
§ 1. Information measures: entropy and divergence

Review: Random variables

• Two methods to describe a random variable (R.V.) X:

1. a function X Ω from the probability space Ω, ,P to a target space .

2. a distribution

∶

PX

→

on

X

some measurable space (X ,

( F

.

) X

• Convention: capital letter – RV (e.g. X); small letter –

F

realization

)

(e.g. x0).

• X

∑∞
— disc

j (

rete if there exists a countable set xj , j 1, . . . such that

=1 PX xj

= { =

) = 1. X is called alphabet of X, x
X

∈ X – atoms and PX(xj

}

) – probability
mass function (pmf).

• For discrete RV support suppPX x PX x 0 .

• Vector RVs: Xn
1 X1, . . . ,Xn . Also

= { ∶

denoted

( ) >

just

}

Xn.

• For a vector RV

≜

X

(

n and S

)

⊂ {1, . . . , n} we denote XS = {Xi, i ∈ S}.

1.1 Entropy

Definition 1.1 (Entropy). For a discrete R.V. X with distribution PX :

H(X) = E[
1

log
PX(X)

]

=
x

∑
∈X
PX(x)

1
log .

PX x

Definition 1.2 (Joint entropy). Xn = (X1,X2, . . . ,Xn) – a random

( )

vector with n components.

( n) = ( ) = [
1

H X H X1, . . . ,Xn E log
PX1,...,Xn(X1, . . . ,Xn)

.]

Definition 1.3 (Conditional entropy).

H(X ∣Y ) = Ey∼PY [H(PX ∣Y =y)] = E[ log
1

,
PX Y X Y

i.e., the entropy of H(PX

∣ ( ∣ )
]

∣Y =y) averaged over PY .

Note:
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• Q: Why such definition, why log, why entropy?
Name comes from thermodynamics. Definition is justified by theorems in this course (e.g.
operationally by compression), but also by a number of experiments. For example, we can
measure time it takes for ants-scouts to describe location of the food to ants-workers. It was
found that when nest is placed at a root of

=

a full binary tree of depth d and food at one of the
leaves, the time was proportional to log 2d d – entropy of the random variable describing food
location. It was estimated that ants communicate with about 0.7 − 1 bit/min. Furthermore,
communication time reduces if there are some regularities in path-description (e.g., paths like
“left,right,left,right,left,right” were described faster). See [RZ86] for more.

• We agree that 0 log 1
0 = 0 (by continuity of x↦ x log 1 )x

• Also write H(PX) instead of H(X) (abuse of notation, as customary in information theory).

• Basis of log — units

log2 ↔ bits

loge ↔ nats

log256 ↔ bytes

log ↔ arbitrary units, base always matches exp

Example (Bernoulli): X ∈ {0,1}, P[X = 1

X)
1

] = PX(1) ≜ p

H( = h(p) ≜ p log
p
+ p log

1

p

where h(⋅) is called the binary entropy func-
tion.

Proposition 1.1. h
0,1 and

h

(

p

⋅)

[ ]

is continuous, concave on

′( ) = log
p

p

with infinite slope at 0 and 1.

0 11/2

Example (Geometric): X ∈ {0,1,2, . . .} P[X = i] = Px(i) = p ⋅ (p)
i

H(X) =
∞
∑
i=0

p ⋅ pi log
1

p ⋅ pi
=

∞
∑
i=0

ppi(i log
1

p
+ log

1

p
)

= log
1

p
+ p ⋅ log

1

p
⋅
1 − p

p2
=
h(p)

p

Example (Infinite entropy): Can H(X) = +∞? Yes, P[X = k] = c
k ln2 k

, k = 2,3,⋯
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Review: Convexity

• Convex
∈ [

set : A subset S of some vector space is convex if x, y S αx ᾱy S for
all α 0,1

∈ ⇒ + ∈

]. (Notation:

e.g., unit interval

≜ −

[ ]

ᾱ 1 α.)

0,1 ; S = {probability distributions on X}, S = {PX ∶ E[X] = 0}.

• Convex function: f S R is

– convex if f αx

∶

ᾱ

→

y αf x ᾱf y for all x, y S,α 0,1 .

