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6 Gaussian Graphical Models 

Today we describe how collections of jointly Gaussian random variables can be repre­
sented as directed and undirected graphical models. Our knowledge of these graphical 
models will all carry over to the Gaussian case with the added benefit that Gaussian 
random variables will allow us to exploit a variety of linear algebra tools. 

Why focus on Gaussians rather than continuous distributions in general? The 
choice of having a special case for Gaussians is warranted by the many nice properties 
Gaussian random variables possess. For example, the Gaussian distribution is an 
example of a stable family, meaning that if we add any two independent Gaussians, 
we get another Gaussian. The Gaussian distribution is the only continuous, stable 
family with finite variance. Moreover, the Central Limit Theorem suggests that the 
family is an “attractor” since summing many i.i.d. random variables that need not be 
Gaussian results in a random variable that converges in distribution to a Gaussian. In 
fact, under mild conditions, we need not require the random variables being summed 
to be identically distributed either. 

6.1 Multivariate (Jointly) Gaussian Random Variables 

There are many equivalent ways to define multivariate Gaussians, also called Gaus­
sian random vectors. Here are a few characterizations for random vector x being 
multivariate Gaussian: 

(i) Linear combination of i.i.d. scalar Gaussian variables: There exists some matrix 
A, constant vector b and random vector u of i.i.d. N(0, 1) entries such that 
x = Au + b. 

(ii) All linear combinations of elements of x are scalar Gaussian random variables: 
y = aTx is Gaussian for all a. 

(iii) Covariance form: The probability density function of x can be written as 

px(x) = 
1

exp − 
1
(x − µ)TΛ−1(x − µ) ,

(2π)N/2|Λ|1/2 2

denoted as x ∼ N(µ, Λ) with mean µ = E [x] and covariance matrix Λ =  J 
E (x − µ)(x − µ)T . 

(iv) Information form: The probability density function of x can be written as 

px(x) ∝ exp − 
1 
x TJx + hT x ,
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denoted as x ∼ N−1(h, J) with potential h and information (or precision) matrix 
J. Note that J = Λ−1 and h = Jµ. 

We will focus on the last two characterizations, while exploiting the first two as 
key properties. 

6.2 Operations on Gaussian random vectors 

For the covariance and information forms, we consider how marginalization and con­
ditioning operations are done. Let               

x1 µ1 Λ11 Λ12 h1 J11 J12 = N−1x = ∼ N , , . 
x2 µ2 Λ21 Λ22 h2 J21 J22

Marginalization is easy when we have x represented in covariance form: Due to 
characterization (ii) from earlier, marginals of x are Gaussian. Computing marginals 
just involves reading off entries from µ and Λ, e.g. 

x1 ∼ N(µ1, Λ11). 

In contrast, computing marginals using the information form is more complicated: 

x1 ∼ N−1(h/, J/), 

where h/ = h1 − J12J
−1 and J/ = J11 − J12J

−1 The expression for J/ is called 22 h2 22 J21. 
the Schur complement. 

Conditioning is easy when we have x represented in information form: We use the 
fact that conditionals of a Gaussian random vector are Gaussian. Setting conditioning 
variables constant in the joint distribution and reading off the quadratic form of the 
remaining variables, it becomes apparent that conditioning involves reading off entries 
from J, e.g., when conditioning on x2, 

px1|x2 (x1|x2) ∝ px1,x2 (x1, x2)       �
1     

T T J11 J12 x1 x1∝ exp − x x + hT hT 
1 2 1 22 J21 J22 x2 x2

1   
T T T + hT 

2
= exp − x1 J11x1 + 2x2 J21x1 + x2 J22x2 1 x1 + hT

2 x2 

T T T = exp − 
1

2 
x1 J11x1 + (hT

1 − x2 J21)x1 + hT
2 x2 − 

1

2 
x2 J22x2 

1 T x1 + hT 1 T = exp − x1 J11x1 + (h1 − J12x2)
T

2 x2 − x2 J22x2
2 2 

T∝ exp − 
1 
x1 J11x1 + (h1 − J12x2)

T x1 ,
2 
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where the last step uses the fact that x2, which we are conditioning on, is treated as 
a constant. In particular, we see that 

x1|x2 ∼ N−1(h/
1, J11), 

where h/
1 = h1 − J12x2. While we can read off entries of J to obtain the informa­

tion matrix for x1|x2, namely J11, the potential vector needs to be updated. Note 
that conditioning using the covariance form is more complicated, involving a Schur 
complement: 

x1|x2 ∼ N(µ/, Λ/), 
/where µ = µ + Λ12Λ

−1(x2 − µ2) and Λ/ = Λ11 − Λ12Λ
−1Λ21.22 22 

We can interpret the conditional distribution as follows. Note that µ/ = E [x1|x2], 
also known as the Bayes least-squares estimate of x1 from x2, is linear in x2, a special 
property of Gaussians. Moreover, J /µ = arg min E lx1 − x̂1(x2)l2 , 

x̂1(x2) s.t. 
x̂1(x2)=Ax2+b 

/where Λ/ is the resulting mean-square error for estimater µ . 
We see that both the covariance and information forms are useful depending on 

whether we are marginalizing or conditioning. Converting between the two requires 
matrix inversion, e.g., solving linear equations. This involves Gaussian elimination 
and use of the Schur complement, which we will say a little more about at the end of 
today’s lecture. 

