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21	 Learning parameters of an undirected graphi­
cal model 

Today we shall see how to learn parameters or potential for an undirected graphi­
cal model from observations for all variables and using knowledge of the graphical 
structure. 

Let G = (V, E) denote the associated undirected graph over N vertices V = 
{1, . . . , N} and E ⊆ V × V . Let associated random variables x1, . . . , xN take value 
in finite alphabet X. For the purpose of this lecture, we shall restrict attention to 
X = {0, 1}; however, the treatment of this lecture naturally extends for any finite 
alphabet X. We shall assume that p(x) > 0 for all x ∈ XN . Recall that by the 
Hammersley-Clifford theorem, stated and proved in an earlier lecture, 

p(x) = exp VC (xC ) ,	 (1) 
C∈C(G) 

where C(G) is the set of all cliques of G, including the empty set; xC = (xi)i∈C , and 
VC (·) is the potential function associated with clique C with the form: 

Q(C) if xC = 1 
VC (xC ) =	 (2)

0 otherwise. 

We observe i.i.d. samples from this distribution, denoted as D = {x(1), . . . , x(S)}. 
The goal is to learn the potential functions associated with the cliques of G from D. 

21.1 A simple example: binary pair-wise graphical model 

Before we consider the general graph, let us consider a graph that does not have 
triangle. That is, C(G) consists of all vertices V , edges E and the empty set. As 
before, X = {0, 1}. Given this, any such graphical model can be represented as 

1 
p(x) = exp θixi + θij xixj ,	 (3)

Z 
i∈V (i,j)∈E 

for θi, θij ∈ R for all i ∈ V, (i, j) ∈ E; Z being normalization constant. Given this, 
the question of boils down to learning parameters θ, from D, where 

θ = (θi, i ∈ V ; θij , (i, j) ∈ E). 



If we had a very large number of samples (» 2N ) so that each assignment x ∈ 
{0, 1}N is sampled enough times, we can estimation empirical probability of each 
assignment x ∈ {0, 1}N . Now 

log p(ei) − log p(0) = θi, 

where ei is assignment in {0, 1}N with ith element 1 and everything else 0, 0 is the 
assignment with all element 0. Similarity, 

log p(eij ) − log p(ei) − log p(ej ) + log p(0) = θij , 

where eij is assignment in {0, 1}N with ith and jth elements 1 and everything else 0. 
Therefore, with potentially exponentially large number of samples, it is possible to 
learn parameters θ. Clearly this is highly inefficient. The question is, whether it’s 
feasible to learn parameters with a lot fewer samples. 

We shall utilize the quintessential property of the undirected graphical model: for 
any i ∈ V , given XN(i), Xi is independent of XV \N(i)∪{i} where N(i) = {j ∈ V : 
(i, j) ∈ E}. That is, 

p(xi = ·|xN(i) = 0) = p(xi = ·|xV \{i} = 0). 

Therefore, 

log p(xi = 1|xN(i) = 0) − log p(xi = 0|xN(i) = 0)
 

= log p(xi = 1|xV \{i} = 0) − log p(xi = 0|xV \{i} = 0)
 

= log p(xi = 1, xV \{i} = 0) − log p(xi = 0, xV \{i} = 0)
 

= log p(ei) − log p(0)
 

= θi.
 

Thus, by estimating conditional probabilities p(xi = ·|xN(i) = 0) for all i ∈ V , we can 
learn parameters θi, i ∈ V . Similarly, by estimating p(xi = 1, xj = 1|xN(i)∪N(j)\{i,j} = 
0), it’s feasible to learn θij for all (i, j) ∈ E. 

22dTherefore, it’s feasible to learn parameters θ with samples scaling as , if 
|N(i)| ≤ d for all i ∈ V ; which is quite efficient when d « N . 

21.2 Generic undirected graphical model 

For any graphical model with binary valued variables, to learn the associated clique 
potentials VC (·) boils down to learning constants Q(C) as in (2). They can be learnt 
in a very similar manner as in the example of binary pair-wise graphical model. 
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Concretely, for any i ∈ V , 

log p(xi = 1|xN(i) = 0) − log p(xi = 0|xN(i) = 0)
 

= log p(xi = 1|xV \{i} = 0) − log p(xi = 0|xV \{i} = 0)
 

= log p(xi = 1, xV \{i} = 0) − log p(xi = 0, xV \{i} = 0)
 

= log p(ei) − log p(0)
 

= Q({i}).
 

And more generally, for any clique C ⊂ V , 

log p(xC = 1|xN(C) = 0) − log p(xi = 0|xN(C) = 0) 

= Q(C /).
 
Cl⊂C
 

Using the above identity, it’s possible to learn constants associated with cliques of 
increasing sizes iteratively. The number of samples required scale as 2dc , where dc is 
bound on the number of neighbors of vertices in any clique (including the vertices in 
the clique) for the graph G. 
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