– strictly con

(

vex

+

if f

) ≤

(α

−

x + ᾱ

(

y

) +

) < αf

( ) ∈ ∈ [

(x) + ᾱf(y) for all x ≠ y ∈ S

]

, α ∈ (0,1

– (strictly) concave if f is (strictly) convex.

).

e.g., x ↦ x logx is strictly convex; the mean P xdP is convex but not strictly
convex, variance is concave (Q: is it strictly conca

↦

v
∫
e? Think of zero-mean distribu-

tions.).

• Jensen’s inequality : For any S-valued random variable X

– f is convex f EX Ef X

– f is strictly

⇒

conv

(

ex

) ≤ ( )

⇒ f(EX
unless X is a constant (X E

)

X
<

a.s.)
)

=

Ef(X

Ef(X)

f(EX)

Famous puzzle: A man says, ”I am the average height and average weight of the
population. Thus, I am an average man.” However, he is still considered to be a little
overweight. Why?
Answer: The weight is roughly proportional to the volume, which is roughly proportional
to the third power of the height. Let PX denote the distribution of the height among the
p
(

opulation.
) <

So by Jensen’s inequality, since x ↦ x3 is strictle convex on x 0, we have
EX 3 EX3, regardless of the distribution of X.

Source: [Yos03, Puzzle 94] or online [Har].

>

Theorem 1.1. Properties of H:

1. (Positivity) H(X) ≥ 0 with equality iff X = x0 a.s. for some x0

2.

∈ X .

(Uniform maximizes entropy) H(X) ≤ log ∣X ∣, with equality iff X is uniform on X .

3. (Invariance under relabeling) H X H f X for any bijective f .

4. (Conditioning reduc

(

es entropy)

( ) = ( ( ))

H X ∣Y ) ≤H(X), with equality iff X and Y are independent.
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5. (Small chain rule)
H(X,Y ) =H(X) +H(Y ∣X) ≤H X H Y

6. (Entropy under functions) H(X) =H(X,f(X)) ≥H(f X

( )

with

+ (

equality

)

iff f is one-to-one
on the support of PX ,

7. (Full chain rule)

( ))

H(
n n

X1, . . . ,Xn) =
i
∑
=
H Xi

1

( ∣Xi−1) ≤
i

e

∑
=
H

1

(Xi), (1.1)

↑ quality iff X1, . . . ,Xn mutually independent (1.2)

Proof. 1. Expectation of non-negative function
2. Jensen’s inequality
3. H only depends on the values of PX , not locations:

H( ) =H( )

4. Later (Lecture 2)

5. E log 1
PXY (X,Y ) = E[ log 1

( ( ))
PX(X)⋅PY ∣X

6. Intuition: X
(Y ∣X

, f X contains the same
)]

amount of information as X. Indeed, x x, f x
is 1-1. Thus by 3 and 5:

H(X) =H(X,f(X)) =H(f(X)) +H(X f X H f X

↦ ( ( ))

The bound is attained iff H

∣

ens

( ))

iff

≥

(X ∣f(X)) = 0 which in turn happ X is
7.

(

a

(

constant

))

given f(X).
Telescoping:

PX1X2⋯X = PX 1n 1PX2∣X1
⋯PX ∣Xn

n
−

Note: To give a preview of the operational meaning of entropy, let us play the following game. We
are allowed to make queries about some unknown discrete R.V. X by asking yes-no questions. The
ob
[

jectiv
=

e of the game is to guess the realized value of the R.V. X. For example, X a, b, c, d with
P X a 1 2, P X b 1 4, and P X c P X c 1 8. In this case, we can ask “X a?”.
If not, pro

] =

ceed by asking “X b?”. If not, ask “X c?”, after which we will kno

∈ {

w for su

}

re the
realization of

/

X.

[ =

resulting

] = /

average

[

num

=

=

(

The
)

ber

] =

of

[

questions

= ] =

is

/

1 2 1 4 2 1 8 3 1 8 3

=

1.75,
which equals H X in bits. It turns out (chapter 2)

=

that the
/

minimal
+ / ×

( )

average number of yes-no
questions to pin down the value of X is always between H X bits and

+

H

/

X

×

1

+

bits

/ ×

. In

=

this
special case the above scheme is optimal because (intuitively) it always splits the

( )

probab
+

ility in half.

