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Gaussian Graphical Models: Schur’s Complement 

Consider a sequence of jointly Gaussian-distributed variables: 

Recitation 3 

⎛⎞⎛ ⎞      ⎜⎜⎜⎝  
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Λ11 Λ12 h1 J11 J12x1 µ1 = N−1∼ N x =  , , .  
Λ21 Λ22 h2 J21 J22x2 µ2             

Λ J 

Assume we want to do marginalization over x2. It’s easy when we have x represented in 
covariance form. Computing marginals just involves reading off entries from µ and Λ, e.g. 

x1 ∼ N(µ1, Λ11). 

In contrast, computing marginals using the information form is more complicated: 

x1 ∼ N−1(h/, J/), 

where J/ = Λ−1 
11 . 

Since we’re working with information form, it would be nice if we can represent J/ in terms 
of J11, J12, J21, and J22. It turns out that 

Λ−1 = J11 − J12J
−1J21 (1)11 22 

Similarly, when we want to do conditioning, the information form representation is easy1 . 
But for the canonical form, we’ll need to look at Λ/ = J−1, and it turns out that 11 

J−1 = Λ11 − Λ12Λ
−1Λ21 (2)11 22 

The expressions (1) and (2) are called the Schur’s complement.  
In this section, we’ll provide two ways to prove the validity of the Schur’s Complement.  

Method 1         
Λ11 Λ12 J11 J12 I 0

 =
Λ21 Λ22 J21 J22 0 I

∴ Λ11J11 + Λ12J21 = I (3) 
Λ21J11 + Λ22J21 = 0 (4) 

Left multiply Λ−1 to equation (4), we get: 22  

Λ−1  = −Λ−1 (5) 

Plug (5) into (3), we have 
22 Λ21J11 + J21 = 0 ⇒ J21 22 Λ21J11 

Λ11J11 − Λ12Λ
−1Λ21J11 = I22 

∴ (Λ11 − Λ12Λ
−1Λ21)J11 = I22 

∴ J−1 = Λ11 − Λ12Λ
−1Λ21 

Following similar arguments, we can prove Λ−1 = J11 − J12J
−1J21 as well. 

11 22 

11 22 
1For details about the distribution for x1|x2, please refer to the notes of lecture 6. 
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Method 2 The second method is more systematic. It is based on two facts: 
1. Diagonal matrix is easy to invert; 
2. We can always use row manipulations (which corresponds to left-multiplying a matrix) 
and column manipulations (which corresponds to right-multiplying a matrix) to convert a 
full-rank matrix into a diagonal one. 

I −Λ12Λ
−1 Λ11 Λ12 I 0 Λ11 − Λ12Λ

−1Λ21 022 22Notice = −Λ−10 I Λ21 Λ22 22 Λ21 I 0 Λ22 

A Λ B D 

∴ AΛB = D ⇒ Λ = A−1DB−1 ⇒ Λ−1 = (A−1DB−1)−1 = BD−1A 

Remember J = Λ−1 

J11 J12 I 0 (Λ11 − Λ12Λ
−1Λ21)

−1 0 I −Λ12Λ
−1 

22 22∴ = (6)
J21 J22 −Λ−1Λ21 I 0 Λ−1 0 I22 22 

It can be easily verified in (6) that 

J11 = (Λ11 − Λ12Λ
−1Λ21)

−1 
22 

∴ J−1 = Λ11 − Λ12Λ
−1Λ21 

Again, Λ−1 = J11 − J12J
−1J21 can be proved in a similar manner. 
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Conversion Among Different Graphical Models 

Exercise 1: Consider the following undirected graph: 

1 2

3 4

5 6

(1) Is this graph chordal?  
Solution: No. Nodes 1-2-4-3-1 form a loop of size 4 that has no chord.  

(2) Convert this undirected to factor graph.  
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Solution: When converting an undirected graph to factor graph, we just assign a factor 
to each maximal clique in the undirected graph. We can’t just assign factors to any clique. 
Assigning factors to non-maximal cliques would not change conditional independences, but 
would imply factorization property that the undirected graph doesn’t necessarily satisfy. 
The resulting factor graph is as follows: 

1 2

3 4

5 6

(3) Convert the factor graph to a directed acyclic graph.  
Solution: When converting a factor graph to a directed one, we take an arbitrary ordering,  
say x1, x2, ..., xn. We’ll process each node in turn. For each node xi, find a minimal set  
U ⊆ {x1, ..., xi−1} s.t. xi ⊥ {x1, ..., xi−1} − U |U .  
The following graph is produced using ordering 1, 2, 3, 4, 5, 6. Different orderings may lead  
to different resulting graphs.  

1 2

3 4

5 6

(4) Convert the directed graph back into undirected graph.  
Solution: When converting a directed graph into an undirected one, we retain all the edges,  
’marry the parents’ (i.e. if the two parents in a V-structure are not directly connected, add  
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an edge between them), and then remove all the directions of the edges. Using the directed  
graph we got in part (3), we get:  

1 2

3 4

5 6

Final Comments: 
1. Notice that compared to the original graph, the final undirected graph has 2 extra edges 
(1-4 and 2-3). We can do better by choosing a different ordering when converting to directed 
graph, e.g. the ordering 5, 1, 2, 3, 4, 6 will lead to a final undirected graph with only 1 
extra edge (2-3). 

2. For each step of the conversion, we either retain all the information, or lose some 
information. We can never add information. In other words, each step of the conversion 
finds an I-map of the previous graph. 

3. If the original undirected graph was chordal (e.g. if the edge 2-3 was present), we 
would get exactly the same undirected graph after going through these conversions. 

