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General Comments 

1. In terms of implementation, loopy BP is not different from sum-product for trees. In 
other words, you can take your implementation of sum-product algorithm for trees 
and apply it directly to a loopy graph. This is because sum-product/BP is a dis­
tributed, local algorithm: each node receives messages from its neighbours, does some 
local computation, and sends out messages to its neighbours. The nodes only interact 
with its neighbourhood and have no idea if the overall graph is loopy or not. 

So implementation of loopy BP is easy, the difficult part is analysing it. Recall that 
Sum-Product algorithm for trees is guaranteed to converge after a certain number of 
iterations, and the resulting estimates of node marginals are accurate. For loopy BP, 
this is no longer the case: the algorithm might not converge at all; even if it does 
converge, it doesn’t necessarily result in correct estimates of marginals. The lecture 
notes asked three questions: 

First of all, is there any fixed point at all? Notice that if the algorithm does con­
verge, it will converge to a fixed point by definition of a fixed point. The answer to 
this question is yes, assuming some regularity conditions (e.g. continuous functions, 
compact sets etc). 

Secondly, what are these fixed points? The short answer is that these fixed points 
are in 1-1 correspondence to the extrema (i.e. maxima or minima) of the corre­
sponding Bethe Approximation Problem. We’ll discuss how to formulate the Bethe 
Approximation Problem in more details later. 

Thirdly, will the loopy BP algorithm converge to a fixed point given a certain ini­
tialization? Or is there any initialization that makes the algorithm converge? Unfor­
tunately, the answer is not sure in general. But for some special cases, e.g. graphs 
with one single loop, analysis is possible. In lecture, we introduced computation trees 
and attractive fixed points, both are methods for analysing convergence behaviour for 
loopy BP in special cases. 

2.	 Computing marginals and computing partition function Z are equivalent. Both tasks 
are NP-hard for general distributions. But if we have an oracle that computes 
marginals for any given distribution, we’ve proved in last homework (Problem 5.3) 
that we can design a polynomial time algorithm that uses this oracle to compute par­
tition function Z. Conversely, if we have an oracle that can compute partition function 
for any given distribution, we can use it to compute marginals in polynomial time as 
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well. Consider a distribution px(x), notice 

  1 ∗ px1 (x1) = px(x1, ..., xn) =  p (x1, ..., xn)xZ
x2,...,xn x2,...,xn 

� px (x1,...,xn)and 
∗

∗ is a distribution over variables x2, ..., xn. Thus the oracle can p (x1,...,xn)x 
x2,...,xn L ∗compute Z and p (x1, ..., xn) for us, and we can get the marginal distribution x

x2,...,xn 

over x1 in polynomial time. 

In inference, marginal distributions usually make more sense. But in statistical physics 
community, where a large body of work on loopy BP algorithm comes from, log par­
tition function is very important. In fact, many quantities, e.g. free energy, free 
entropy, internal energy etc, are defined in terms of log(Z). 

2 Details 

2.1 Variational Characterization of log(Z) 

Remember our original goal is to compute log(Z) for a given distribution px(x). However, 
we will convert the problem into an equivalent optimization problem 

log(Z) =  sup  F (μ) 
μ∈M 

where M is the set of all distributions over x. We’ll define F (μ) and derive the conversion 
in a minute but there is a fancy term for converting a computation problem into an opti­
mization problem: ’variational characterization’. 

1Let us first re-write  px(x) as  px(x) =  Z exp(−E(x)). Given any distribution, you can 
always re-write it in this form (known as Boltzmann Distribution) by choosing the right 
E(x). E(x) has a physical meaning. If we think of each configuration x as a state, E(x) is  
the energy corresponding to the state. The distribution indicates that a system is less likely 
to be in a state that has higher energy. Taking log on both sides and rearrange, we get 

E(x) =  −log(px(x)) − log(Z) 

Now we define  Bethe free entropy  F (μ) as    
F (μ) =  − μ(x)log(μ(x)) − μ(x)E(x) 

x∈XN x∈XN 
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Notice the first term is the entropy of distribution μ(x) and the second term is the average
 
energy with respect to distribution μ(x). Replace E(x) with  px(x) and log(Z), we get 

F (μ) =  − μ(x)log(μ(x)) − μ(x)E(x) 
x∈XN x∈XN 

= − μ(x)log(μ(x)) + μ(x)(log(px(x)) + log(Z)) 
x∈XN x∈XN 

= − μ(x)log(μ(x)) + μ(x)log(px(x)) + log(Z) 
x∈XN x∈XN 

= −D(μ(x)||px(x)) + log(Z) 

where D(·||·) is the KL-divergence and thus always non-negative. 

