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24 Learning Exponential Family Models 

So far, in our discussion of learning, we have focused on discrete variables from finite 
alphabets. We derived a convenient form for the MAP estimate in the case of DAGs: 

θi,πi = pxi|xπi 
(·|·) = p̂xi|xπxi 

(·|·). (1) 

In other words, we chose the CPD entries θ such that the model distribution p 
matches the empirical distribution p̂. We will see that this is a special case of a more 
general result which holds for many families of distributions which take a particular 
form. However, we can’t apply (1) directly to continuous random variables, because 
the empirical distribution p̂ is a mixture of delta functions, whereas we ultimately 
want a continuous distribution p. Instead, we must choose p so as to match certain 
statistics of the empirical distribution. 

24.1 Gaussian Parameter Estimation 

To build an intuition, we begin with the special case of Gaussian distributions. Sup­
pose we are given an i.i.d. sample x1, . . . , xK from a Gaussian distribution p(·; µ, σ2). 
Then, by definition, 

µ = Ep[x] 

σ2 = Ep[(x − µ)2]. 

This suggests setting the parameters equal to the corresponding empirical statistics. 
In fact, it is straightforward to check, by setting the gradient to zero, that the maxi­
mum likelihood parameter estimates are1 

K
1 

µ̂ML = xk
K 

k=1 

K

σ2 1 
µ)2ˆML = (xk − ˆ . 

K 
k=1 

1In introductory statistics classes, we are often told to divide by K − 1 rather than K when 
estimating the variance of a multivariate Gaussian. This is in order that the resulting estimate be 
unbiased. The maximum likelihood estimate, as it turns out, is biased. This is not necessarily a bad 
thing, because the biased estimate also has lower variance, i.e. there is a tradeoff between bias and 
variance. 
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The corresponding ML estimates for a multivariate Gaussian are given by:
 

K 
1 

ˆ = xkµML K 
k=1 

Λ̂ML =
1 

K 

(xk − µ̂ML)(xk − µ̂ML)
T . 

K 
k=1 

24.1.1 ML parameter estimation in Gaussian DAGs 

We saw that in a Gaussian DAG, the CPDs take the form 

p(xi|xπi ) = N(β0 + β1u1 + · · · + βLuL; σ
2), 

where xπi = (u1, . . . , uL). We can rewrite this in innovation form: 

xi = β0 + β1u1 + · · · + βLuL + w, 

where w ∼ N(0, σ2) is independent of the ul’s. This representation highlights the 
relationship with linear least squares estimation, and shows that θ̂ML is the solution 
to a set of L + 1 linear equations. 

The parameters of this CPD are θ = (β0, . . . , βL, σ
2). When we set the gradient 

of the log-likelihood to zero, we get: 

ˆ Λ−1β0 = µ̂x − Λ̂xu uu µ̂u 
−1ˆ ˆ ˆβ = Λuu Λux 

ˆ ˆ − ˆ Λ−1 ˆΛ0 = Λxu Λux,Λxx uu 

where 

K
1 

µ̂x = xi
K 

k=1
 

K
 

Λ̂xx =
1 

(xi − µ̂x)
2
 

K 
k=1 

Λ̂xu =
1 

K 

(xi − µ̂x)(uk − µ̂u)
T 

K 
k=1 

K 

Λ̂uu =
1 

(ui − µ̂u)(ui − µ̂u)
T . 

K 
k=1 
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Recall, however, that if p(x|u) = N(β0 + βT u, Λ0), then 

Λ−1β0 = µx − Λxu µuu u 

β = Λ−1 
uu Λux 

Λ−1Λ0 = Λxx − Λxu Λux.uu 

In other words, ML in Gaussian DAGs is another example of moment matching. 

24.1.2 Bayesian Parameter Estimation in Gaussian DAGs 

In our discussion of discrete DAGs, we derived the ML estimates, and then derived 
Bayesian parameter estimates in order to reduce variance. Now we do the equivalent 
for Gaussian DAGs. Observe that the likelihood function for univariate Gaussians 
takes the form   

K 

p(D; µ, σ2) ∝ 
1 

exp − 
1

(xk − µ)2
σK 2σ2  k=1   

2 = 
σ

1 
K 
exp − 

2

1 
σ2

K 

xk − 2 
K 

xkµ + Kµ2 (2) 
k=1 k=1 

As in the discrete case, we use this functional form to derive conjugate priors. First, 
if σ2 is known, we see the conjugate prior takes the form   

p(µ) ∝ exp aµ − bµ2 . 

In other words, the conjugate prior for the mean parameter of a Gaussian with known 
variance is a Gaussian. 

What if the mean is known and we want a prior over the variance? We simply 
take the functional form of (2), but with respect to σ this time, to find a conjugate 
prior   

1 b 
p(σ) ∝ exp − . 

σa σ2

This distribution has a more convenient form when we rewrite it in terms of the pre­
cision τ = 1/σ. Then, we see that the conjugate prior for τ is a gamma distribution: 

p(τ ) ∝ τα−1 e −βτ . 

The corresponding prior over σ is known as an inverse Gamma distribution. When 
both µ and τ are unknown, we get what is called an Gaussian-Gamma prior: 

p(µ, τ) = N(µ; a, (bλ)−1) Γ(λ; α, β). 

