Spring 2016

6.441 - Information Theory Midterm (take home)

Due: Tue, Mar 29, 2016 (in class)
Prof. Y. Polyanskiy

1 Rules

- 1. Collaboration strictly prohibited.
- 2. Write rigorously, prove all claims.
- 3. You can use notes and textbooks.
- 4. All exercises are 10 points.

2 Exercises

1 Let $X \in \{0,1\}$ and let Y be a nonnegative integer-valued random variable with joint distribution

$$P_{XY}(i, j) = \alpha \ 2^{-i-2j}$$

where α is a normalization constant. Find H(X), H(Y), H(X,Y), H(Y|X), H(X|Y), $D(P_{Y|X=0}||P_{Y|X=1})$ and $D(P_{Y|X=1}||P_{Y|X=0})$.

- **2** Let X be distributed according to the exponential distribution with mean $\mu > 0$, i.e., with density $p(x) = \frac{1}{\mu} e^{-x/\mu} \mathbf{1}_{\{x \ge 0\}}$. Let $a \in \mathbb{R}$. Compute the divergence $D(P_{X+a}||P_X)$.
- **3** Let (X,Y) be uniformly distributed in the unit ℓ_p -ball $B_p \stackrel{\triangle}{=} \{(x,y): |x|^p + |y|^p \le 1\}$, where $p \in (0,\infty)$. Also define the ℓ_{∞} -ball $B_{\infty} \stackrel{\triangle}{=} \{(x,y): |x| \le 1, |y| \le 1\}$.
 - 1. Compute I(X;Y) for p=1/2, p=1 and $p=\infty$.
 - 2. (Bonus) What do you think I(X;Y) converges to as $p \to 0$. Can you prove it?
- **4** Let X and Y have finite alphabets. Let $C(P_{Y|X}) = \max_{P_X} I(X;Y)$ be the capacity of $P_{Y|X}$.
 - 1. Is $P_X \mapsto H(P_X)$ strictly concave?
 - 2. Fix $P_{Y|X}$. Is $P_X \mapsto I(X;Y)$ strictly concave?
 - 3. Fix $P_{Y|X}$ with $C(P_{Y|X}) > 0$. Is $P_X \mapsto I(X;Y)$ strictly concave?
 - 4. Fix P_X with $H(P_X) > 0$. Is $P_{Y|X} \mapsto I(X;Y)$ strictly convex?
 - 5. Is $P_{XY} \mapsto I(X;Y)$ convex, concave, or neither?
 - 6. Is $P_{Y|X} \mapsto C(P_{Y|X})$ convex, concave or neither?
- **5** Let $\{Y_k, k = 0, ...\}$ be a binary stationary Markov process defined as follows: Let Y_0 be a binary equiprobable random variable, and

1

$$P_{Y_{k+1}|Y_k}[b|a] = \begin{cases} 1 - \delta & b = a \\ \delta & b \neq a \end{cases}$$

Find $I(Y_0; Y_n)$. At what speed does $I(Y_0; Y_n)$ vanish with n?

- **6** (Finiteness of entropy) We have shown that any \mathbb{N} -valued random variable X, with $\mathbb{E}[X] < \infty$ has $H(X) \leq \mathbb{E}[X]h(1/\mathbb{E}[X]) < \infty$. Next let us improve this result.
 - 1. Show that $\mathbb{E}[\log X] < \infty \Rightarrow H(X) < \infty$. Moreover, show that the condition of X being integer-valued is not superfluous by giving a counterexample.
 - 2. Show that if $k \mapsto P_X(k)$ is a decreasing sequence, then $H(X) < \infty \Rightarrow \mathbb{E}[\log X] < \infty$. Moreover, show that the monotonicity of pmf is not superfluous by giving a counterexample.
- 7 Consider the hypothesis testing problem:

$$H_0: X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} P = \mathcal{N}(0, 1),$$

 $H_1: X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} Q = \mathcal{N}(\mu, 1).$

Questions:

- 1. Compute the Stein exponent.
- 2. Compute the tradeoff region \mathcal{E} of achievable error-exponent pairs (E_0, E_1) . Express the optimal boundary in explicit form (eliminate the parameter).
- 3. Identify the divergence-minimizing geodesic $P^{(\lambda)}$ running from P to $Q, \lambda \in [0, 1]$. Verify that $(E_0, E_1) = (D(P^{(\lambda)} || P), D(P^{(\lambda)} || Q)), 0 \le \lambda \le 1$ gives the same tradeoff curve.
- 4. Compute the Chernoff exponent.
- **8** Baby Sanov. Let \mathcal{X} be a finite set. Let \mathcal{E} be a convex subset of the simplex of probability distributions on \mathcal{X} . Assume that \mathcal{E} has non-empty interior. Let $X^n = (X_1, \dots, X_n)$ be iid drawn from some distribution P and let π_n denote the empirical distribution, i.e., $\pi_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, which is a function of X^n . Our goal is to show that

$$E \triangleq \lim_{n \to \infty} \frac{1}{n} \log \frac{1}{P(\pi_n \in \mathcal{E})} = \inf_{Q \in \mathcal{E}} D(Q||P).$$
 (1)

a) Define the following set of joint distributions $\mathcal{E}_n \triangleq \{Q_{X^n}: Q_{X_i} \in \mathcal{E}\}$. Show that

$$\inf_{Q_{X^n} \in \mathcal{E}_n} D(Q_{X^n}||P_{X^n}) = n \inf_{Q \in \mathcal{E}} D(Q||P),$$

where $P_{X^n} = P^n$.

