Spring 2016
6.441 - Information Theory
Midterm (take home)
Due: Tue, Mar 29, 2016 (in class)
Prof. Y. Polyanskiy

1 Rules

1. Collaboration strictly prohibited.
2. Write rigorously, prove all claims.
3. You can use notes and textbooks.

4. All exercises are 10 points.

2 Exercises

1 Let X € {0,1} and let Y be a nonnegative integer-valued random variable with joint distribution

Pxy(i,j) =a 277

where « is a normalization constant. Find H(X), H(Y), H(X,Y), HY|X), H(X]Y),
D(Py|x=ol|Py|x=1) and D(Py|x=1||Py|x=0)-

2 Let X be distributed according to the exponential distribution with mean g > 0, i.e., with
density p(z) = %e_l’/ul{xzo}. Let a € R. Compute the divergence D(Px 14|/ Px).

3 Let (X,Y) be uniformly distributed in the unit ¢)-ball B, 2 {(z,y) : |z|P + |y|P < 1}, where
€ (0,00). Also define the {-ball By 2 {(z,y) : |z| < 1,|y| < 1}.
1. Compute I(X;Y) forp=1/2, p=1 and p = 0.
2. (Bonus) What do you think I(X;Y") converges to as p — 0. Can you prove it?

4 Let X and Y have finite alphabets. Let C'(Py|x) = maxp, I(X;Y') be the capacity of Py|x.

Is Py — H(Px) strictly concave?

Fix Py|x. Is Px — I(X;Y) strictly concave?

Fix Py|x with C(Py|x) > 0. Is Px — I(X;Y) strictly concave?
Fix Px with H(Px) > 0. Is Py|x = I(X;Y) strictly convex?

Is Pxy — I(X;Y) convex, concave, or neither?

AN

Is Py|x = C(Py|x) convex, concave or neither?

5 Let {Y;,k =0,...} be a binary stationary Markov process defined as follows: Let Yj be a binary
equiprobable random variable, and
1-6 b=a

Find I(Yo;Y,,). At what speed does I(Yp;Y,,) vanish with n?



6 (Finiteness of entropy) We have shown that any N-valued random variable X, with E[X] < oo
has H(X) < E[X]h(1/E[X]) < co. Next let us improve this result.

1. Show that Eflog X| < co = H(X) < oc.
Moreover, show that the condition of X being integer-valued is not superfluous by giving
a counterexample.

2. Show that if k — Px (k) is a decreasing sequence, then H(X) < co = E[log X] < oc.
Moreover, show that the monotonicity of pmf is not superfluous by giving a counterex-
ample.

7 Consider the hypothesis testing problem:

Ho: X1,..., X, &P = N(0,1),
ii.d.
Hy: X1, X, <Q=N(u1).

Questions:

1. Compute the Stein exponent.

2. Compute the tradeoff region & of achievable error-exponent pairs (FEy, E7). Express the
optimal boundary in explicit form (eliminate the parameter).

3. Identify the divergence-minimizing geodesic P®) running from P to Q, \ € [0,1]. Verify
that (Eo, E1) = (D(PW||P), D(PM||Q)),0 < A < 1 gives the same tradeoff curve.

4. Compute the Chernoff exponent.

8 Baby Sanov. Let X be a finite set. Let £ be a conver subset of the simplex of probability
distributions on X. Assume that £ has non-empty interior. Let X" = (X1,...,X,) be iid
drawn from some distribution P and let m,, denote the empirical distribution, i.e., m, =
% >, dx,, which is a function of X™. Our goal is to show that

1
E2 lim —log———— = inf D(Q||P). 1
Jim 2 log pr—gy = ik (Ql|P) (1)

a) Define the following set of joint distributions &, = {Qxn : Qx, € £€}. Show that

inf | D(Qx»|[Px) = n nf D(Q||P).

Xxn€ln

where Pxn = P™.
b) Consider the conditional distribution Py = Pxn|r,ce. Show that Pxn € &,.

d) For any @ in the interior of £, show that
P(m, € €) > exp(—nD(Q||P) + o(n)), n — oo.

(Hint: Use data processing as in the proof of the large deviation theorem.)



e) Conclude (1).
Comment: Benefit of this proof compared to method of types is that it easily extends
to infinite alphabets.

9 Let X; ~ exp(l) be i.i.d. exponential with mean 1. Since MGF Wx()) does not exist for all
A > 1, the result

n
P[> X; > ny] = exp{—nT% () + o(n)} (2)
j=1
proven in class does not apply. Show (2) via the following steps:

1. Apply Chernoff argument directly to prove an upper bound:

P> X; > ny] < exp{-nT%(y)} (3)
j=1

2. Fix an arbitrary A > 0 and prove
n

ZX > ny] >IP’ZX A A) > nyl, (4)
7j=1

where u A v = min(u, v).

3. Apply the results shown in class to investigate the asymptotics of the right-hand side
of (4).

4. Conclude the proof of (2) by taking A — oc.

0 (Gibbs distribution) Let X be finite alphabet, f : X — R some function and E,,;;, = min f(z).
1. Using I-projection show that for any F > FE,,;, the solution of
H*(B) = max{H(X) : E[f(X)] < E}

is given by Px(z) = %e*ﬁf@) for some = B(E).

Comment: In statistical physics z is state of the system (e.g. locations and velocities of
all molecules), f(z) is energy of the system in state x, Px is the Gibbs distribution and
8 = & is the inverse temperatur of the system. In thermodynamic equillibrium, Px (x)

T
gives fraction of time system spends in state z.

dH*(E
2. Show that “LLE) — 5(E).
3. Next consider two functions fy, f1 (i.e. two types of molecules with different state-energy
relations). Show that for £ > ming, f(zo) + ming, f(x1) we have

H(Xo, X) = B 1 HNE -
B (o e p T K0 Xn) = max | Ho(Eo) + Hi (Fr) (5)

where H}(E) = maxg [y, (x) <z H(X).
4. Further, show that for the optimal choice of Ey and E; in (5) we have

Bo(Eo) = p1(Er) (6)

or equivalently that the optimal distribution Px, x, is given by

1 —B(fo(a)+F1(b))
PXO7X1 (CL b) ZO(B)ZI(B)e (7)

3



Remark: (7) also just follows from part 1 by taking f(xo,z1) = fo(zo) + fi(x1). The point
here is relation (6): when two thermodynamical systems are brought in contact with each
other, the energy distributes among them in such a way that § parameters (temperatures)

equalize.
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