1.1.1 Entropy: axiomatic characterization

One might wonder why entropy is defined as H(P ) = ∑pi log 1 and if there are other definitions.pi
Indeed, the information-theoretic definition of entropy is related to entropy in statistical physics.
Also, it arises as answers to specific operational problems, e.g., the minimum average number of bits
to describe a random variable as discussed above. Therefore it is fair to say that it is not pulled out
of thin air.

Shannon has also showed that entropy can be defined axiomatically, as a function satisfying
several natural conditions.

(

Denote a
)

probability distribution on m letters by P p1, . . . , pm and
consider a functional Hm p1, . . . , pm . If Hm obeys the following axioms:

= ( )
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a) Permutation invariance

b) Expansible: Hm(p1, . . . , pm−1,0

c) Normalization: H 1
2

) =Hm−1(p1, . . . , pm−1).

(2 ,
1 log

uit

) = 2.

d) Contin y: H2(

2

p,1 − p)→ 0 as p→ 0.

e) Subadditivity: H(X,Y ) ≤ H(X) +H(Y )

( ) ∑ =

.

∑

Equivalently, Hmn r11, . . . , rmn Hm p1, . . . , pm
Hn q1, . . . , qn whenever n

j=1 rij pi and m
i=1 rij

( ) ≤ ( ) +

= qj .

f) Additivity: H(X,Y ) =H(X)+H(

(
mn(

)

Y ) ifX ⊥⊥ Y . Equivalently, H p1q1, . . . , pmqn Hm(p1, . . . , pm
Hn q1, . . . , qn .

) ≤ )+

then Hm(p1, . . . , p
1

m) = ∑mi=1 pi log is the only possibility. The interested reader is referred topi
[CT06, p. 53] and the reference therein.

1.1.2 History of entropy

In the early days of industrial age, engineers wondered if it is possible to construct a perpetual
motion machine. After many failed attempts, a law of conservation of energy was postulated: a
machine cannot produce more work than the amount of energy it consumed from the ambient world
(this is also called the first law of thermodynamics). The next round of attempts was then to
construct a machine that would draw energy in the form of heat from a warm body and convert it
to equal (or approximately equal) amount of work. An example would be a steam engine. However,
again it was observed that all such machines were highly inefficiencient, that is the amount of work
produced by absorbing heat Q was Q. The remainder of energy was dissipated to the ambient
world in the form of heat. Again after

≪

many rounds of attempting various designs Clausius and
Kelvin proposed another law:

Second law of thermodynamics: There does not exist a machine that operates in a cycle
(i.e. returns to its original state periodically), produces useful work and whose only
other effect on the outside world is drawing heat from a warm body. (That is, every
such machine, should expend some amount of heat to some cold body too!)1

Equivalent formulation is: There does not exist a cyclic process that transfers heat from a cold
body to a warm body (that is, every such process needs to be helped by expending some amount of
external work).

Notice that there is something annoying about the second law as compared to the first law. In
the first law there is a quantity that is conserved, and this is somehow logically easy to accept. The
second law seems a bit harder to believe in (and some engineers did not, and only their recurrent
failures to circumvent it finally convinced them). So Clausius, building on an ingenious work of
S. Carnot, figured out that there is an “explanation” to why any cyclic machine should expend
heat. He proposed that there must be some hidden quantity associated to the machine, entropy of it
(translated as transformative content), whose value must return to its original state. Furthermore,
under any reversible (i.e. quasi-stationary, or “very slow”) process operated on this machine the
change of entropy is proportional to the ratio of absorbed heat and the temperature of the machine:

∆S =
∆Q

T
. (1.3)

1Note that the reverse effect (that is converting work into heat) is rather easy: friction is an example.
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So that if heat Q is absorbed at temperature Thot then to return to the original state, one
must return some Q′

<

amount of heat. Q can be significantly smaller than Q if Q is returned at
temperature Tcold Thot. Further logical

′

arguments can convince one that for irrev

′

ersible cyclic
process the change of entropy at the end of the cycle can only be positive, and hence entropy cannot
reduce.

