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1 Probability Review 

1.1 Bayes’ Rule 

Let A1, A2, . . . , An be disjoint events that form a partition of the sample space, and assume 
that P(Ai) > 0, for all i. Then, for any event B s.t. P(B) > 0, we have 

P(B | Ai)P(Ai)P(Ai | B) = 
P(B) 

P(B | Ai)P(Ai) 
= .

P(B | A1)P(A1) + . . . + P(B | An)P(An) 

Example: Medical Diagnosis 

Suppose there is a deadly rare disease, and 0.1% – one out of every 1000 people – have 
this disease. The current medical test for this disease is 99% accurate, i.e. if someone has 
it, the test will be positive 99% of the time; and if someone doesn’t have it, the test will 
come up negative 99% of the time. 

Bob took the test and got positive results. How worried should he be? More precisely, 
what is the probability that Bob actually has the disease given that his test result is posi­
tive? 

Let variable D ∈ {0, 1} denote whether or not Bob has the disease, and let variable T 
∈ {0, 1} denote whether or not the test result is positive. 

P(T = 1 | D = 1)P(D = 1) 
P(D = 1 | T = 1) = 

P(T = 1) 
P(T = 1 | D = 1)P(D = 1) 

= _ 
d∈{0,1} P(T = 1 | D = d)P(D = d) 

P(T = 1 | D = 1)P(D = 1) 
= 

P(T = 1 | D = 0)P(D = 0) + P(T = 1 | D = 1)P(D = 1) 
(0.99)(0.001) 

= 
(0.01)(0.999) + (0.99)(0.001) 

= 0.0902 

In other words, although the test came back positive, the probability that Bob actually has 
the disease is still less than 10%! However, notice this conditional probability is considerably 
higher than the prior (0.1%), as expected. 
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1.2 Independence 

Two events A and B are independent if 

P(A ∩ B) = P(A)P(B). 

In addition, two events A and B are conditionally independent on an event C if 

P(A ∩ B | C) = P(A | C)P(B | C). 

In general, events A1, . . . , An are independent if   
P Ai = P(Ai), for every subset S of {1, . . . , n}. 

i∈S i∈S 

Example: P(A∩B ∩C) = P(A)P(B)P(C) not enough for independence of A, B, C 

Consider two independent rolls of a fair die, and the following events: 

A = {1st roll is 1, 2, or 3}, 
B = {1st roll is 3, 4, or 5}, 
C = {The sum of the two rolls is 9}. 

We have 

1 1 1 4
P(A ∩ B ∩ C) = = · · = P(A)P(B)P(C)

36 2 2 36 

Yet 

1 1 1
P(A ∩ B) =  ·= = P(A)P(B)

6 2 2 
1 1 4

P(A ∩ C) =  ·= = P(A)P(C)
36 2 36 
1 1 4

P(B ∩ C) =  ·= = P(B)P(C). 
12 2 36 

The intuition behind the independence of a collection of events is analogous to the case of 
two events. Independence means that the occurrence or non-occurrence of any number of 
the events from that collection carries no information on the remaining events or their com­
plements. For example, if the events A1, A2, A3, A4 are independent, one obtains relations 
such as 

P(A1 ∪ A2 | A3 ∩ A4) = P(A1 ∪ A2) 

or 
¯ ¯ ¯P(A1 ∪ A2 | A3 ∩ A4) = P(A1 ∪ A2). 
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Example: Pairwise independence does NOT imply global independence
 

Consider two independent fair coin tosses, and the following events: 

H1 = {1st toss is a Head} 

H2 = {2nd toss is a Head} 

D = {The two tosses have different results}. 

The events H1, H2 are independent by definition. To see that H1 and D are independent, 
we note that 

P(D ∩ H1) 1/4 1
P(D | H1) = = = = P(D). 

P (H1) 1/2 2 

H2 and D are independent following similar argument. 
On the other hand, we have that: 

1 1 1
P(D ∩ H1 ∩ H2) = 0=  · · = P(D)P(H1)P(H2). 

2 2 2 

Thus H1, H2 and D are not globally independent. 

2 Directed Acyclic Graphs 

Consider the following two ways of associating graphical models with distributions: 
(1) Given a graphical model, what is the set of distributions that factorize according to the 
graph structure? 
(2) Given a graphical model, what is the set of distributions that satisfy all the conditional 
independences the graph has? 

It turns out that these two sets are exactly the same1 . In other words, the two char­
acterizations (through factorization and conditional independences) are equivalent. For 
directed graphs, there is a natural factorization into a product of conditional probabili­
ties but determining conditional independences require relatively complicated rules such 
as Bayes ball algorithm. Next week, we will see that for undirected graphs, in contrast, 
conditional independences can be directly read off the graph while factorization requires 
additional thinking. 

1A rigorous proof of this statement can be found in standard textbooks, for example, Probabilistic Graph­
ical Models: Principles and Techniques by Daphne Koller and Nir Friedman. 
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Example Given the directed graph below, use Bayes Ball algorithm to determine:
 

1 2 3

4 5 6

7 8 9

(1) Are Node 3 and Node 9 independent? 
(2) Are Node 3 and Node 9 independent given that 
Node 7 is observed? 
(3) Find all i, such that Node 3 and Node 9 are 
independent given that Node i is observed. 

Solution: 
(1) Yes 
(2) No 
(3) 1,2,4,5,6 

Order of growth: Big-O notation 

We say that f(n) = O(g(n)) (’f(n) is big-O of g(n)’), if and only if there exist constants 
C > 0 and n0 such that 

|f(n)| ≤ C|g(n)| for all n > n0. 

2 42Examples: n + n + 1 = O(n2), n = O(n2), 2n + n = O(2n).
 
Remark: Although n = O(n2) is technically correct because big-O is an upper bound, typ­
ically people give the smallest upper bound as this is more informative, e.g., we would say
 
n = O(n) rather than n = O(n2).
 

For completeness, we include the definitions of other asymptotic notations here: 

1. We say that f(n) = o(g(n)) (’f(n) is little-o of g(n)’), if and only if ∀E > 0, ∃ n0, s.t. 
∀ n > n0
 

|f(n)| ≤ E|g(n)| for all n > n0.
 

2. We say that f(n) = Ω(g(n)) (’f(n) is Big-Omega of g(n)’), if and only if there exist 
constants C > 0 and n0 such that 

|f(n)| ≥ C|g(n)| for all n > n0. 

3. We say that f(n) = ω(g(n)) (’f(n) is little-omega of g(n)’), if and only if ∀K > 0, ∃ 
n0, s.t. ∀ n > n0
 

|f(n)| ≥ K|g(n)| for all n > n0.
 

4. We say that f(n) = Θ(g(n)) (’f(n) is Big-Theta of g(n)’), if and only if there exist 
constants C1 > 0, C2 > 0 and n0 such that 

C1|g(n)| ≤ |f(n)| ≤ C2|g(n)| for all n > n0. 
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