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Exercise 1: 
Please provide answer in True or False for the following questions. Provide explanations for 
your answers. 

(a) Let G be a chordal graph. As we know, one way to obtain chordal graph is to trian­
gulate a given graph. Therefore, all chordal graphs must have at least one triangle. 

Solution: False. A tree graph is also chordal, but there is no triangle in it. 

(b) The following undirected graphical model can be obtained by moralization of a di­
rected graphical model. If yes, provide that directed graphical model. If no such 
directed graphical model exists, explain why. 

Solution: False. Assume it can be moralized from some directed graph. Moralizing 
a V-structure will result in a triangle. Since the above graph doesn’t contain any 
triangles, all the edges in the undirected graph must be in the directed graph. Since 
we have a size 4 loop and the directed graph should be acyclic, there must be a V-
structure in the directed graph, and thus the moralization process would add chord 
to the loop. 

(c) An undirected graphical model over N variables without triangles cannot have more 
than N2 factors in its factorization (assume px(x) > 0 for all x). 

Solution: True. According to Hammersley-Clifford theorem, we have potential 
functions for cliques. If there is no triangle in the graph, the maximal cliques are 
edges, and for an undirected graph with N nodes, there are at most N(N − 1) < N2 

edges, thus we cannot have more than N2 factors. 

(d) Look at the following graph and answer the questions: 
1. Is B ⊥ C|A, D, J? 
2. Is H ⊥ F |A, D, J? 
3. Moralize the graph. 
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Solution: To answer this question, we’ll apply Bayes Ball algorithm. Nodes A, D, 
J have primary shade, while B, C, E, F, G, H have secondary shade. 
1. No, we can find a path: B→E→C 
2. No, we can find a path: H→E→C→F 
3. To moralize the graph, we need to add edges between the following pairs of variables: 
(A, F), (B, C), (B, H), (C, H), (D, E), (G, H), (H, I). 

Exercise 2: 
In digital communications, it is common to encode data to protect it against errors. A chan­
nel encoder takes as input a block of bits x1x2 . . . xn, and output a codeword y1y2, . . . ym. 
The mapping from the x1x2 . . . xn to the y1y2, . . . ym is injective, in other words, for any 
valid codeword y1y2, . . . ym, the decoder is able to uniquely identify the original message 
x1x2 . . . xn. 

The codeword is sent through a communication channel, and the channel output at the 
receiver side, a sequence z1z2, . . . zm, will be a noise distorted version of y1y2, . . . ym. 

For concreteness, the channel we use is described as follows: zi = yi + ni, where  ni is 
i.i.d. and Gaussian with mean 0 and variance 1. 

xi 
 Encoder  yi

 

ni

  
  
L

 + zi 

We would like to recover the original message x1x2 . . . xn from the received sequence z1z2 . . . zm. 
Since the mapping from x1x2 . . . xn to the y1y2, . . . ym is injective, we can equivalently esti­
mate y1y2 . . . ym. 
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Our goal is minimize the probability of error, i.e., minimize Pr[y1y2 . . . ym  ŷ 2 . . . ŷm],= 1ŷ
where ŷi denotes the estimation of yi, based on the received sequence z1z2 . . . zm. In  this  
exercise, we describe two very simple encoding schemes. 

(a) A repetition code takes one random bit	 x1 that is equally likely to be 0 or 1, and 
outputs a codeword y , where  y1 = y2 = . . . = ym = x1. 
Write down a graphical model for y1y2 . . . ym and z1z2 . . . zm. Specify all the potential 
functions. 

Solution: 

...y1 y2 ym 

z1 z2 ... zm 

1 
φyi (yi) =  , for y = 0, 1, i = 1, . . . ,m;

2
(yi, yi+1) =  1[yiψyi,yi+1	 = yi+1]; 

1 (yi−zi)
2 

−ψyi,zi (yi, zi) =  √ e 2 , for i = 1, . . . ,m,  
2π 

Any tree graph for all the variables y1, . . . , ym is a solution, with similar potential for 
the consistency constraints. 

(b) A single parity check (SPC) code takes as input a block of bits x1x2 . . . xn, where  the  
input bits xi are i.i.d. with equal probability of being 0 or 1, and outputs codeword 
y1y2 . . . ym. Here  m = n+ 1,  yi = xi for 1 ≤ i ≤ n, and  ym is chosen so that 

m 
yi = 0(mod  2)  

i=1 

Provide a graphical model for y1y2 . . . ym and z1z2 . . . zm (m = n+ 1). Specify all the 
potential functions. 

