
Massachusetts Institute of Technology
 
Department of Electrical Engineering and Computer Science
 

6.438 Algorithms for Inference 
Fall 2014 

20 Learning Graphical Models 

In this course, we first saw how distributions could be represented using graphs. 
Next, we saw how to perform statistical inference efficiently in these distributions by 
exploiting the graph structure. We now begin the third and final phase of the course, 
on learning graphical models from data. 

In many situations, we can avoid learning entirely because the right model follows 
from physical constraints. For instance, the structure and parameters may be dictated 
by laws of nature, such as Newtonian mechanics. Alternatively, we may be analyzing 
a system, such as an error correcting colde, which was specifically engineered to have 
certain probabilistic dependencies. However, when neither of these applies, we can’t 
set the parameters a priori, and instead we must learn them from data. The data we 
use for learning the model is known as “training data.” 

The learning task of graphical model would involve learning the graphical structure 
and associated parameters (or potentials). The training data could be about all 
variables or only partial observations. Given this, the following is a natural sets of 
learning scenarios: 

1. The graphical structure is known, but parameters are unknown.	 The observa­
tions available to learn the parameters involve all variables. 

Example. If we have to variables x1 and x2, we may be interested in deter­
mining whether they are independent. This is equivalent to determining 
whether or not there is an edge between x1 and x2. This is equivalent to 
determining whether the associate edge parameters are non-trivial or not. 

x1 x2 x1 x2vs.

2. The graphical structure is known, but parameters are unknown.	 The observa­
tions available to learn the parameters involve only a subset (partial) of vari­
ables, while other are unobserved (hidden). 

Example. The naive Bayes model, as shown in the following figure, is often 
used for clustering. In it, we assume every observation x = (x1, . . . , xN ) is 
generated by first choosing a cluster assignment u, and then independently 
sampling each xi from some distribution pxi|u. We observe x, but not u. 
And we do know the graphical structure. 



u
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3. Both graphical structure and parameters are unknown. The observations avail­
able to learn the parameters involve all variables. 

Example. We are given a collection of image data for hand-written charac­
ters/alphabets. The goal is to use it to product graphical model for each 
character so as to utilize it for automated character recognition: given an 
unknown image of a character, find the probability of it being a particular 
character, say c, using the graphical model; declare it to be character c∗ for 
which the probability is maximum. Now at gray-scale, image for a given 
alphabet can be viewed as a graphical model with each pixel representing 
binary variables. The data is available about all pixels/variables. But 
graphical structure and associated parameters are unknown. 

4. Both graphical structure and parameters are unknown. The observations avail­
able to learn the parameters involve only a subset (partial) of variables, while 
other are unobserved (hidden). 

Example. Let x = (x1, . . . , xN ) denote prices of stocks at a given time 
and variables y = (y1, . . . , yM ) capture the related un-observable ambient 
state of the world, e.g. internal information about business operation, etc. 
We only observe x. The structure of graphical model between variables 
x, y is entirely unknown as well as y are unobserved. The goal is to learn 
the graphical model and associated parameters between these variables to 
potentially better predict future price variation or develop better portfolio 
of investment. 

We shall spend remainder of the lectures dealing with each of these scenarios, one 
at a time. For each of these scenarios, we shall distinguish cases of directed and undi­
rected graphical models. As we discuss learning algorithms, we’ll find ourselves using 
inference algorithms, that we have learnt thus far, utilizing in an unusual manner. 

20.1 Learning Simplest Graphical Model: One Node 

We shall start with the question of learning simplest possible graphical model: graph 
with one node. As we shall see, it will form back-bone of our first learning task in 
general - known graph structure, unknown parameters and all variables are observed. 
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Let x be one node graphical model, or simply a random variable. Let p(x; θ) be a 
distribution over a random variable x parameterized by θ. For instance, p(x; θ) may 
be a Bernoulli distribution where x = 1 with probability θ and x = 0 with probability 
1 − θ. We treat the parameter θ as nonrandom, but unknown. We can view p(x; θ) 
as a function of x or θ: 

• p(·; θ) is the pdf or pmf for a distribution parameterized by θ, 

• L(·; x) 6 p(x; ·) is the likelihood function for a given observation x. 

We are given observations in terms of S samples, D = {x(1), . . . , x(S)}. The goal is 
to learn parameter θ. 

A reasonable philosophy for learning unknown parameter given observations is 
to use maximum likelihood estimation: it is the unknown parameter with respect to 
which the observations are most likely or have maximum likelihood. 

