. We shall look at the following specification:

l-a=m—>0 at the rate 9-nEo
B=mop —~ 0 at the rate PR

Apparently, Fy (resp. Ej) can be made arbitrarily big at the price of making F; (resp. Ep)
arbitrarily small. So the problem boils down to the optimal tradeoff, i.e., what’s the achievable
region of (Ey, F1)? This problem is solved by [Hoeffding '65], [Blahut '74].

123



D(P||Q)

D(Q\|IP) = E¢
D(QAQ) = Ex

space of dist.

characterize the boundary of the achievable region of (Ej. F)

The optimal tests give the explict error probability:
1 1
ap=P|=F,>1|, Bn=Q|—-F,>1
n n

and we are interested in the asymptotics when n — oo, in which scenario we know (11.1) and (11.2)

occur.
Stein’s regime corresponds to the corner points. Indeed, Theorem 11.1 tells us that when fixing

ap =1 —¢€, namely Ey =0, picking 7= D(P|Q) -0 (6 - 0) gives the exponential convergence rate

of B, as E1 = D(P|Q). Similarly, exchanging the role of P and (), we can achieves the point

(Eo, E1) = (D(Q|P),0). More generally, to achieve the optimal tradeoff between the two corner

points, we need to introduce a powerful tool — Large Deviation Theory.

Note: Here is a roadmap of the upcoming 2 lectures:

1. basics of large deviation (1 x, %, tilted distribution Py)

2. information projection problem

Q:Egl[i)r(l]mD(QllP) =" (7)

3. use information projection to prove tight Chernoff bound

P [l S X, > 7] _ o () +o(n)
k=1

4. apply the above large deviation theorem to (Fp, E7) to get

(Eo(0) =¢p(0), E1(0)=1¢p(8)-0) characterize the achievable boundary.

11.3 Basics of Large deviation theory

Let X" be an i.i.d. sequence and X; ~ P. Large deviation focuses on the following inequality:

p [i x> m] _ g-nE(3)+o(n)
i=1

what is the rate function F(7v) = —lim,— e %logP [# > 'y]? (Chernoft’s ineq.)
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To motivate, let us recall the usual Chernoff bound: For iid X", for any A > 0,

P [in > nfy] = P [exp (AiXi) > exp(nx\w)]

Markov n
< exp(-nAy)E [exp (/\ > XZ):|
i=1
= exp{-nA\y+nlogE[exp(AX)]}.

Optimizing over A > 0 gives the non-asymptotic upper bound (concentration inequality) which holds
for any n:

P[iXi > n'y] < exp{ - ns}gg()\’y —logE [exp()\X)])}.

log MGF

Of course we still need to show the lower bound.
Let’s first introduce the two key quantities: log MGF (also known as the cumulant generating
function) ¥x (N\) and tilted distribution Py.

11.3.1 log MGF
Definition 11.3 (log MGF).
¥x(\) =log(E[exp(AX)]), AeR.
Per the usual convention, we will also denote ¥p(A) = px(A) if X ~ P.
Assumptions: In this section, we shall restrict to the distribution Px such that
1. MGF exists, i.e., VA e R,9x () < o0,
2. X #const.
Example:
e Gaussian: X ~N(0,1) = ¢x(\) = 2.

2
e Example of R.V. such that 1x(\) does not exist: X = Z3 with Z ~ Gaussian. Then
by (A) = 00, VA] 0.

Theorem 11.2 (Properties of ¢x).
1. ©¥x s convex;
2. Yx is continuous;
3. Yx is infinitely differentiable and
W) = —EEEE( i;? - X OE[X N,
In particular, ¥x(0) = 0,9 (0) =E[X].
4. Ifa< X <b a.s., then a <Y’ <b;
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5. Conversely, if
A=inf gy (N), B =suptk(\),
AeR AeR

then A< X <B a.s.;
6. Yx is strictly convex, and consequently, 1’y is strictly increasing.

7. Chernoff bound:
P(X >7) <exp(-A\y+¢¥x (), A>0.

Remark 11.1. The slope of log MGF encodes the range of X. Indeed, 4) and 5) of Theorem 11.2
together show that the smallest closed interval containing the support of Px equals (closure of) the
range of ¢. In other words, A and B coincide with the essential infimum and supremum (min and
max of RV in the probabilistic sense) of X respectively,

A= essinf X 2sup{a: X >a as.}

B = esssup X 2inf{b: X <b a.s.}

Proof. Note: 1-4 can be proved right now. 7 is the usual Chernoff bound. The proof of 5-6 relies
on Theorem 11.4, which can be skipped for now.

