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Big Picture So Far 

6.438: Algorithms for Inference – Fall 2014 

Graph has loops? 

• Elimination Algo 
• MAP Elimination 

• Soon: Junction Tree Algo 

Big picture so far: Algorithms for EXACT inference 

Alphabet type? 

Discrete Gaussian 

Gaussian BP• Sum-Product 
• Max-Product 

HMM 

Kalman Filtering 
and Smoothing 

• Forward-backward Algo 
• Viterbi Algo 

HMM 

Last module of the course:  Learning Graphical Models 
• What if we don’t know parameters for our graphical model? 
• What if we don’t know the graph? 

Yes No 

Adapted from a Graph by previous 6.438 TAs George H. Chen and Jin Choi 

Next in the Course: APPROXIMATE Inference 

Loopy Graph, Efficient Algorithm, 
but Approximate Solution: Variational Methods 

Loopy BP 

MCMC/SMC 
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2 Gaussian BP 

Exercise 1: Warm up 
T	 −(a) If exp(−1 x0 J0x0 − 1 x1 

T J1x1 − xT 
1 Lx0 + h0 

T x0) ∝ N 1(h, J), what is h and J?2 2     
LTh0 J0Solution: h = , J =

0 L J1

1(b) If φ1(x) ∝ N−1(h1, J1) and  φ2(x) ∝ N−1(h2, J2), and φ1(x)φ2(x) ∝ N− (h, J). What  
is h and J?  

Solution: h = h1 + h2, J = J1 + J2 

(c) If x ∼ N(μx,Σx) and  y ∼ N(μy,Σy), is it true that x + y ∼ N(μx + μy,Σx +Σy)? 

Solution: False. If x and y are not independent, x + y does not necessarily have  
a Gaussian distribution. For example, consider y = −x, then the sum will be a deter­
ministic value, not a variable.  
However, if x is independent of y, the statement is true because:  

E[x + y] =  E[x] +  E[y] =  μx + μy 
T

E[(x + y − μx − μy)(x + y − μx − μy) ] 
T T T	 T = E[(x − μx)(x − μx) ] +  E[(x − μx)(y − μy) ] +  E[(y − μy)(x − μx) ] +  E[(y − μy)(y − μy) ] 

T= Σx + E[(x − μx)]E[(y − μy)
T ] +  E[(y − μy)]E[(x − μx) ] + Σy 

= Σx +Σy 

     −1	 hx Jxx Jxy(d)	 N ( , )dy ∝ N−1(h, J), What is h and J?  y hy Jyx Jyy  

Solution: This is just marginalizing out y. 

J−1h = hx − Jxy yy hy 

J = Jxx − JxyJ−1Jyxyy 

Gaussian BP Equations 

2 Nodes Case 

Message 
m2→1(x1) ∝ N−1(x1; h2→1,J2→1), 
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where 
h2→1 � −J12J

−1h2 and J2→1 � −J12J
−1J21.22 22 

Marginal 

px1 (x1) ∝ φ1(x1) m2→1(x1) 
∝ N−1(x1; h1 + h2→1, J11 + J2→1). 

General Case: Undirected Tree 

Message 
mi→j (xj ) ∝ N−1(xj ; hi→j , Ji→j ), 

where 
⎛ ⎞ ⎛ ⎞−1   ⎠ ⎝h ⎠hi→j = −Jji ⎝Jii + Jk→i i + hk→i 

k∈N(i)\j k∈N(i)\j ⎛ ⎞−1  ⎝ ⎠Ji→j = −Jji Jii + Jk→i Jij . 
k∈N(i)\j 

Marginal 
 

pxi (xi) ∝ φi(xi) mk→i(xi)  
k∈N(i)  ⎧ ⎫ ⎛ ⎞ ⎛ ⎞T ⎪ ⎪ ⎨ ⎬   1 T ⎠ ⎠= exp  − xi ⎝Jii + Jk→i xi + ⎝hi + hk→i xi ⎪ 2 ⎪ ⎩ ⎭k∈N (i) k∈N(i)   

∝ N−1(hi + hk→i, Jii + Jk→i) 
k∈N(i) k∈N(i) 