There were a great many experimentally verified consequences that second law produced.
However, what is surprising is that the mysterious entropy did not have any formula for it (unlike
say energy), and thus had to be computed indirectly on the basis of relation (1.3). This was changed
with the revolutionary work of Boltzmann and Gibbs, who showed that for a system of n particles
the entropy of a given macro-state can be computed as

S =
`

kn
j
∑

1

=
pj log

1

,
pj

where k is the Boltzmann constant, we assume that each particle can only be in one of ` molecular
states (e.g. spin up/down, or if we quantize the phase volume into ` subcubes) and pj is the fraction
of particles in j-th molecular state.

1.1.3* Entropy: submodularity

Recall that [ Sn denotes a set 1, . . . , n , denotes subsets of S of size k and 2S denotes all subsetsk

of S. A set function

]

f S

} ( )

∶ 2

{

→ R is called submodular if for any T1, T2 S

f(T1 ∪ T2) + f T1 T2 f T1 f T2

⊂

Submodularity is similar to conca

( ∩ ) ≤ ( ) + ( )

Indeed consider T ′ ⊂ T and b ∈/
vity, in the sense that “adding elements gives diminishing returns”.

T . Then

f T b f T f T ′ b f

Theorem 1.2. Let Xn be discrete

(

R

∪

V.

) −

Then

( )

T

≤ (

H X

∪

T

) −

is submo

(T ′) .

dular.

Proof. Let A =XT1∖T2 ,B

↦ ( )

=XT1∩T2 ,C =XT2∖T1 . Then we need to show

H(A,B,C) +H(B) ≤H(A,B) +H(B,C) .

This follows from a simple chain

H(A,B,C) +H(B) =

≤

H(A,C ∣B) + 2H B (1.4)

=

H(

(

A∣B) +H(

) + (

C B

H

( )

+ 2H(B) (1.5)

A,B H B

∣

,C

)

) (1.6)

Note that entropy is not only submodular, but also monotone:

T1 T2 H XT1 H XT2 .

So fixing
[ ]

n, let us denote by Γn the

⊂

set of

Ô⇒

all non-negativ

( ) ≤

e,

(

monotone,

)

submodular set-functions
on n . Note that

−
via an obvious enumeration of

∗
all non-empty subsets of [n], Γn is a closed

convex cone in R2
+
n 1. Similarly, let us denote by Γn the set of all set-functions corresponding to
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¯distributions
∗

on Xn. Let us also denote Γn the closure of Γn. It is not hard to show, cf. [ZY97],
¯that Γn is also a closed convex cone and that

∗ ∗

Γ∗ ¯
n Γ∗n Γn .

The astonishing result of [ZY98] is that

⊂ ⊂

Γ∗2 = Γ̄2 = Γ2 (1.7)

¯Γ

∗

Γ3

Γ∗n

∗
3 ⊊ Γ∗3 (1.8)

Γ̄n
∗
=

Γn n 4 . (1.9)

This follows from the fundamental new information

⊊ ⊊

inequalit

≥

y not implied by the submodularity of
entropy (and thus called non-Shannon inequality). Namely, [ZY98] shows that for any 4 discrete
random variables:

I(
1

X3;X4) − I(X3;X4∣X1) − I(X3;X4∣X2) ≤
2
I(X1;X2) +

1

4
I(X1;X3,X4) +

1
I(X2;X3,X4

4
) .

(see Definition 2.3).

