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4	 Factor graphs and Comparing Graphical Model 
Types 

We now introduce a third type of graphical model. Beforehand, let us summarize 
some key perspectives on our first two. 

First, for some ordering of variables, we can write any probability distribution as 

px(x1, . . . , xn) = px1 (x1)px2|x1 (x2, x1) · · · pxn|x1,...,xn−1 (xn|x1, . . . , xn−1), 

which can be expressed as a fully connected directed graphical model. When the 
conditional distributions involved do not depend on all the indicated conditioning 
variables, then some of the edges in the directed graphical model can be removed. 
This reduces the complexity of inference, since the associated conditional probability 
tables have a more compact description. 

By contrast, undirected graphical models express distributions of the form 

1 
px(x1, . . . , xn) = Φc(xc),

Z 
c∈C 

where the potential functions Φc are non-negative and C is the set of maximal cliques 
on an undirected graph G. Remember that the Hammersley-Clifford theorem says that 
any distribution that factors in this way satisfies the Markov property on the graph 
and conversely that if p is strictly positive and satisfies the Markov property for G then 
it factors as above. Evidently, any distribution can be expressed using fully connected 
undirected graphical model, since this corresponds to a single potential involving 
all the variables—i.e., a joint probability distribution. Undirected graphical models 
efficiently represent conditional independencies in the distribution of interest, which 
are expressed by the removal of edges, and which similarly reduces the complexity of 
inference. 

4.1 Factor graphs 

Factor graphs are capable of capturing structure that the traditional directed and 
undirected graphical models above are not capable of capturing. A factor graph 
consists of a vector of random variables x = (x1, . . . , xN ) and a graph G = (V, E, F), 
which in addition to normal nodes also has factor nodes F. Furthermore, the graph 
is constrained to be a bipartite graph between variable nodes and factor nodes. 

The joint probability distribution associated to a factor graph is given by 

1 
m

p(x1, . . . , xN ) = fj (xfj ). Z 
j=1 
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Figure 1: A general factor graph.
 

For example, in Figure 1, f1 is a function of x1 and x2. 
What constraints are imposed on the factors? The factors must be non­

negative, but otherwise we’re free to choose them. We could of course roll the partition 
function Z into one of the factors and that would constrain one of the factors. 

The factor graph is not constrained to have factors only for maximal cliques, so we 
can more explicitly represent the factorization of the joint probability distribution. 

It is very easy to encode certain kinds of (especially algebraic) constraints in the 
factor graph. One example is the Hamming code example from the first day of class, 
which you will see more of later in the subject. As a more basic example, consider 
the following. 

Example 1. Suppose we have random variables representing taxes (x1), social secu­
rity (x2), medicare (x3), and foreign aid (x4) with constraints 

x1 ≤ 3 

x2 ≤ 0.5 

x3 ≤ 0.25 

x4 ≤ 0.01 

and finally we need to decrease spending by 1, so x1 + x2 + x3 + x4 ≥ 1. If we were 
interested in picking uniformly among the assignments that satisfy the constraints, 
we could encode this distribution conveniently with a factor graph in Figure 2. 

The resulting distribution is given by 

px(x) ∝ 1x1≤31x2≤0.51x3≤0.251x4≤0.011x1+x2+x3+x4≥1 
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px1(x1) � 1{x1�3}

px2(x2) � 1{x2�0.5}

px3(x3) � 1{x3�0.25}

px4(x4) � 1{x4�0.01}

Figure 2: Factor graph encoding constraints on budget.
 

4.2 Converting Between Graphical Models Types 

4.2.1 Converting Undirected Models to Factor Graphs 

We can write down the probability distribution associated to the undirected graph 

px(x) ∝ f134(x1, x3, x4)f234(x2, x3, x4) 

which naturally gives a factor graph representation using the potentials as factor 
nodes (Figure 3). In general, we can convert an undirected graphical model into a 
factor graph by defining a factor node for each maximal clique. 

How many maximal cliques could an undirected graph have? We can 
construct an example where the number of maximal cliques scales like n2 where n is 
the number of nodes in the undirected graph. 

Consider a complete bipartite graph where the nodes are evenly split. Given any 
3 nodes, 2 of the nodes must lie on the same side and hence be disconnected. Thus, 
there can’t be any 3 node cliques, so all of the edges are maximal cliques, and there 
are O(n2) edges. In general there can be exponentially many maximal cliques in an 
undirected graph (See Problem Set 2). 

4.2.2 Converting Factor Graphs to Directed Models 

Take a topological ordering of the nodes say x1, . . . , xn. For each node in turn, find 
a minimal set U ⊂ {x1, . . . , xi−1} such that xi ⊥⊥ {x1, . . . xi−1} − U |U is satisfied 
and set xi’s parents to be the nodes in U . This amounts to reducing in turn each 
p(xi|x1, . . . , xi−1) as much as possible using the conditional independencies implied 
by the factor graph. An example is done in Figure 5. 
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Figure 3: Representing an undirected graph as a factor graph.
 

Figure 4: Complete bipartite graph has O(n2) maximal cliques. 

4
 



x1

x2

x3

x4

x3

x4

x1

x2

x3

x4

x1

x2

Figure 5: Converting a factor graph into a directed graph and then into an undirected 
graph. 

4.2.3 Converting from Directed to Undirected Models 

This is done through moralization, which says to completely connect the parents of 
each node and then remove the direction of arrows. 

Moralization “marries” the parents by connecting them together. See Figure 5 for 
an example. 

The important thing to recognize is that the conversion process is not lossless. In 
these constructions, any conditional independence implied by the converted graph is 
satisfied by the original graph. However, in general, some of the conditional indepen­
dences implied in the original graph are not implied by the converted graph. How do 
we know that we’ve come up with “good” conversions. We want the converted graph 
to be close to the original graph for some definition of closeness. We’ll explore these 
notions through I-maps, D-maps, and P-maps. 

4.3 Measuring Goodness of Graphical Representations 

4.3.1 I-map 

Consider a probability distribution D and a graphical model G. Let CI(D) denote 
the set of conditional independencies satisfied by D and let CI(G) denote the set of 
all conditional independencies implied by G. 

Definition 1 (I-map). We say G is an independence map or I-map for D if CI(G) ⊂ 
CI(D). In other words, every conditional independence implied by G is satisfied by 
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Figure 6: Both graphs are I-maps for the distribution that completely factorizes (i.e. 
px ,y = px py ). 
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Figure 7: Two example graphs 

D if G is an I-map for D. 

The complete graph is always an example of an I-map for any distribution because 
it implies no conditional independencies. 

4.3.2 D-map 

Definition 2 (D-map). We say G is a dependence map or D-map for D if CI(G) ⊃ 
CI(D) that is every conditional independence that D satisfies is implied by G. 

The graph with no edges is an example of a D-map for any distribution because 
it implies every conditional independence. 

4.3.3 P-map 

Definition 3 (P-map). We say G is a perfect map or P-map for D if CI(G) = CI(D), 
i.e., if every conditional independence implied by G is satisfied by D and vice versa. 

Example 2. Consider three distributions that factor as follows 

p1 = px py pz 

p2 = pz|x ,y px py 

p3 = pz|x ,y px |y py 
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Then the graph in Figure 7(a) is an I-map for p1, a D-map for p3 and a P-map for 
p2. The graph in Figure 7(b) is an I-map for 

1 
p(x, y, w, z) = f1(x, w)f2(w, y)f3(z, y)f4(x, z)

Z 

by the Hammersley-Clifford theorem. 

7
 



MIT OpenCourseWare
http://ocw.mit.edu

6.438  Algorithms for Inference
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