Solution: 

f0 

y1 y2 ... ym 

... 

zmz1 z2 ... 

f1 f2 fm 

3
 



 m+1 

f0(y1, y2, . . . , ym) =  1[ yi = 0(mod 2)] 
i=1 

1 − (yi−zi)
2 

fi(yi, zi) =  √ e 2 

2π 

Exercise 3: 
Suppose we have a Gaussian random vector x with information matrix 

⎡ ⎤ 
5 1 0 0 1  
⎢ ⎥1 5 0 0 1  ⎢ ⎥ ⎢ ⎥J = 0 0 5 0 1  . ⎢ ⎥ ⎣ ⎦0 0 0 5 1  
1 1 1 1 5  

Draw the undirected graphical model for: (a) px1,x2,x3,x4,x5 , (b)  px1,x2,x3,x4|x5 , and  (c)  
px1,x2,x3,x4 

Solution: 

1 2 

3 

4 

5 

Figure 1: Graphical Model for p can be drawn by directly looking at the J matrix x1,x2,x3,x4,x5 

1 2 

3 

4 

Figure 2: Graphical Model for px1,x2,x3,x4|x5 can be drawn by deleting variable node 5 and 
all edges connecting to it. 
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1 2 

3 

4 

Figure 3: Graphical Model for px1,x2,x3,x4|x5 can be drawn by deleting variable node 5 and 
connecting all its neighbours. 

Exercise 4: 
Consider the directed graph below and answer the following questions: 

(a) Moralize the directed graph	 and consider the resulting undirected graph. Is it a 
chordal graph? If so, provide an elimination ordering which doesn’t add any edges. If 
not, provide an ordering that adds as few edges as possible. 

Solution: The moralized graph is: 
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It’s not a chordal graph, because x2, x4, x5, and  x6 form a cycle without a chord. 

To obtain an elimination ordering that adds as few edges as possible, we can first 
remove x1, x3, x7, x8, x9 in any order without adding an edge. Then we have a loop 
of size 4 and removing these nodes in any order will result in one added edge. 

(b) Consider running elimination algorithm on the original directed graph, using condi­
tional probabilities directly as potentials. We will only perform 1 step, eliminating 
x4. Write down the potential functions created in this elimination step, as well as the 
computational complexity of this step. Assume all the variables take K possible values. 

Solution: Eliminating x4 generates a factor over variables x1, x2, x5, and  x7 and 
costs O(K5). 

Exercise 5: 
Consider the following directed graphical model over 5 K-ary variables (each variable takes 
K possible values) 

(a) Draw a factor graph that represents this distribution. Specify the factors. 

Solution: 
px1,x2,x3,x4,x5 = px1 px2|x1 px3 px4 px5|x2,x3,x4 

We can design a factor graph with the following factors:
 

f1(x1) =  p (x1)
x1 

f2(x1, x2) =  px2|x1 (x2|x1) 
f3(x3) =  px3 (x3) 

f4(x4) =  p (x4)x4 

f5(x2, x3, x4, x5) =  px5|x2,x3,x4 (x5|x2, x3, x4) 
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Note the distribution can be represented by a factor graph in many ways. But there 
should always be a factor that connects x1 and x2 and one that connects x2, x3, x4, 
and x5. 

(b) Suppose we run the sum-product algorithm on the resulting factor graph.	 What is 
the operational cost (additions, multiplications) needed to evaluate the message sent 
to x3 from the largest associated factor? You can assume that any other messages 
that you may rely upon have already been computed. 

Solution: The largest factor associated with x3 is f5, which has four neighbours: 
x2, x3, x4, and  x5. The message from f5 to x3 can be calculated by: 

mf5→x3 (x3) =  f5(x2, x3, x4, x5)mx2→f5 (x2)mx4→f5 (x4)mx5→f5 (x5) 
x2,x4,x5 

The calculation requires O(K4) operations.  