1.1.4 Entropy: Han’s inequality

¯Theorem 1.3 (Han’s inequality). Let Xn be discrete n-dimensional RV and denote Hk(X
n

1

) =

(n) ∑ ⊂([
H

n])
¯

H(XT ) – the average entropy of a k-subset of coordinates. Then k

T
k k

k is decreasing in k:

1

n
H̄n ≤ ⋯ ≤

1 ¯ ¯Hk H1 . (1.10)
k

¯Furthermore, the sequence Hk is increasing and concave

⋯ ≤

in the sense of decreasing slope:

¯ ¯Hk+1 −Hk ≤ H̄k − H̄k−1 . (1.11)

¯Proof. Denote for convenience H0 =
¯

0. Note that Hm
m is an average of differences:

1

m
H̄m =

1 m
¯ ¯Hk Hk

m k 1
−1

Thus, it is clear that (1.11) implies (1.10) since

∑

increasing

=
( −

m

)

by one adds a smaller element to the
average. To prove (1.11) observe that from submodularity

H X1, . . . ,Xk 1 H X1, . . . ,Xk 1 H X1, . . . ,Xk H X1, . . . ,Xk 1,Xk 1 .

Now average

(

this inequalit

+ )

y

+

ov

(

er all n! perm

− )

utations

≤ (

of indices

) +

1, .

(

{ . . , n

− + )

} to get

H̄k+1 + H̄k

as claimed by (1.11).

−1 ≤ ¯2Hk

Alternative proof: Notice that by “conditioning decreases entropy” we have

H(Xk+1∣X1, . . . ,Xk) ≤H(Xk 1 X2, . . . ,Xk .

Averaging this inequality over all permutations of indices

+ ∣

yields (1.11

)

).
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Note: Han’s inequality holds for any submodular set-function.
Example: Another submodular set-function is

S

Han’s

↦ I(XS ;XSc) .

inequality for this one reads

0 =
1

n
In ≤ ⋯ ≤

1

k
Ik⋯ ≤ I1 ,

where Ik =
1

(n) ∑S∶∣S∣=k I(XS ;XSc) – gauges the amount of k-subset coupling in the random vector
k

Xn.

1.2 Divergence

Review: Measurability

In this course we will assume that all alphabets are standard Borel spaces. Some of the
nice properties of standard Borel spaces:

• all complete separable metric spaces, endowed with Borel σ-algebras are standard
Borel. In particular, countable alphabets and Rn and R∞ (space of sequences) are
standard Borel.

• if Xi, i = 1, . . . are s.B.s. then so is ∏∞
i=1Xi

• singletons x

•

{ } are measurable sets

diagonal ∆

• (Most importan

= {(x,x) ∶ x ∈ X} is measurable in

tly) for any probability distribut

X ×

ion

X

PX,Y on there exists a
transition probability kernel (also called a regular branch of a conditional

X × Y

distribution)
PY ∣X s.t.

PX,Y [E] = ∫X
PX(dx)∫Y

PY ∣X=x(dy)1{(x, y) ∈ E} .

Intuition: D(P ∥Q) gauges the dissimilarity between P and Q.

Definition 1.4 (Divergence). Let P,Q be distributions on

• A = discrete alphabet (finite or countably infinite)

D(P ∥Q) ≜
a

∑
∈A
P (a)

P
log

(a)
,

Q(a

where we agree:

)

(1) 0 ⋅
0

log 0
0

(2)

=

∃a ∶ Q(a) = 0, P (a) > 0⇒D(P ∥Q) =∞
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• A = Rk, P and Q have densities fP and fQ

D(P

⎧

∥ ∫
f

Q) =
⎪⎪
⎨
⎪⎪

Rk log P (xk)

⎩

k
f ( f
Q xk) P (x

k)dx , Leb{fP > 0, fQ = 0

, otherwise

} =

•

+∞

0

A — measurable space:

D(P ∥Q

⎧

) =
⎪⎪
⎨
⎪

E dP

⎪

Q

⎩

dQ log dP
dQ = EP log dP

(Also

+∞

, PdQ ≪ Q

, otherwise

known as information divergence, Kullback–Leibler divergence, relative entropy.)

Notes:

• (Radon-Nikodym theorem) Recall that
≪

for two measures P and Q, we say P is absolutely
contin

≪

uous w.r.t. Q (denoted by P Q) if Q(E) = 0 implies P (

∶ X →

E 0 for all measurable E.
If P Q, then there exists a function f R+ such that for any

) =

measurable set E,

P (E

Such f is called a density (or

)

a

=

Radon-Nik

∫ fdQ. [change of measure]
E

odym derivative) of P w.r.t. Q, denoted by dP
dQ .