Analogous results hold for the multivariate Gaussian case. The conjugate prior for 
µ with known J is a multivariate Gaussian. The conjugate prior for J with known µ 
is a matrix analogue of the gamma distribution called the Wishart distribution. When 
both µ and J are unknown, the conjugate prior is a Gaussian-Wishart distribution. 
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24.2 Linear Exponential Families 

We’ve seen three different examples of maximum likelihood estimation which led to 
similar-looking expectation matching criteria: CPDs of discrete DAGs, potentials in 
undirected graphs, and Gaussian distributions. These three examples are all special 
cases of a very general class of probabilistic models called exponential families. A 
family of distributions is an exponential family if it can be written in the form 

k
1 

p(x; θ) = exp θifi(x) ,
Z(θ) 

i=1 

where x is an N -dimensional vector and θ is a k-dimensional vector. The functions fi 
are called features, or sufficient statistics, because they are sufficient for estimating the 
parameters. When the family of distributions is written in this form, the parameters 
θ are known as the natural parameters. 

Let’s consider some examples. 

1. A multinomial distribution can be written as an exponential family with fa0 (x) = 
1x=a and the natural parameters are θa = ln p(a0).0 0 

2. In an undirected graphical model, the distribution can be written as:  1 
p(x) = ψC (xC )

Z
C∈C 

1 
= exp ln ψC (xC )
Z ⎛C∈C ⎞ 
1 

= exp ⎝ ln ψC (xC 
� )1xC =x' ⎠ . 

Z C 
'C∈C x ∈|X||C|
C 

This is an exponential family representation where the sufficient statistics cor­
respond to indicator variables for each clique and each joint assignment to the 
variables in that clique: 

fC,x' (x) = 1xC =x' ,
C C 

and the natural parameters θC,xC correspond to the log potentials ln ψC (xC ). 
Observe that this is the same parameterization of undirected graphical models 
which we used to derive the tree reweighted belief propagation algorithm in our 
discussion of variational inference. 

3. If the variables x = (x1, . . . , xN ) are jointly Gaussian, the joint PDF is given by 

1 
p(x) ∝ exp − Jij xixj + hixj . 

2 
i,j i 
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This is an exponential family with sufficient statistics
 ⎞
⎛
 

f(x) =
 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

x1 

x1 
. . . 
xN 

2x1 

x1x2 
. . . 
2xN

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

.
 

and natural parameters
 ⎞⎛ 

θ =
 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

h1 

h2 
. . . 
hN 

−1 
2 J11 

−1 
2 J12 
. . . 

−1 
2 JNN 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

.
 

4. We might be tempted to conclude from this that every family of distributions is 
an exponential family. However, in fact families are not. As a simple example, 
even the family of Laplacian distributions with scale parameter 1 

1 −|x−θ|p(x; θ) = e
Z 

is not an exponential family. 

24.2.1 ML Estimation in Linear Exponential Families 

Suppose we are given i.i.d. samples D = x1, . . . , xK from a discrete exponential family 
p(x; θ) = 

Z(
1 
θ) exp(θ

T f(x)). As usual, we compute the gradient of the log likelihood: 

K
∂ 1 1 ∂ ∂

f(θ; D) = θT f(x) − ln Z(θ)
∂θi K K ∂θi ∂θi

k=1 

K
1 ∂ ∂ 

= θT f(x) − ln exp θT x 
K ∂θi ∂θi

k=1 x 

= ED[fi(x)] − Eθ[fi(x)]. 

The derivation in the continuous case is identical, except that the partition function
 
expands to an integral rather than a sum. This shows that in any exponential family,
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the ML parameter estimates correspond to moment matching, i.e. they match the
 
empirical expectations of the sufficient statistics: 

ED[fi(x)] = Eθ̂[fi(x)]. 

Interestingly, in our discussion of Gaussians, we found the ML estimates by taking 
derivatives with respect to the information form parameters, and we wound up with 
ML solutions in terms of the covariance form. Our derivation here shows that this 
phenomenon applies to all exponential family models, not just Gaussians. We can 
summarize these analogous representations in a table: 

natural parameters expected sufficient statistics 
Gaussian distribution information form covariance form 

multinomial distribution log odds probability table 
undirected graphical model log potentials clique marginals 

24.2.2 Maximum Entropy Interpretation 

In the last section, we started with a parametric form of a distribution, maximized the 
data likelihood, and wound up with a constraint on the expected sufficient statistics. 
Interestingly, we can arrive at the same solution from the opposite direction: starting 
with constraints on the expected sufficient statistics, we choose a distribution which 
maximizes the entropy subject to those constraints, and it turns out to have that same 
parametric form. Intuitively, the entropy of a distribution is a measure of how spread 
out, or uncertain, it is. If all we know about some distribution is the expectations 
of certain statistics fi(x), it would make sense to choose the distribution with as 
little commitment as possible, i.e. the one that is most uncertain, subject to those 
constraints. This suggests maximizing the entropy subject to the moment constraints: 

max H(p) 
p 

subject to Ep[fi(x)] = ED[fi(x)] 

p(x) = 1. 
x 

For simplicity, assume p is a discrete distribution. To solve this optimization 
problem, we write out the Lagrangian: 

K 

L(p) = H(p) + λi (Ep[fi(x)] − ED[fi(x)]) + ν p(x) − 1 
i=1 x 

K 

= − p(x) ln p(x) + λi p(x)fi(x) − ED[fi(x)] + ν p(x) − 1 . 
x i=1 x x 
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We take the derivative with respect to p(x): 

K
∂L 

= − ln p(x) − 1 + λifi(x) + ν. 
∂p(x) 

i=1 

Setting this to zero, we find that 

K 

p(x) ∝ exp λifi(x) . 
i=1 

This is simply the definition of an exponential family with sufficient statistics fi. 
This shows a striking and philosophically interesting equivalence between exponential 
families and the principle of maximum entropy. 
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