1. Fix 6 € (0,1). Recall Holder’s inequality:

1 1
EUVI<|Ulpl Vg forp,g21, 2+ = =1

where the L,-norm of RV is defined by |U], = (E|UP)?. Applying to E[e®1+022)X] with
p=1/0,q=1/0, we get

Efexp((\/p + A2/a)X)] < [ exp(MX/p) ] exp(A2X [q) |4 = E[exp(M X)’E[exp(A2X) 17,
ie., e¥x (OM+0X2) ¢ ¥x (A1)0oPx (A2)0

2. By our assumptions on X, domain of ¢x is R, and by the fact that convex function must be
continuous on the interior of its domain, we have that ¥ x is continuous on R.

3. Be careful when exchanging the order of differentiation and expectation.

Assume A > 0 (similar for A <0).
First, we show that E[|X e X|] exists. Since

Xl ceX 1 X

X[ < dODX] ¢ (ORDX L =(rDX
by assumption on X, both of the summands are absolutely integrable in X. Therefore by
dominated convergence theorem (DCT), E[|Xe ] exists and is continuous in .

Second, by the existence and continuity of E[|Xe*¥|], u — E[|Xe®¥|] is integrable on [0, \],
we can switch order of integration and differentiation as follows:

A - A
ez/zx()\) _ E[e)\X] _ E[l i A XeuXdu:I Fuglm 1+ A ]E[XEUX] du

= U (Ve = E[XeM]
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thus 1 (\) = e "X ME[ X e*X] exists and is continuous in A on R.

Furthermore, using similar application of DCT we can extend to A € C and show that
A = E[e*¥] is a holomorphic function. Thus it is infinitely differentiable.

4.
aSXszwg(()\):IEjéE(e—f;? € [a,b].
”(‘,:1““/“3( ()\)
/b
/7
E[X]

5. Suppose Px[X > B] > 0 (for contradiction), then Px[X > B+ 2¢] > 0 for some small € > 0.
But then Py[X < B +¢€] - 0 for A - oo (see Theorem 11.4.3 below). On the other hand, we
know from Theorem 11.4.2 that Ep, [X] =9’ ()\) < B. This is not yet a contradiction, since
Py might still have some very small mass at a very negative value. To show that this cannot
happen, we first assume that B —€ > 0 (otherwise just replace X with X —2B). Next note that

B>Ep,[X]=Ep, [X1ixp-}] + Ep, [X1{p_ccx<Bra] + En [X1ixsB1e)]
> Ep, [X1ixcp-e}] + Ep [X1{x>B1c}]
> —Ep, [|[X[1{x<p-a}] + (B +€) PA[X > B +¢] (11.4)
—_————

-1

therefore we will obtain a contradiction if we can show that Ep, [|X[1{x<p-] = 0 as A - oo.
To that end, notice that convexity of ¢x implies that ¢, ~ B. Thus, for all A > \g we have
Y (X) 2 B - §. Thus, we have for all A> Xg

Ux(V) 2hx(Ao) + (A= X)(B- ) = e+ A(B-3). (1L5)

for some constant c¢. Then,

Ep, [|X[1{X < B-¢€}] = E[| X[} M 1{X < B-¢}] (11.6)
<E[|X[eMAMBD1{X < B-¢}] (11.7)
<E[|X|e*B--eAB-3)] (11.8)
—E[|X[]le?2¢ >0 A—oo (11.9)

where the first inequality is from (11.5) and the second from X < B —e¢. Thus, the first term
in (11.4) goes to 0 implying the desired contradiction.
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6. Suppose Yy is not strictly convex. Since we know that x is convex, then ¥ x must be
“flat” (affine) near some point, i.e., there exists a small neighborhood of some Ay such that
Px (Ao +u) =¥x(Ag) + ur for some r € R. Then ¢p, (u) = ur for all u in small neighborhood
of zero, or equivalently [Ep, [e“(X_T)] = 1 for w small. The following Lemma 11.1 implies
P\[X =r] =1, but then P[X =r] =1, contradicting the assumption X # const.

O
Lemma 11.1. E[e*®] =1 for all u € (-, €) then S = 0.

Proof. Expand in Taylor series around u = 0 to obtain E[S] =0, E[S?] = 0. Alternatively, we can
extend the argument we gave for differentiating ¥ x () to show that the function z ~ E[e**] is
holomorphic on the entire complex planel. Thus by uniqueness, E[¢**] =1 for all w. O

Definition 11.4 (Rate function). The rate function 9% : R - Ru {+o00} is given by the Legendre-
Fenchel transform of the log MGF:

Vx(7) = SAuﬂlgM—wx(A) (11.10)

Note: The maximization (11.10) is a nice convex optimization problem since 1y is strictly convex,
so we are maximizing a strictly concave function. So we can find the maximum by taking the
derivative and finding the stationary point. In fact, 1% is the dual of 1x in the sense of convex
analysis.

tx (A) U (p)

A s ——
£ OC oC

—x(p)

o

Theorem 11.3 (Properties of % ).
1. Let A =essinf X and B =esssup X. Then

Ay = Yx (X)) for some X\ s.t. v =1 (), A<~v<B

P (y) = log prx=s ~v=A or B
+00, y<Aory>B

2. 1% s strictly convex and strictly positive except ¥y (E[X]) = 0.