For finite alphabets, we can just take dP xdQ( ) to be the ratio of the pmfs. For P and Q on Rn

possessing pdfs we can take dP thedQ(x) to be ratio of pdfs.

• (Infinite values) D(P ∥Q) can be ∞ s (

=

also when P ≪ Q, but the two case of D P ∥

( ∥ ) ( ∥ )

Q
,

) are
consistent since D P Q supΠD PΠ QΠ where Π is a finite partition of the underlying
space (proof: later)

= +∞

• (Asymmetry)

A

D( ∥

=

P Q) ≠D(Q∥P )

/ ( )

. Asymmetry can be very useful. Example: P (H) = P T
1 2, Q H 1. Upon observing HHHHHHH, one tends to believe it is Q but can

(

nev
)

er
be absolutely sure; Upon observing HHT, know for sure it is P . Indeed, D P Q

=

,
D Q

( ∥ ) = ∞

•

( ∥P ) = 1bit.

(Pinsker’s inequality) There are many other measures for dissimilarity, e.g., total variation
(L1-distance)

TV(P,Q) ≜ supP
E

[E

1

] −Q[E] (1.12)

=
2
∫ ∣dP − dQ∣ = (discrete case)

1
P

2
∑
x

This one is symmetric. There is a famous Pinsker’s (or Pinsker-Csisz´

∣ (x) −Q(x)∣ . (1.13)

ar) inequality relating D
and TV:

TV(P,Q

√

) ≤
1

D P Q . (1.14)
2 log e

• (Other divergences) A general class of divergence-lik

(

e measures

∥ )

was proposed by Csiszár.
Fixing a convex function f ∶ R+ → R with f(1) = 0 we define f -divergence Df as

Df(P ∥Q) ≜ EQ [f (
dP

dQ
)] . (1.15)
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This encompasses total variation, χ2-distance, Hellinger, Tsallis etc. Inequalities between
various f -divergences such as (1.14) was once an active field of research. It was made largely
irrelevant by a work of Harremoës and Vajda [HV11] giving a simple method for obtaining
best possible inequalities between any two f -divergences.

Theorem 1.4 (H v.s. D). If distribution P is supported on A with ∣A∣ <∞, then

H(P ) = log ∣A∣ −D(P ∥
°
U

uniform distribution

A ).

on

Example (Binary divergence): 0,1 ; P p,

A

A = { } = [ p]; Q = [q, q]

D(P ∥Q) = d(p∥q) ≜ p log
p

q
+ p log

p

q

Here is how d(p∥q) depends on p and q:

d (p ||q )

p 1
q

d (p ||q )

q 1
p

−log q

−log q−

Quadratic lower bound (homework):

d(p∥q) ≥ 2(p − q

Example (Real Gaussian): R

)2 log e

D

A =

(N (m1, σ
2)∥N (

1
1 m0, σ

2
0)) = 2

log
σ2

0

σ2
1

+
1

2
[
(m1 −m0)

2

σ2
0

+
σ2

1 1
σ2

0

− ] log e (1.16)

Example (Complex Gaussian): A = C. The pdf of Nc(m,σ
2)

1
is σ

π
− 2

e x

σ2
−∣ m∣ / 2

, or equivalently:

c m,σ
2 Re m Im m ,

σ2

D m ,σ2

N

m

(

, σ2

) = N

log

([

0

( ) ( )] [
σ2/2 0

0 σ2

(Nc( 1 1)∥Nc

/2
]) (1.17)

( 0 0)) = σ2
1

+ [
∣m1 −m0∣

2

σ2
0

+
σ2

1 e
σ

− 1 log
2
0

] (1.18)

Example (Vector Gaussian): Ck

D(Nc(m1,Σ1

A =

)∥Nc(m0,Σ0)) = log det
−
Σ0

tr Σ 1
0 Σ

− log det Σ m1 −m0)
HΣ−1

1 + ( 0 (m1 −m0

1 I log e

)

+ ( − )

log e
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(assume det Σ0 ≠ 0).

