
   6.438: Recitation-2 (9/22/2014) 

I. Graphical Model Definitions 

2 ways of defining graphical models:  

1. Independence 

2. Factorization 

 

Directed Graphical Models:  

Factorization: P(X1, X2,….XN) = ∏         
  

    

Global Independences: XA     XB | XC  if C D-separates A and B in G. 

For directed models, the 2 definitions are equivalent. 

 

Undirected Graphical Models: 

In terms of Independences:  

Global Independences:  XA     XB | XC  if removing C disconnects A from B in G. 

Local Independences:  Xi   XV- {i}-N(i)         , where N(i) represents neighbors of i in G. 

Pairwise Independences:   Xi   Xj | XV- {i}- {j}  if i and j do not have an edge in G.  

 

In terms of Factorization: Over Maximal Cliques  

P(X1, … XN)   ∏       
 
    

P(X1, … XN)   
 

 
  ∏       

 
    

Where Z is a normalization factor called the Partition Function. 

The 2 definitions are not equivalent; we need additional assumptions to get factorization from 

Independences, such as having a positive distribution (Hammersely-Clifford). The primary definition of 

undirected models is thus in terms of global CIs*.  

 

*CI stands for Conditional Independence, I often use this interchangeably with Independence 
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The 3 types of independencies are also not equivalent. In general, Global Independences are stronger 

than Local Independences, which are in turn stronger than Pairwise Independences.  i.e.   

Global => Local => Pairwise  ..(1) 

(The first implication is actually a set containment relation, the second follows from basic properties of 

independence)  

Moreover, in the absence of any other assumptions, these relations are strict i.e. there exist 

distributions which satisfy pairwise CIs of a graph but not local CIs (for some graphs), and similarly for 

local vs. global. (Remember, you have shown this in problem 4 in Pset-2!). However, if we are given the 

additional assumption that the distribution is positive, these 3 sets of independencies become 

equivalent. The easiest way to prove this is via the Hammersley-Clifford theorem:  

In the Hammersley-Clifford theorem, we only make use of pairwise independencies to prove the 

existence of a factorization. (I would strongly encourage you to look at the proof and verify this). Thus, 

for a positive distribution, we have: 

Pairwise Independence => Factorization over Maximal Cliques  ..(2) 

It can be easily shown that factorization is a stronger property than global independencies, i.e. 

Factorization over Maximal Cliques => Global Independences  ..(3)   

(This is true for an arbitrary distribution i.e. we do not need to assume positivity. You may try to find a 

proof of the above statement as an exercise.) 

 

Combining (1), (2) and (3); we find that for a positive distribution, all the 4 forms of representation – 

factorization, global CIs, local CIs, and pairwise CIs – are equivalent. 

 

In this course, we will mostly be dealing with a distribution that factorizes over the graph, so we will 

frequently assume positivity in lectures. In practice, any distribution can be converted to a positive 

distribution which is very close to the original, so we don’t lose anything by this assumption. 

 

Summary: 

 

 

 

 

 

  

Factorization Global CIs Local CIs Pairwise CIs 
Always Always Always 

(H-C Theorem) 

For Positive Distribution 
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II. Maximal Cliques example 

 

  

 

 

 

 

 

 

The above graph has all possible edges except the ones shown in the diagram.  

For a graph G with N nodes, this method produces 2^(N/2) maximal cliques. Detailed explanation is left 

to the students.  

 

III. Undirected graphical models examples (Not discussed in recitation) 

Example 1: 

  

 

 

We have 2 Binary random variables, XA and XB. 

Node Potentials:                    

Edge Potentials:               {

                                   

                        
                       

 

Thus,         
        

 

 
                            

Calculate: 

i) Z 

ii) Pr. (XA = 1,XB = 0) = ? 

iii) PR. (XB = 1 | XA = 0) = ? 

 

X1 X1’ 

XN/2 XN/2’ 

A B 

N/2 

nodes 

N/2 

nodes 
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Example 2: Undirected graph for noise removal 

 

 

 

 

 

 

 

 

The above graph represents a portion of an image, where each pixel takes on a binary value (0/1). Just 

as in a real image, adjacent pixels have high probability of having the same value. We capture this 

tendency using edge potential functions. In addition to this, we have certain “measurements” for the 

pixels which also influence our belief about their true values. These measurements are represented 

using node potentials.  

 

To keep the setting simple, we assume that neighbors of 5 are observed exactly i.e. their node potentials 

are deterministic functions. Using this information, we try to determine the value of pixel 5. 

Edge Potentials:                     (     )  {
              

                 
 

Node Potentials:        
    {

                 

                 
 

     { }                    

Questions:  

i) What is Pr.(X5 = 1) ? 

 

ii) Instead of knowing the neighboring nodes exactly, suppose that node potentials for these nodes are 

also of the same form as x5, but inverted i.e.                   . Can you now calculate P(x5 = 1) 

exactly? If you had to fix a single value for x5, either 0 or 1, which would you choose? (answer intuitively)  

 

iii) (Challenge) What is the complexity of calculating Pr (X5) exactly?  

There is a naïve way to do it, which involves summing over all the variables. Can you do something 

better? What is the lowest complexity you can get for this operation? (Note: complexity here ≈ no. of 

operations). 

1 2 3 

4 5 6 

7 8 9 
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Comments: Problem (ii) is a problem of finding the MAP assignment, and problem (iii) is finding the 

marginal probability (or inference problem). We will see that (iii) is harder than (ii) in a formal sense. 

 

IV: Factor graphs vs. Undirected graphical models 

Undirected  Factor Graph:  

Every undirected graph can be represented by an equivalent Factor graph. The way to do this is to 

create a factor graph with same set of variable nodes, and one factor node for each maximal clique in 

the graph. (We have assumed factorization/positivity of the distribution here.) 

 

Factor Graph  Undirected:  

The transformation from factor graph to undirected graph is not lossless in general. We get the 

undirected graphical model by reversing the above process - for each factor node, connect all variable 

nodes into a single clique.  

We give an example below where such a transformation loses information.  

 

 

 

 

 

 

 

 

 

On the right, we have a factor graph G’, which leads to a factorization over edges. However, the graph 

on the left simply gives us a factor                  which represents an arbitrary probability 

distribution over XA, XB, XC.  

The fact that these 2 are not equivalent can be shown by considering the following distribution, which 

can be represented by the graphical model on the left but not the one on the right:  

A 

B C 

A 

B C 

f(A,B) h(A,C) 

g(B,C) 

G:  3-node undirected 

graphical model over 

A,B, C 

G’: Factor Graph over 

A, B, C (with edge 

potentials only) 
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V. Directed graphical models vs. undirected graphical models 

Question: Can we represent any directed graphical model using an undirected one, and vice versa? 

Answer: No. Directed and undirected graphical models are “different”. There are certain distributions 

that have a directed P-map but no undirected P-map, and vice versa.  

Example:  

i) Directed Graph with V-structure. 

 

 

 

 

This has no undirected graphical model as its P-map. 

 

ii) Undirected graph with induced 4-cycle or longer cycle. (induced cycle is a chordless cycle) 

 

 

 

 

This has no directed graphical model as its P-map. 

 

VI. Discussion about P-maps, I-maps, D-maps 

This is already covered in lecture-notes (Lecture-4). 

 

A B 

C 

A B 

C D 
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