3. % is decreasing when vy € (A,E[X]), and increasing when ~ € [E[X], B)

"More precisely, if we only know that E[¢*®] is finite for |\ < 1 then the function z — E[¢**] is holomorphic in
the vertical strip {z : |Rez| < 1}.
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Proof. By Theorem 11.2.4, since A < X < B a.s., we have A <9y < B. When 7 € (A4, B), the strictly
concave function A — Ay —1x () has a single stationary point which achieves the unique maximum.
When ~ > B (resp. < A), A = Ay —1x(\) increases (resp. decreases) without bounds. When v = B,
since X < B a.s., we have

¥x (B) = sup AB - log(E[exp(AX)]) = ~log inf E[exp(A(X - B))]
AeR €

- log/\li_)riloE[exp()\(X - B))]=-log P(X = B),

by monotone convergence theorem.

By Theorem 11.2.6, since 1 x is strictly convex, the derivative of 1 x and 1% are inverse to each
other. Hence 9% is strictly convex. Since ¢x(0) =0, we have ¢% () > 0. Moreover, ¢ (E[X]) =0
follows from E[X ] = ¢ (0). O

11.3.2 Tilted distribution

As early as in Lecture 3, we have already introduced tilting in the proof of Donsker-Varadhan’s
variational characterization of divergence (Theorem 3.6). Let us formally define it now.

Definition 11.5 (Tilting). Given X ~ P, the tilted measure Py is defined by

e)\x

E[e)‘X]

In other words, if P has a pdf p, then the pdf of Py is given by py(z) = e’ ¥xMNp(z).

Py(dz) = P(dz) = N p(dy) (11.11)

Note: The set of distributions {Py : A € R} parametrized by A is called a standard exponential
family, a very useful model in statistics. See [Bro86, p. 13].

Example:
e Gaussian: P =N (0,1) with den51ty p(z) = exp( 2/2). Then Py has density
xp(Az
eip‘gg\g/g) \/1_exp( ~2?[2) = exp( (x-\)? /2) Hence P\ = N (A, 1).

e Binary: P is uniform on {+1}. Then P\(1) = % which puts more (resp. less) mass on 1 if
A >0 (resp. <0). Moreover, P)\gél if A\ > o0 ord_qif A = —o0.

e Uniform: P is uniform on [0,1]. Then P, is also supported on [0, 1] with pdf p)(z) = )‘e:;;fi‘x).
Therefore as A increases, Py becomes increasingly concentrated near 1, and Py — J; as A — oo.
Similarly, Py = §p as A — —oo.

So we see that Py shifts the mean of P to the right (resp. left) when A >0 (resp. < 0). Indeed, this
is a general property of tilting.

Theorem 11.4 (Properties of Py).

1. Log MGF:
Ypy (u) = Px (A +u) —Px ()

2. Tilting trades mean for divergence:

Ep, [X] = ¢Xx(A) 2Ep[X] if A20. (11.12)
D(PA|P) = ¥k (¥x (V) = ¥k (Ep, [X]). (11.13)
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P(X>b)>0=>VYe>0,P\(X<b-€)>0as A— o
P(X<a)>0=>Ve>0,PA\(X2a+¢) >0 as A > —o0

Therefore if Xy ~ Py, then X)\g essinf X = A as A - —oco and XAg esssup X = B as A — oo.
Proof. 1. By definition. (DIY)

2. Ep,[X] = % =’ (), which is strictly increasing in A, with ¢ (0) = Ep[X].

D(PA|P) = Ep, log %53 = Ep, log 522050 = AEp, [X]-6x (A) = My (W)~ (V) = 05 (0 (W),
where the last equality follows from Theorem 11.3.1.

PA(X <b—¢€) =Ep[eM¥*NV1[X <b-€]]
<Ep[ert-97¥x(N1[X <b-€]]
< e MeAb-tx (V)

e—)\e

< -
- P[X >0]

—»0as A — o0
where the last inequality is due to the usual Chernoff bound (Theorem 11.2.7): P[X >b] <

exp(-Ab+ 1 ().
O

130



MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu
https://ocw.mit.edu/terms