Exercise 6: 
Suppose a collection of discrete random variables of interest xn, n = 0, 1, 2, . . . , N , forms a 
Markov chain characterized by a transition sdistribution p(·|·) and initial distribution π(·). 
Specifically, for n = 1, 2, . . . , N  

Pr[x0 = a] =  π(a) 

Pr[xn = a | xn−1 = b] =  p(a | b) 

Furthermore, consider a second set of discrete random variables yn, n = 1, 2, ..., N/K of the 
process xn characterized by a distribution q(·|·) where  K is an integer subsampling factor 
such that N/K is an integer. Specifically, 

Pr[yn = c | xnK = b0, xnK−1 = b1, ..., xnK−K+1 = bK−1] =  q(c | b0, b1, ..., bK−1) 

For parts (a) and (b), we restrict our attention to the case K = 2.  

(a) Sketch the directed graph with nodes corresponding to the joint collection of random 
variables x0, x1, ..., xN , y1, y2, ..., yN/2. 

Solution: Sketch of the directed graph: 
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(b) Suppose we observe y1, y2, ..., yN/2. Sketch the undirected graph that represents the 
model for the remaining latent variables, i.e., the (N + 1)-node undirected graph for 
the x0, x1, ..., xN alone. Identify all the maximal cliques in this graph and express the 
corresponding clique potentials in terms of π(·), p(·|·) and  q(·|·). 

Solution: Sketch of the undirected graph: 

When the graph in part (a) is converted to an undirected graph, the dependencies that 
observing y1, y2, ..., yN/2 may introduce in their two parent nodes are already present 
in the undirected graph, so we have a chain graph after removing the observed nodes. 

More formally, the joint distribution px0,...,xN ,y1,...,yN/K 
factors as 

N N/K  
px0,...,xN ,y1,...,yN/K 

= π(x0) p(xi|xi−1) q(yi|xiK , . . . , xiK−K+1) 
i=1 i=1 

to which the conditional density px0,...,xN |y1,...,yN/K 
is proportional, so the conditional 

density factors the same way.
 

The key point is that because K = 2,  the  q(yi|xiK , . . . , xiK−K+1) terms can all be
 
absorbed into the appropriate factor containing p(xi|xi−1), so all factors are in terms
 
of xi−1, xi pairs (i = 1, ..., N), which are the maximal cliques, and the graph is a chain.
 
The clique potentials break into several cases.
 

ψ0,1(x0, x1) =  π(x0)p(x1|x0). 
Next, for edges between x2i−1 and x2i, we get  

ψ2i−1,2i = p(x2i|x2i−1)q(yi|x2i, x2i−1). 

Finally, for edges between x2i and x2i+1, we get  

ψ2i,2i+1 = p(x2i+1|x2i). 

(c) Now consider the case of K = 3.  If  the  y1, y2, ..., yN/3 are again observed, determine 
the size of the largest clique in the undirected graph for the remaining latent variables 
x0, x1, ..., xN . 

Solution: The size of the largest clique is 3.
 

When the directed graph is converted to an undirected graph this time, the obser­
vations now introduce extra dependencies beyond those between neighboring parent
 
variables. We will show this for the general K.
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From the joint distribution 

N N/K 

px0,...,xN ,y1,...,yN/K 
= π(x0) p(xi|xi−1) q(yi|xiK , . . . , xiK−K+1). 

i=1 i=1 

to which the conditional density px0,...,xN |y1,...,yN/K 
is proportional, we see that we 

need to include potentials for the p(xi|xi−1) terms and for the q(yi|xiK , . . . , xiK−K+1) 
terms. Using Hammersley-Clifford, we know that one way to construct a graph so 
that px0,...,xN |y1,...,yN/K 

is Markov on the constructed graph is by including cliques for 
all the factors. In our case, this means that we include a clique (i.e., an edge) between 
xi and xi−1. Also, we add cliques connecting all variables in the set xiK , . . . , xiK−K+1, 
since these variables appear together in a factor. 

The maximum clique size is thus at least K. We only need to show that no larger 
cliques exists in the graph. Looking at the graph, this is obvious. To argue this 
formally, assume that K ≥ 2. Then, to have a clique of size K + 1, at the very least 
we need to have three adjacent vertices with degree at least K. However, all vertices 
in the graph have degree K−1, except for x1, xK , xK+1, x2K , x2K+1, . . .. These vertices 
all have degree K, but in the subgraph induced by xK , xK+1, x2K , x2K+1, . . ., no three  
vertices are adjacent — xK is only connected to xK+1, x2K is only connected to x2K+1, 
and so on. Thus, the maximum clique size is exactly K. 
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