I-Map, D-Map, and P-Map 

Definition 1 (I-map) We say G is an independence map or I-map for D if CI(G) ⊆ 
CI(D). In other words, every conditional independence implied by G is satisfied by D. 

CI(D)

CI(G)

I-map

Definition 2 (D-map) We say G is a dependence map or D-map for D if CI(G) ⊇ CI(D). 
In other words, every conditional independence implied by D is satisfied by G. 
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CI(D)

CI(G)

D-map

Definition 3 (P-map) We say G is a perfect map or P-map for D if CI(G) = CI(D). In 
other words, D and G have exactly the same set of conditional independences. 

G is a P-map of D if and only if it’s both an I-map and a D-map for D. 

Definition 4 (Minimal I-map) A minimal I-map is an I-map with the property that re­
moving any single edge would cause the graph to no longer be an I-map. 

Definition 5 (Maximal D-map) A maximal D-map is a D-map with the property that 
adding any single edge would cause the graph to no longer be a D-map. 

Exercise 2: Consider a distribution D: 
(1) What is a trivial example of an I-map of D? 
Solution: A complete graph (directed or undirected). 

(2) What is a trivial example of a D-map? 
Solution: A graph with no edges. 

(3) Suppose we want to find the directed minimal I-map of D. Is this minimal I-map unique? 
Solution: In general, the directed minimal I-map is not unique. Here’s an easy counter ex­
ample: if D is a distribution over variables X and Y and D has no conditional independences, 
then the following directed graphs are both minimal I-maps for D. 

(4) Suppose we want to find the undirected minimal I-map of D, and D is a positive distri­
bution. Is this minimal I-map unique?  
Solution: Yes. We’ll prove by contradiction.  
Assume we have two different undirected minimal I-maps for D, denoted as G1 and G2.  
Since they are different, there exists at least one edge that is in one graph but not the  
other. Without loss of generality, assume edge (i, j) ∈/ G1 and (i, j) ∈ G2.  

Since (i, j) ∈/ G1, and G1 is an I-map for D, we know that xi ⊥ xj |xrest is satisfied by 
D. Consider graph G/

2, which is constructed by removing edge (i, j) from G2. Distribution D 

5  



satisfies all the pairwise independences in G/
2 by construction, i.e. D is pairwise Markov with 

respect to G/
2. Since D is a positive distribution, pairwise Markov property is equivalent to 

global Markov property2 . Thus G2
/ is also an I-map for D. But this contradicts the fact that 

G2 is a minimal I-map! 

Thus the assumption is not true. In other words, the minimal I-map is unique. 

(5) Again, we want to find the undirected minimal I-map of D. But D is now a general  
distribution (not necessarily positive). Is the minimal I-map still unique?  
Solution: No. Consider the following counter example:  
Let PX,Y,Z (0, 0, 0) = PX,Y,Z (1, 1, 1) = 1 and all other configurations have zero probability.  2 
Then the following graph on the left is a minimal I-map for the distribution. It’s an I-map 
because the only conditional independence it has is Y ⊥ Z|X, which is satisfied by the 
distribution. But if we take out the edge between X and Y , the graph implies Y ⊥ (X, Z), 
which is clearly not true in the distribution. Similarly, we can’t take out the edge between 
X and Z. Thus it is a minimal I-map. However, the graph on the right is also a minimal I-
map following similar arguments. Thus for a general distribution D, its undirected minimal 
I-map is not unique. 

Given two graphs G1 and G2, if CI(G1) = CI(G2), we say G1 and G2 are ’I-equivalent’. 

(6) For each of the two following graphs, determine whether there can be any other di­
rected graph that is ’I-equivalent’ to it3 . 

2We haven’t proved this fact in class. One direction of the statement (global implies pairwise) is obvi­
ous. One way to see why the other direction is true is that when we prove Hammersley-Clifford theorem, 
we only used pairwise independences. A more rigorous proof using induction method can be found in 
Koller/Friedman. 

3Koller/Friedman Exercise 3.15 
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Solution: The graph on the left doesn’t have an ’I-equivalent’ directed graph because 
changing the direction of any edge would either destroy or create a V-structure where the 
parents are not connected. In other words, changing any edge direction would change the 
set of conditional independences in the graph. 

The graph on the right has an ’I-equivalent’ directed graph: we can reverse the arrow 
between A and B and the resulting directed graph has exactly the same set of conditional 
independences. 

(7) For an undirected graph, is there any other undirected graph that is ’I-equivalent’  
to it?  
Solution: No. In an undirected graph, the absence of edge (i,j) implies that xi ⊥ xj |xrest.  
Any different undirected graphs differs by at least one edge, and the pairwise conditional  
independence corresponds to that edge is satisfied by one graph and not the other. Thus  
the two graphs cannot have exactly the same set of conditional independences.  

This result shows that every undirected graph implies a different set of conditional inde­
pendences, i.e. in some sense undirected graphs are not redundant, whereas many directed 
graphs can correspond to the same set of conditional independences. 

(8) If two directed graphs have the same set of variables, the same skeleton4 and the same  
set of V-structures, are they guaranteed to be ’I-equivalent’?  
Solution: Yes. If you consider running Bayes Ball Algorithm on both graphs, they will  
obey exactly the same rules.  

(9) If two directed graphs are ’I-equivalent’, are they guaranteed to have the same skeleton  
and the same set of V-structures?  
Solution: No. A simple counter example is provided by the following graphs. Both directed  
graphs contain no conditional independence, but clearly they have different V-structure.  

4i.e. the underlying edges without the direction associated to them 
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