6.3 Gaussian graphical models 

To represent a Gaussian random vector as a graphical model, we will need to know 
conditional independencies. From Λ and J, we can read off the following indepen­
dencies: 

Theorem 1. For x ∼ N(µ, Λ), xi ⊥⊥ xj if and only if Λij = 0. 

Theorem 2. For x ∼ N−1(h, J), xi ⊥⊥ xj |xrest if and only if Jij = 0. 

The information matrix J is particularly useful since it describes pairwise Markov 
conditional independencies and encodes a minimal undirected I-map for x. To obtain 
the undirected Gaussian graphical model from J, add an edge between xi and xj 
whenever Jij  To obtain a Gaussian directed graphical model, choose an ordering= 0. 
of the xi’s and apply the chain rule: 

px1,...,xn = px1 px2|x1 px3|x2,x1 · · · pxn|xn−1,...,x1 . 

Note that each factor on the right-hand side is Gaussian, with mean linear in its 
parents, due to the Bayes least-square estimate being linear as discussed previously. 
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6.4 Gaussian Markov process 

An example of a directed Gaussian graphical model is the Gauss-Markov process, 
shown in Figure 1. We can express the process in innovation form: 

xi+1 = Axi + Bvi, (1) 

where x1 ∼ N(µ0, Λ0), vi ∼ i.i.d. N(0, Λv) are independent of x1, and Bvi is called the 
innovation. This is a linear dynamical system because the evolution model is linear. 

x1 x2 x3 xN…

Figure 1: Gauss-Markov process. 

Consider the case where we do not observe the xi’s directly, i.e., xi’s are hid­
den, but we observe yi related to each xi through a Gaussian conditional probability 
distribution: 

yi = Cxi + wi, (2) 

where wi ∼ i.i.d. N(0, Λw) independent of vj ’s and x1. The resulting graphical model 
is shown in Figure 2 Collectively, equations (1) and (2) are referred to as standard 
state space form. 

x1 x2 x3 xN…

y1 y2 y3 yN

Figure 2: Hidden Gauss-Markov process. 

Generally, Gaussian inference involves exploiting linear algebraic structure. 

6.5 Matrix inversion 

Lastly, we develop the matrix inversion lemma. Let 

E F 
M = ,

G H 
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where E and H are invertible. We want to invert M. First, we block diagonalize via 
pre- and post-multiplying: ⎤⎡  


M/H G
I −FH−1 E F I 0 
=
⎣
 ⎦
E − FH−1G 0 ,


0 I G H −H−1G I G 
 G 
 G 
 0 H G X M Z 
W 

where, M/H is the Schur complement. Noting that W−1 = Z−1M−1X−1, then M−1 

is given by 

M−1 = ZW−1X 

= 
I 0 (M/H) 0 

−1 
I −FH−1 

−H−1G I 0 H 0 I 

= 
I 

−H−1G 
0 
I 

(M/H)−1 

0 
0 

H−1 
I 
0 

−FH−1 

I 
. 

Taking the determinant of both sides of the above equation yields
 

|M|−1 = |M−1|  I 0                  I
 −FH−1 

0 I


    
(M/H)−1 0
 
=
 −H−1G H−1I
 0
 

=


    
     
(M/H)−1 0 
H−10 

= |(M/H)−1||H|−1
 

= |(M/H)|−1|H|−1 , (3)
 

where we use the fact that    
 A 0
 
C D


    
=


    
 A B
 
0 D


    
= |A||D|
 

whenever A and D are square matrices. Rearranging terms in equation (3) gives 
|M| = |M/H||H|, hence the notation for the Schur complement. 

We could alternatively decompose M in terms of E and M/E = H − GE−1F to 
get an expression for M−1, which looks similar to the above equation. Equating the 
two and rearranging terms gives the matrix inversion lemma: 

��(E − FH−1GG = E−1 ��+ E−1F(H − GE−1FG .
)−1 )−1GE−1 

M/H M/E 

This will be useful later when we develop Gaussian inference algorithms. 
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