∴ log(Z) ≤ F (μ) and equality is achieved if and only if μ(x) =  px(x) 

∴ log(Z) =  sup  F (μ) 
μ∈M 

Notice this optimization problem is still NP-hard for general distributions. It can be made 
computationally tractable if we’re willing to optimize over a different set instead of M. For  
instance, the basic idea of mean field approximation is to look at a subset of M whose 
elements are distributions under which x1, ..., xn are independent. The resulting log(ZMF  ) 
is a lower bound of the actual log(Z). In Bethe approximation problem, we maximize F (μ) 

ˆover a set M that is neither a subset nor a superset of M. M in more details We will discuss ˆ

in next section. 

2.2 Locally Consistent Marginals 

Recall that a distribution px(x) can be factorized in the form 

pxi,xj (xi, xj ) px(x) = (  pxi (xi))( ) 
pxi (xi)pxj (xj )i∈V (i,j)∈E 

if and only if the distribution factorizes according to a tree graph. 

The main idea of Bethe Approximation is instead of optimizing over the set of all dis­
ˆtributions M, we optimize F (μ) over  M, which is defined as: 

μxi,xj (xi, xj )
M̂ = {μx(x) = (  μxi (xi))( )}

μxi (xi)μxj (xj )i∈V (i,j)∈E 

where {μxi (xi)}i∈V and {μxi,xj (xi, xj )}(i,j)∈E are a set of locally consistent marginals, in other 
words: 

3
 

∑ ∑
∑ ∑
∑ ∑



 
 
 

μxi (xi) ≥ 0, ∀xi 
μxi,xj (xi, xj) ≥ 0, ∀xi, xj 

μxi (xi) = 1, ∀i 
xi 

μxi,xj (xi, xj) =  μxj (xj) 
xi 

μxi,xj (xi, xj) =  μxi (xi) 
xj 

ˆIn lecture, we discussed that M is neither a superset nor a subset of M, thus log(ZBethe) is  
neither an upper bound nor a lower bound on log(Z). 

ˆ1. There are elements in M that are not in M. Consider a distribution that factorizes 
according to a loopy graph. 

ˆ2. There are elements in M that are not in M. Check out the following example. 
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It is easy to check that the {μxi (xi)}i∈V and {μxi,xj (xi, xj )}(i,j)∈E are a set of locally consis­
tent marginals. We claim they do not correspond to any actual distribution. Let us assume 
that they are the local marginals computed from some distribution qx1,x2,x3 . Then  we  have  

q(0, 0, 0) + q(0, 1, 0) = μ13(0, 0) = 0.01 

q(0, 0, 1) + q(1, 0, 1) = μ23(0, 1) = 0.01 

q(0, 0, 0) + q(0, 0, 1) = μ12(0, 0) = 0.49 

Since q is a distribution, all qx1,x2,x3 terms are non-negative. Thus the first two equations 
indicate q(0, 0, 0) ≤ 0.01 and q(0, 0, 1) ≤ 0.01. So the third equation cannot hold. 

∴ The assumption is false and the set of locally consistent marginals does not correspond 
to any actual distribution. 

2.3 Computation Trees 

As mentioned before, computation tree is a method to analyse behaviour of Loopy BP in 
special cases such as graphs with a single loop. In this section, we will look at an example to 
get an idea how this method can be applied. Consider the graph below, and its computation 
tree rooted at node 1 and run for 4 iterations. 

1 2 

4 3 

Ψ12 

Ψ14 Ψ23 

Ψ23 

1 

2 

3 

4 

3 

24 

1 1 

(2) 

(2) (2) 

(2) (3) 

Figure 2: Computation Tree Rooted at 
Figure 1: Original Graph Node 1, for 4 Iterations 
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Notice the messages satisfy the following equations:
       )(t) (t−1) (t−1)
m (0) ψ23(1, 0) m3→2 (0) m (0)2→1 ψ23(0, 0) 3→2=(t) (t−1) = A23 (t−1)
m (1) ψ23(0, 1) ψ23(1, 1) m (1) m (1)2→1 3→2 3→2        )(t−1) (t−2) (t−2)
m (0) ψ34(0, 0) ψ34(1, 0) m (0) m (0)3→2 4→3 4→3= = A34(t−1) (t−2) (t−2)
m (1) ψ34(0, 1) ψ34(1, 1) m (1) m (1)3→2 4→3 4→3        )(t−2) (t−3) (t−3)
m (0) ψ14(0, 1) m1→4 (0) m (0)4→3 ψ14(0, 0) 1→4= = AT 

(t−2) (t−3) 14 (t−3)
m (1) ψ14(1, 0) ψ14(1, 1) m1→4 (1) m (1)4→3 1→4        )(t−3) (t−4) (t−4)
m (0) ψ12(0, 0) ψ12(1, 0) m (0) m (0)1→4 2→1 2→1= = A12(t−3) (t−4) (t−4)
m (1) ψ12(0, 1) ψ12(1, 1) m (1) m (1)1→4 2→1 2→1       

(t) (t−4) (t−4)
m (0) m (0) m (0)2→1 2→1 2→1∴ (t) = A23A34A

T 
(t−4) = M14A12 (t−4)

m (1) m (1) m (1)2→1 2→1 2→1 

In other words, the message from 2 to 1 at iteration t can be written as the product of a 
matrix and the message from 2 to 1 at iteration t-4. Thus we have    

(4t) (0)
m (0) m (0)2→1 = M t 2→1

(4t) (0)
m (1) m (1)2→1 2→1

Notice M is a positive matrix (i.e. each entry is positive). Apply Perron-Frobenious the-
Torem, as t → ∞, M t → λk 

1v1u1 , where  λ1 is the largest eigenvalue of M, and v1 and u1 

are the right and left eigenvalue of M corresponding to λ1. Thus message from 2 to 1 will 
converge when number of iteration goes to infinity. 