Gaussian BP and Gaussian Elimination 

Recall in linear algebra, one standard method for solving system of linear equations of the 
form Ax = b is Gaussian elimination. Row manipulations are performed to transform the 
matrix A into an upper triangular matrix, so the value of last element in x can be solved 
directly. Then back substitution is used to solve for the other elements of x. 
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We claim that if matrix A has some special properties, we can turn to Gaussian BP al­
gorithm to find an optimal ordering of the row manipulations such that the number of 
manipulations needed is as few as possible. To be more precise, if A is symmetric and 
semi-positive definite, and the undirected graph1 corresponding to A is a tree, we will 
take A as the information matrix J and b as the potential vector h, and consider the 
message-passing schedule of running Gaussian BP algorithm on this graph. If we translate 
each message into a row manipulation, we will obtain the optimal sequence of row manip­
ulations. Furthermore, the solution x is the mean vector μ in the Gaussian graphical model. 

Moreover, notice that we only consider the ordering of row manipulations, not the actual 
values. After a few more thoughts, you should realize that we can relax the requirement on 
A to ’the non-zero pattern of A should be symmetric’2 . But in this case, the solution x no 
longer has the interpretation of mean vector of the Gaussian GM. 

Exercise 2 illustrates the ideas in the above discussion. 

Exercise 2: Gaussian BP and Gaussian Elimination 

Solve the following system of equations. You should solve this system by hand rather 
than using Matlab. Explain why this is related to Gaussian belief propagation. 

⎡ ⎤ ⎡ ⎤ 
1 0 0 −4 1  −3 0  −32  ⎢ 0 4 0 0 0 1 0 ⎥ ⎢ 32 ⎥  ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 2 0 0 1 0 8 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥1 0 0 3 0 0 1 x = 24 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥2 0 0 0 1 0 0 5 ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦1 −1 −1 0 0 5 0 12 
0 0 0 −3 0 0 6  12 

Solution: 

1This is the undirected graph obtained by adding an edge between node i and j if and only if �ij �= 0.  
2All the diagonal entries need to be non-zero. 

4  



Notice that in our particular system, the sparsity pattern, i.e., the set of nonzero entries, 
does correspond to a tree. Thus, we will perform Gaussian elimination steps in the order 
suggested by the tree.3 

We will work from the leaves in towards the root, and then back out to the leaves. For 
brevity, in what follows, for each row reduction step we will only write out the row of the 
matrix that actually changes. 

Step 1: We use row three to eliminate an entry in row 6, i.e., replace row 6 with row 
6 +  12 · row 3. The new row 6 is 

11[1 −1 0 0 0  0 | 16]2 . 

The entry after the | represents the right hand side of the equation. 

Step 2: We use row two to eliminate an entry in row 6, i.e., replace row 6 with row 6 + 
1 · row 2. The new row 6 is 4 

23[1 0 0 0 0  4 0 | 24] . 

Step 3: We use row 7 to eliminate an entry in row 4, i.e., replace row 4 with row 4 - 1 · 6 
row 7. The new row 4 is 

7[1 0 0  2 0 0 0  | 22] . 

Step 4: We use row 4 to eliminate an entry in row 1, i.e., replace row 1 with row 1 + 8 · 7 
row 4. The new row 1 is 

[15 48 ]0 0 0 1  −3 0  | − .7 7 

Step 5: We use row 5 to eliminate an entry in row 1, i.e., replace row 1 with row 1 - row 
5. The new row 1 is 

[1 83 ]0 0 0 0  −3 0  | − .7 7 

Step 6: We use row 1 to eliminate an entry in row 6, i.e., replace row 6 with row 6 - 7· 
row 1. The new row 6 is 

107[0 0 0 0 0  0 | 107] .4 

We can now solve to get x6 = 4.  

Now comes the back substition phase. Of course, back substitution can be thought of 
as more row reduction steps to make the matrix diagonal, but instead of writing the back 

3The root of the tree can be chosen arbitrarily. Here we assume node 6 is chosen as the root. 
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substition steps this way we will simply write the relevant equation that is solved in each 
step. 

32−x6Step 7: Since x6 is known, we get x2 = 4 = 7.   

Step 8: Since x6 is known, we get x3 = 8−x6 = 2.   2 

Step 9: Since x6 is known and we eliminated the other parts of row 1, we get x1 = 
21x6 − 83 = 1. 

Step 10: Since x1 is known, we get x5 = 5  − 2x1 = 3.  

Step 11: Since x1 is known and we eliminated the other parts of row 4, we get x4 = 
22−x1 

7 = 6.  
2 

12+3x4Step 12: Since x4 is known, we get x7 = 6 = 5.   