Note: The definition of D(P ∥Q
measures), in which case D

)

(P ∥ )

extends verbatim to measures P and Q (not necessarily probability
Q can be negative. A sufficient condition for D P Q 0 is that P

is a probability measure and Q is a sub-probability measure, i.e., dQ 1
(

dP
∥

.
) ≥

1.3 Differential entropy

∫ ≤ = ∫

The notion of differential entropy is simply the divergence with respect to the Lebesgue measure:

Definition 1.5. The differential entropy of a random vector Xk is

h(Xk) = h

In k has probabilit

(PXk

particular, if X y density function

) ≜ −D(PXk∥Leb). (1.19)

(pdf) p, then h(Xk) = E log 1
p(Xk) ; other-

wise h(Xk) = −∞. Conditional differential entropy h(Xk∣Y ) ≜ E log 1
k where

p
∣

k
kX Y

(X ∣Y ) pX ∣Y is a

conditional pdf.

Warning: Even for X with pdf h X can be positive, negative, take values of or even be
undefined2.

Nevertheless, differential entropy shares

( )

many properties with the usual entropy:

±∞

Theorem 1.5 (Properties of differential entropy). Assume that all differential entropies appearing
below exists and are finite (in particular all RVs have pdfs and conditional pdfs). Then the following
hold :

1. (Uniform maximizes diff. entropy) If P[Xn ∈ S] = 1 then h(Xn) ≤ Leb{S} with equality iff
Xn is uniform on S.

2. (Conditioning reduces diff. entropy) h(X ∣Y ) ≤ h(X) (here Y could be arbitrary, e.g. discrete)

3. (Chain rule)

h(Xn) = ∑
n

h(X ∣Xk−1
k

k=1

) .

4. (Submodularity) The set-function T ↦ h XT is submodular.

5. (Han’s inequality) The function k ↦ 1

( )

n n h XT is decreasing in k.
k(
k
) ∑T ∈([k

])

1.3.1 Application of differential entropy: Loomis-Whitney

( )

and
Bollobás-Thomason

The following famous result shows that n-dimensional rectangle simultaneously minimizes volumes
of all projections:3

Theorem 1.6 (Bollobás-Thomason Box Theorem). Let K ⊂ Rn be a compact set. For S n
denote by

{

K
}
S

=

– pr
{

ojection
}

of K on the
⊂ [

subset
]

S of coordinate axes. Then there exists a rectangle
s.t. Leb A Leb K and for all S n :

⊂ [

A
]

Leb{AS} ≤ Leb{KS}

2For an example, consider piecewise-constant pdf taking value e(−1)nn on the n-th interval of width ∆n = c n

e
n2

−(−1) n.
3Note that since K is compact, its projection and slices are all compact and hence measurable.
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Proof. Let Xn be uniformly distributed on K. Then h(Xn) =

×

log Leb{K}

×⋯

. Let A be rectangle
a1 an where

log a i
i h X 1

i X .

Then, we have by 1. in Theorem 1.5

= ( ∣ − )

h(XS) ≤ log Leb{KS

On the other hand, by the chain rule

}

h(XS) =∑
n

1{i ∈ S h
i 1

h

} (Xi∣X[i−1

Xi X
i 1

]∩
=

S) (1.20)

≥
i

∑
∈S

( ∣ − (1.21)

= log∏ i
i∈
a

)

(1.22)

=

S

log Leb{AS} (1.23)

Corollary 1.1 (Loomis-Whitney). Let K be a compact subset of Rn and let Kjc denote projection
of K on coordinate axes [n] ∖ j. Then

Leb{ } ≤∏
n

1

K
j=

Leb{Kjc

1

}n−1 . (1.24)

Proof. Apply previous theorem to construct rectangle A and note that

Leb{
1

Leb
j
∏
n

K} = Leb{A} =
=1

{Ajc}n−1

By previous theorem Leb{Ajc} ≤ Leb{Kjc}.

The meaning of Loomis-Whitney
Leb K

of K in direction j: wj ≜
{ }

inequality is best understood by introducing the average width

alenLeb{ .K cj } Then (1.24) is equiv t to

Leb{K} ≥∏
n

j=
wj ,

1

i.e. that volume of K is greater than volume of the rectangle of average widths.
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