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5	 Minimal I-Maps, Chordal Graphs, Trees, and 
Markov Chains 

Recall that some kinds of structure in distributions cannot be efficiently captured with 
either directed or undirected graphical models. An example of such a distribution is 

pxyz (x, y, z) = f1(x, y) f2(y, z) f3(x, z).	 (1) 

This is captured by (cf. Hammersley-Clifford) an undirected complete graph on 3 
nodes. And since such a complete graph captures any distributions, it fails to capture 
the special factorization structure in the distribution. By contrast, this structure can 
be well captured by a factor graph in which there are three factors, one each for 
f1, f2 and f3. In this respect, we say that a factor graph can provide a finer grained 
representation. The “complexity” of a factor graph representation is |F ||X|D where 
D is the size of the largest factor (i.e. number of variables participating in the factor). 

Now all the graphical models are universal, in the sense, that each of them can be 
used to represent any distribution. However, the goal is not merely representation but 
one of trying to find the “most efficient” representation in terms of its ability to cap­
ture the structure of the underlying distribution. To begin to quantify such a notion 
of efficiency, we introduced the concepts of I-map, D-map and P-map. The basic idea 
was that P-map captures the conditional independence structure of the distribution 
precisely. An I-map for a given distribution implies no more independencies than the 
distribution satisfies. 

Typically, we are interested in I-maps that represent a family of distributions that 
is as small as possible (subject to the constraint that it contains our distribution of 
interest.) For this purpose, we have the following definition: 

Definition 1 (Minimal I-Map). A minimal I-map is an I-map with the property that 
removing any single edge would cause the graph to no longer be an I-map. 

In a similar manner, one can define a maximal D-map. 

5.1 Generating Minimal I-Maps 

Consider a distribution D for which we wish to generate a minimal I-map. 
We first consider the construction of a minimal directed I-map. Say there are N 

variables x1, . . . , xN with chain rule representation being 

px(x) = px1 (x1)px2|x1 (x2|x1) . . . pxN |xN−1...x1 (xN |xN−1 . . . x1). (2) 

Now for each component (conditional probability), reduce it if conditional indepen­
dence exists, i.e. remove a variable in the conditioning if the distribution’s conditional 



independencies allows for it. Inherently, the minimal I-map satisfies “local minimal­
ity” and therefore such a “greedy” procedure leads to one such minimal I-map. 

Now consider the construction of a minimal undirected I-map. Let us start with 
a valid representation for the given distribution. Iteratively, check, for all edges (i, j) 
if xi ⊥⊥ xj |xrest, and if edge (i, j) satisfies such conditional independence, then remove 
it. Continue doing this iteratively until one cannot remove an edge. The algorithm 
can take at most O(N3) time. 

Theorem 1. If p > 0, the resulting undirected graphical model is the unique undi­
rected minimal I-map for p. 

For some distributions, the resulting minimal I-map obtained in this way will 
actually be a P-map. In this case, the associated directed or undirected graph is a 
perfect fit for the distribution of interest. Moreover, a further subset of distributions 
will have both directed and undirected P-maps. Such distributions (and the associated 
graphical models) are particularly special, and allow for highly efficient inference, as 
we will see. In the meantime, let’s develop the characteristics of such distributions 
(and graphs). 

5.2 Moralization and Triangulation 

We begin by determining conditions such that converting directed graphical model to 
undirected graphical model does not lead to the introduction of “inefficiency.” First 
recall the conversion: 1) retain all edges from the directed model in the undirected 
one; and 2) connect ever pair of parents of a node with an edge (a process quaintly 
called “moralization.” The resulting of this procedure is called the moralized graph. 

Theorem 2. The moralized undirected graphical model of a given directed graphical 
model is a minimal I-map for that family of distributions represented by the directed 
graphical model. Further, if the moralization does not add any edges, the moralized 
graph is a P-map. 

To understand the later part of the above stated result, we need to understand 
the conversion from undirected graphical model to directed graphical model. This 
requires addition of “chords.” Specifically, for a loop (cycle) in a graph, a “chord” in 
the loop is an edge connecting two non-consecutive nodes (of the loop). A graph is 
called chordal if any cycle of the graph of size ≥ 4 has a chord. 

Theorem 3. If a directed acyclic graph is a minimal I-map for an undirected graphical 
model, then the directed graph must be chordal. 

This suggests that to obtain a directed graphical model out of an undirected 
graphical model, one needs to add “chords.” The detailed procedure is referred to as 
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Figure 1: Markov chain in undirected and directed representations. 

“triangulation” of the graphical.1 We shall study this procedure in detail soon, when 
we begin investigating efficient inference. 

From the above development, we can now deduce when a set of conditional inde­
pendencies of distribution have both directed and undirected P-maps. In particular, 
an undirected graph G has a directed P-map if and only if G is chordal. Alternatively, 
a directed graph H has an undirected P-map if and only if moralization of H does 
not add any edges. 

5.3 Simple Examples of Chordal Graphs 

5.3.1 Markov Chains 

Perhaps the simplest example of a chordal graph corresponds to a Markov chain, 
as shown in Figure 1. In the figure, the directed graphical model and undirected 
graphical model have exactly the same “structure” (ignoring directionality of edges). 
And it is chordal, because there are no loops or cycles in the graph. Another such 
example is that of hidden Markov model that we have seen before (also shown in 
Figure 2). The random variables of interest are x1, . . . , xN and the observations are 
y1, . . . , yN where yi is dependent on xi; xi immediately depends on xi−1. The undirected 
and directed graphical representation for both of these distributions is the same and 
both of these graphical models are chordal (again, because it does not have any loop). 

5.3.2 Trees 

A very slightly richer class of chordal graphs are tree models. Consider an undirected 
graph as shown in Figure 3. To make its directed graph counterpart, start with any 

1It is important to emphasize that the term “triangulation” is a bit generic in that there are 
many ways one might imaging creating triangles of nodes in a graph, not all of which result in a 
chordal graph. We use the term to refer to a very particular procedure of creating a chordal graph. 
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Figure 2: Hidden Markov chain in undirected and directed representations.
 

'Root'

Figure 3: Converting from undirected to a directed tree. 
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Chordalization

MRF for an image
(the above only represents a subset 

of the edges to be added!)

Figure 4: Chords in the MRF representation of an image. 

node as a “root” and start “directing” edges away from the root along all directions 
in the tree to obtain the associated directed graphical model, as shown. 

As we shall see, inference is especially easy on trees. 

5.4 Discussion 

As we shall see, chordal graphical models are good representation and allow for ef­
ficient inference (with respect to the size of the graphical structure, which could be 
exponentially large in number of variables). Figure 4 represents an example of MRF 
that we have seen earlier for representing image. This graphical model (two dimen­
sional grid graph) seems nice. But to make it chordal, we have to add lots of edges 
and thus making it lot more complicated. 

Figure 5 shows a useful visual classification of distribution in terms of perfect 
maps, chordal graphical models, trees and Markov chains. 

As a final comment, Markov chains also have other associated graphical repre­
sentations with which you may already be familiar: state transition diagrams and 
trellis diagrams. While these representations continue to be useful, it is important 
not confuse these with our new graphical model representations of Markov chains: 
the nodes and edges mean very different things in these different representations! 
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Figure 5: Venn diagram of graphical models.
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Figure 6: State Transition diagram and Trellis diagram for a Markov chain.
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