Due to the symmetry of the graph, similar arguments can be made for messages along 
other edges as well. So we have proved Loopy BP will converge on this graph. 

2.4 Intuition: When Should We Expect Loopy BP to Work Well 

Since Sum-Product is a distributed algorithm and it’s exact on trees, intuitively we expect 
loopy BP to work well on graphs that are locally tree-like. In other words, if for any node, 
its neighbours are ’far apart’ in the graph, we can think of the incoming messages as roughly 
independent (recall that incoming messages to each node are independent if and only if the 
graph is a tree). On the other hand, if a graph contains small loops, the messages around 
the loop will be amplified and result in marginal estimates very different from the true 
marginals. The numerical examples below hopefully will provide some intuition. 
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2 3 

Ψ1(0) = 0.7 
Ψ1(1) = 0.3 

Ψ13(0,0) = Ψ13(1,1) = 0.9 
Ψ13(0,1) = Ψ13(1,0) = 0.1 

Ψ23(0,0) = Ψ23(1,1) = 0.9 
Ψ23(0,1) = Ψ23(1,0) = 0.1 

Ψ12(0,0) = Ψ12(1,1) = 0.9 
Ψ12(0,1) = Ψ12(1,0) = 0.1 

Exact Marginals Loopy BP Estimated 
Marginals 

[Px1(0), Px1(1)] [0.7, 0.3] [0.9555, 0.0445] 

[Px2(0), Px2(1)] [0.6905, 0.3095] [0.8829, 0.1171] 

[Px3(0), Px3(1)] [0.6905, 0.3095] [0.8829, 0.1171] 

1 

2 

3 

Ψ1(0) = 0.7 
Ψ1(1) = 0.3 

Ψij(0,0) = Ψij(1,1) = 0.9 
Ψij(0,1) = Ψij(1,0) = 0.1 4 

5 

6 
Exact Marginals Loopy BP Estimated 

Marginals 

[Px1(0), Px1(1)] [0.7, 0.3] [0.9027, 0.0973] 

[Px2(0), Px2(1)] [0.6787, 0.3213] [0.7672, 0.2328] 

[Px3(0), Px3(1)] [0.6663, 0.3337] [0.7487, 0.2513] 

[Px4(0), Px4(1)] [0.6623, 0.3377] [0.7427, 0.2573] 

[Px5(0), Px5(1)] [0.6663, 0.3377] [0.7487, 0.2513] 

[Px6(0), Px6(1)] [0.6787, 0.3213] [0.7672, 0.2328] 

Notice in both cases, the marginals estimated from Loopy BP algorithm is higher than 
the exact marginals. In loops, the incoming messages to a node are not independent. But 
the Loopy BP algorithm doesn’t know that and still treat them as independent. Thus the 
messages will be counted more than once and result in an ’amplification’ effect. Also no­
tice that the ’amplification’ is less severe for size-6 loop, because it is more ’locally tree-like’. 
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What Loopy BP dislikes more than small loops is closely-tied small loops. The follow­
ing example hopefully explain this point pretty clearly. 

Ψ1(0) = 0.51 

1 2 3 

4 5 6 

7 8 9 
Ψij(0,0) = Ψij(1,1) = 0.9 
Ψij(0,1) = Ψij(1,0) = 0.1 

Ψ1(1) = 0.49 

Exact Marginals Loopy BP Estimated 
Marginals 

[Px1(0), Px1(1)] [0.5100, 0.4900] [0.9817, 0.0183] 

[Px2(0), Px2(1)] [0.5096, 0.4904] [0.9931, 0.0069] 

[Px3(0), Px3(1)] [0.5093, 0.4907] [0.9811, 0.0189] 

[Px4(0), Px4(1)] [0.5096, 0.4904] [0.9931, 0.0069] 

[Px5(0), Px5(1)] [0.5096, 0.4904] [0.9992, 0.0008] 

[Px6(0), Px6(1)] [0.5095, 0.4905] [0.9930, 0.0070] 

[Px7(0), Px7(1)] [0.5093, 0.4907] [0.9811, 0.0189] 

[Px8(0), Px8(1)] [0.5095, 0.4905] [0.9930, 0.0070] 

[Px9(0), Px9(1)] [0.5093, 0.4907] [0.9810, 0.0190] 
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