- b) Consider the conditional distribution $\tilde{P}_{X^n} = P_{X^n | \pi_n \in \mathcal{E}}$. Show that $\tilde{P}_{X^n} \in \mathcal{E}_n$.
- c) Show that

$$P(\pi_n \in \mathcal{E}) \le \exp\left(-n \inf_{Q \in \mathcal{E}} D(Q||P)\right), \quad \forall n.$$

d) For any Q in the interior of \mathcal{E} , show that

$$P(\pi_n \in \mathcal{E}) \ge \exp(-nD(Q||P) + o(n)), \quad n \to \infty.$$

(Hint: Use data processing as in the proof of the large deviation theorem.)

e) Conclude (1).

Comment: Benefit of this proof compared to method of types is that it easily extends to infinite alphabets.

9 Let $X_j \sim \exp(1)$ be i.i.d. exponential with mean 1. Since MGF $\Psi_X(\lambda)$ does not exist for all $\lambda > 1$, the result

$$\mathbb{P}\left[\sum_{j=1}^{n} X_j \ge n\gamma\right] = \exp\{-n\Psi_X^*(\gamma) + o(n)\}\tag{2}$$

proven in class does not apply. Show (2) via the following steps:

1. Apply Chernoff argument directly to prove an upper bound:

$$\mathbb{P}\left[\sum_{j=1}^{n} X_{j} \ge n\gamma\right] \le \exp\{-n\Psi_{X}^{*}(\gamma)\}\tag{3}$$

2. Fix an arbitrary A > 0 and prove

$$\mathbb{P}\left[\sum_{j=1}^{n} X_{j} \ge n\gamma\right] \ge \mathbb{P}\left[\sum_{j=1}^{n} (X_{j} \land A) \ge n\gamma\right],\tag{4}$$

where $u \wedge v = \min(u, v)$.

- 3. Apply the results shown in class to investigate the asymptotics of the right-hand side of (4).
- 4. Conclude the proof of (2) by taking $A \to \infty$.
- **10** (Gibbs distribution) Let \mathcal{X} be finite alphabet, $f: \mathcal{X} \to \mathbb{R}$ some function and $E_{min} = \min f(x)$.
 - 1. Using I-projection show that for any $E \geq E_{min}$ the solution of

$$H^*(E) = \max\{H(X) : \mathbb{E}\left[f(X)\right] \le E\}$$

is given by $P_X(x) = \frac{1}{Z(\beta)}e^{-\beta f(x)}$ for some $\beta = \beta(E)$.

Comment: In statistical physics x is state of the system (e.g. locations and velocities of all molecules), f(x) is energy of the system in state x, P_X is the Gibbs distribution and $\beta = \frac{1}{T}$ is the inverse temperatur of the system. In thermodynamic equillibrium, $P_X(x)$ gives fraction of time system spends in state x.

- 2. Show that $\frac{dH^*(E)}{dE} = \beta(E)$.
- 3. Next consider two functions f_0 , f_1 (i.e. two types of molecules with different state-energy relations). Show that for $E \ge \min_{x_0} f(x_0) + \min_{x_1} f(x_1)$ we have

$$\max_{\mathbb{E}\left[f_0(X_0) + f_1(X_1)\right] \le E} H(X_0, X_1) = \max_{E_0 + E_1 \le E} H_0^*(E_0) + H_1^*(E_1) \tag{5}$$

where $H_j^*(E) = \max_{\mathbb{E}[f_j(X)] \leq E} H(X)$.

4. Further, show that for the optimal choice of E_0 and E_1 in (5) we have

$$\beta_0(E_0) = \beta_1(E_1) \tag{6}$$

or equivalently that the optimal distribution P_{X_0,X_1} is given by

$$P_{X_0,X_1}(a,b) = \frac{1}{Z_0(\beta)Z_1(\beta)} e^{-\beta(f_0(a)+f_1(b))}$$
(7)

Remark: (7) also just follows from part 1 by taking $f(x_0, x_1) = f_0(x_0) + f_1(x_1)$. The point here is relation (6): when two thermodynamical systems are brought in contact with each other, the energy distributes among them in such a way that β parameters (temperatures) equalize.

MIT OpenCourseWare https://ocw.mit.edu

6.441 Information Theory Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.