That is, if we have one observation x = x(1), then 

θ̂ML(x) = arg max p(x; θ). 
θ 

We shall assume that when multiple observations are present, they are generated 
independently (and from identical unknown distribution). Therefore, the likelihood 
function for D = {x(1), . . . , x(S)} is given by 

L(θ; D) ≡ L(θ; x(1), . . . , x(S)) 
Ss 

= p(x(s); θ). (1) 
s=1 

Often we find it easier to work with the log of the likelihood function, or log-likelihood: 

f(θ; D) ≡ f(θ; x(1), . . . , x(S)) 

6 log L(θ; x(1), . . . , x(S)) (2) 
Ss 

= log p(x(s); θ). (3) 
s=1 

Observe that the likelihood function is invariant to permutation of the data, be­
cause we assumed the observations were all drawn i.i.d. from p(·; θ). This suggests we 
should pick a representation of the data which throws away the order. One such rep­
resentation is the empirical distribution of the data, which gives the relative frequency 
of different symbols in the alphabet: 

Ss1 
p̂(a) = 1x(s)=a. 

S 
s=1 

Using short-hand D = {x(1), . . . , x(S)}, p̂D(a) is another way of writing the empirical 
distribution. We can also write the log-likelihood function as f(·; D). Note that p̂ is 
a vector of length |X|. We can think of it as a sufficient statistic of the data, since it 
is sufficient to infer the maximum likelihood parameters. 
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20.1.1 Bernoulli variable 

Going back to Bernoulli distribution (or coin flips), p̂D(0) is the empirical fraction of 
0’s in a sample, and p̂D(1) is the empirical fraction of 1’s. The likelihood function is 
given by 

f(θ; D) = Sp̂(1) log θ + Sp̂(0) log(1 − θ). 

We find the maximum of this function by differentiating and setting the derivative to 
zero: 

∂f 
0 = 

∂θ 
p̂D(1) p̂D(0) 

= S − S . 
θ (1 − θ) 

Since p̂D(0) = 1 − p̂D(1), we have 

p̂D(1) θ 
= . 

1 − p̂D(1) 1 − θ 

Therefore, we obtain 

θ̂ML = p̂D(1). 

That is, the empirical estimation is the maximum likelihood estimation. By the 
strong law of large numbers, the empirical distribution will eventually converge to 
the correct probabilities, so we see that maximum likelihood is consistent in this case. 

20.1.2 General discrete variable 

When the variables take values in a general discrete alphabet X = {a1, . . . , aM }
rather than {0, 1}, we use the multinomial distribution rather than the Bernoulli 
distribution. In other words, p(x = am) = θm, where the parameters θm satisfy: 

Ms 
θm = 1, 

m=1 

θm ∈ [0, 1]. 

The likelihood function is given by s 
θSp̂D(am)L(θ; D) = m . 

m 

Following exactly the same reasoning as in the Bernoulli case, we find that the 
maximum likelihood estimation of parameters is given by empirical distribution, i.e. 
θ̂ML = (p̂D(am))1≤m≤M . 
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20.1.3 Information theoretic interpretation
 

Earlier in the course, we saw that we could perform approximate inference in graphical 
models by solving a variational problem minimizing information divergence between 
the true distribution p and an approximating distribution q. It turns out that max­
imum likelihood has an analogous interpretation. We can rewrite the log-likelihood 
function in terms of information theoretic quantities: 

Ss 
f(θ; D) = log p(x(s); θ) 

s=1 s 
= S p̂D(a) log p(a; θ) 

a∈X 

= SEp̂D [log p(x; θ)] 

= S (H(p̂D) − D(p̂Dlp(·; θ))) 

We can ignore the entropy term because it is a function of the empirical distribution, 
and therefore fixed. Therefore, maximizing the likelihood is equivalent to minimizing 
the information divergence D(p̂Dlp(·; θ)). Note the difference between this variational 
problem and the one we considered in our discussion of approximate inference: there 
we were minimizing D(qlp) with respect to q, whereas here we are minimizing with 
respect to the second argument. 

Recall that KL divergence is zero when the two arguments are the same distribu­
tion. In the multinomial case, since we are optimizing over the set of all distributions 
over a finite alphabet X, we can match the distribution exactly, i.e. set p(·; θ) = p̂D. 
However, in most interesting problems, we cannot match the data distribution ex­
actly. (If we could, we would simply be overfitting.) Instead, we generally optimize 
over a restricted class of distributions parameterized by θ. 

20.2 Learning Parameters for Directed Graphical Model 

Now we discuss how the parameter estimation for one-node graphical model extends 
neatly for learning parameters of a generic directed graphical model. 

Let us start with an example of a directed graphical model as shown in Figure 1. 
This graphical model obeys factorization 

p(x1, . . . , x4) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3). 