In summary,  [ rT 
x = 1 7 2 6 3 4 5 . 

While it is arguable how much work was saved by doing Gaussian elimination in this order, 
hopefully this problem is enough to convince you that for large systems, this method will 
be much faster than doing Gaussian elimination in the standard order, i.e., where we would 
first zero out terms below the main diagonal and then do back substition. 

Kalman Filtering and Smoothing 

Setup 

xt+1 = Axt + Gvt, where vt ∼ N(0, Q), 
yt = Cxt + wt, where wt ∼ N(0, R) 
x0 ∼ N(0, Σ0) 
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Some more notations: 

μt|s = E[xt|y0, ..., ys] 
Σ | = E[(xt − μt|s)(xt − μt|s)T |y0, ..., ys]t s 

Equations 

Kalman filter was first introduced by Rudolf Kalman in the 1960s. Viewing it through 
the lens of inference algorithms, it is nothing more than Gaussian BP algorithm applied to 
Hidden Markov Models(HMM), with some regrouping of the computations. 

Kalman filtering and smoothing, similar to other inference algorithms for HMM, contains 
two ’passes’. The ’forward pass’, known as the filtering step, starts with some initial  values  
μ0|0 and Σ0|0, and then recursively compute μt+1|t+1 and Σ t+1|t+1 using μt|t and Σ t|t. The  

4’backward pass’, i.e. smoothing, on the other hand, starts with μN |N and Σ N |N , and  then  
recursively compute μt|N and Σt|N using μt+1|N and Σt+1|N . 

The filtering step is further divided into two smaller steps. First, a ’prediction’ step aims 
to estimate the state xt+1 given observations y0, y1, ..., yt: 

μt+1|t = Aμt|t 
Σt+1|t = AΣt|tAT + GQGT 

Notice these two equations follows directly from xt+1 = Axt + Gvt. 

Secondly, to compute μt+1|t+1 and Σt+1|t+1 from μt+1|t and Σt+1|t, we perform an ’ad­
justment’ step: 

Tμt+1|t+1 = μt+1|t +Σt+1|tCT (CΣt+1|tC + R)−1(yt+1 − Cμt+1|t) 
T CTΣt+1|t+1 = Σt+1|t − Σt+1|tC (CΣt+1|t + R)−1CΣt+1|t 

Notice the mean μt+1|t+1 is μt+1|t plus a term proportional to the ’error of prediction’ 
yt+1 − Cμt+1|t, while Σt+1|t+1 equals Σ t+1|t minus some positive definite matrix. We do 
expect the covariance Σt+1|t+1 to decrease because we now have one extra observation yt+1. 

The equations for the smoothing step are as follows: 

μt T = μt t + Lt(μt+1|N − μt+1|t)| | 
TΣt|T = Σt|t + Lt(Σt+1|N − Σt+1|t)Lt 

where Lt = Σt|tAT Σ−1 . Notice that terms μ , μ , Σt|t, and  Σt+1|t are already com­t+1|t t|t t+1|t 
puted in the filtering step. 

For those interested in how these equations are derived, a rigorous treatment can be found 
4μN|N and ΣN |N are available after the filtering step. 
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in chapter 15 of Jordan’s notes. 

Summary: Inference Algorithms on HMM 

The following table summarizes the variants of inference algorithms that compute marginal 
distributions on an HMM5 . 

(xi|y1, ..., yN ) (xi|y0, ..., yN ) 

Discrete Variables Gaussian Variables 
Sum-Product: 
mi→i+1(xi+1) 
mi i 1(xi 1)→ − − 

Gaussian BP: 
mi (x )→i+1 i+1 
mi i 1(x )→ − i−1 

Forward-Backward α-β: 
αi(x Pi) =  (y1, ..., yi, xi) 
βi(xi) =  P(yi+1, ..., yN |xi) 

’2 Filter Smoother’: 
P(xi|y0, ..., yi) 
P(xi|yi+1, ..., yN ) 

α-γ Algorithm: 
αi(xi) =  P(y1, ..., yi, xi) 
γ (x ) =  Pi i 

Kalman Filtering and Smoothing: 
P(xi y0, ..., yi) 
P 

| 

Details about ’2-filter smoother’ can be found in Jordan notes section 15.7.2. 
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