The joint distribution can be represented with four sets of parameters θ1, . . . , θ4. 
Each θi defines a multinomial distribution corresponding to each joint assignment 
for the parents of xi. Suppose we have S samples of the 4-tuple (x1, x2, x3, x4). The 
log-likelihood function can be written as 

f(x; θ) = log p(x1; θ1) + log p(x2|x1; θ2) + log p(x3|x1; θ3) + log p(x4|x2, x3; θ4). 
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x1 x2 x4

x3

Figure 1 

Observe that each θi appears in exactly one of these terms, so all of the terms can be 
optimized separately. Since each individual term is simply the likelihood function of 
a multinomial distribution, we simply plug in the empirical distributions as before. 
Precisely, in the above example, we compute empirical conditional distribution for 
each variable xi with respect to it’s parents, e.g. p̂x2|x1 (·|x1) for all possible values 
of x1. And this will be the maximum likelihood estimation of the directed graphical 
model! 

Remarks. It is worth highlighting two features of this problem which were neces­
sary for the maximum likelihood problem to decompose into independent subprob­
lems. First, we had complete observations, i.e. all of the observation tuples gave the 
values of all of the variables. Second, the parameters were treated as independent 
for each conditional probability distribution (CPD). If either of these assumptions is 
violated, the maximum likelihood problem does not decompose into an independent 
subproblem for each variable. 

20.3 Bayesian parameter estimation 

Here we discuss a method that utilizes prior information about unknown parameters 
to learn them from data. It can also be viewed as a way to avoid the so called over-
fitting by means of penalty. Again, as discussed above, this method can be naturally 
extended to learning directed graphical model as long as the priors over parameters 
corresponding to different variables are independent. 

Recall that in maximum likelihood parameter estimation, we modeled the param­
eter θ as nonradom, but unknown. In Bayesian parameter estimation, we model θ 
as a random variable. We assume we are given a prior distribution p(θ) as well as a 
distribution p(x|θ) corresponding to the likelihood function. Notice that we use the 
notation p(x|θ) rather than p(x; θ) because θ is a random variable. The probability 
of the data x is therefore given by 

p(x) = p(θ)p(x|θ)dθ. 

In ML estimation, we tried to find a particular value θ to use. In Bayesian 
estimation, we instead use a weighted mixture of all possible values, where the weights 
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correspond to the posterior distribution
 

p(θ|x(1), . . . , x(S)). 

In other words, in order to make predictions about future samples, we use the pre­
dictive distribution 

p(x'|x(1), . . . , x(S)) = p(θ|x(1), . . . , x(S))p(x'|θ)dθ. 

For an arbitrary choice of prior, it is quite cumbersome to represent the poste­
rior distribution and to compute this integral. However, for certain priors, called 
conjugate priors, the posterior takes the same form as the prior, making these com­
putations convenient. For the case of the multinomial distribution, the conjugate 
prior is the Dirichlet prior. The parameter θ is drawn from the Dirichlet distribution 
Dirichlet(α1, . . . , αM ) if 

Ms 
θαm−1 p(θ) ∝ m . 

m=1 

It turns out that if {x(1), . . . , x(S)} are i.i.d. samples from a multinomial distribution 
over alphabet size M , then if θ ∼ Dirichlet(α1, . . . , αM ), the posterior is given by 

θ|D ∼ Dirichlet(α1 + Sp̂D(a1), . . . , αM + Sp̂D(aM )). 

The predictive distribution also turns out to have a convenient form: 

+ S ̂ )' αm pD(am
p(x = am|x(1), . . . , x(S)) = �M . 

m=1 αm + S 

In the special case of Bernoulli random variables, 

θ ∼ 
1 
θα1−1(1 − θ)α0−1 

Z 
1 
θα1+Sp̂D(1)−1(1 − θ)α0+Sp̂D(0)−1θ|D ∼ . 

Z ' 

The special case of the Dirichlet distribution for binary alphabets is also called the 
beta distribution. 

In a fully Bayesian setting, we would make predictions about new data by inte­
grating out θ. However, if we want to decide a single value of θ, we can use the MAP 
criterion: 

θ̂MAP = arg max p(θ|D). 
θ 

When we differentiate and set the derivative equal to zero, we find that 

α1 + Sp̂(1) − 1
θ̂MAP = . 

α0 + α1 + S − 2 
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Observe that, unlike the maximum likelihood criterion, the MAP criterion takes the 
number of training examples S into account. In particular, when S is small, the MAP 
value is close to the prior; when S is large, the MAP value is close to the empirical 
distribution. In this sense, Bayesian parameter estimation can be seen as controlling 
overfitting by penalizing more complex models, i.e. those farther from the prior. 
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