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2 Directed Graphical Models 

Today we develop the first class of graphical models in the course: directed graphical 
models. A directed graphical model defines a family of joint probability distributions 
over a set of random variables. For example, suppose we are told that two random 
variables x and y are independent. This characterizes a family of joint distributions 
which all satisfy px ,y (x, y) = px (x)py (y). Directed graphs define families of probability 
distributions through similar factorization properties. 

A directed graphical model G consists of nodes V (representing random variables) 
and directed edges (arrows) E ⊆ V × V. (The notation (i, j) ∈ E means that there is 
a directed edge from i to j.) 

Directed graphs define families of distributions which factor by functions of nodes 
and their parents. In particular, we assign to each node i a random variable xi and a 
non-negative-valued function fi(xi, xπi ) such that 

fi(xi, xπi ) = 1, (1)
xi∈X  

fi(xi, xπi ) = p(x1, . . . , xn), (2) 
i 

where πi denotes the set of parents of node i. Assuming the graph is acyclic (has 
no directed cycles), we must have fi(xi, xπi ) = pxi|xπi 

(xi|xπi ), i.e., fi(·, ·) represents 
the conditional probability distribution of xi conditioned on its parents. If the graph 
does have a cycle (e.g. Figure 1), then there is no consistent way to assign condi­
tional probability distributions for the cycle. Therefore, we assume that all directed 
graphical models are directed acyclic graphs (DAGs). 

In general, by the chain rule, any joint distribution of any n random variables 
(x1, . . . , xn) can be written as 

px1,...,xn (x1, . . . , xn) = px1 (x1)px2|x1 (x2|x1) · · · pxn|x1,...,xn−1 (xn|x1, . . . , xn−1). (3) 

By treating each of these terms as one of the functions f , we observe that the dis­
tribution obeys the graph structure shown in Figure 2. This shows that DAGs are 
universal, in the sense that any distribution can be represented by a DAG. Of particu­
lar interest are sparse graphs, i.e. graphs where the number of edges is much smaller 
than the number of pairs of random variables. Such graphs can lead to efficient 
inference. 

In general, the graph structure plays a key role of determining the size of the 
representation. For instance, we saw above that a fully connected DAG can represent 
an arbitrary distribution, and we saw in Lecture 1 that the joint probability table for 
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Figure 1: Example of a directed graph with a cycle, which does not correspond to a 
consistent distribution. 

x1 x2 x3 x4...

Figure 2: A fully connected DAG is universal, in that it can represent any distribution. 

such a distribution requires |X|N entries. More generally, the number of parameters 
required to represent the factorization is of order |X|maxi |πi|, which is dramatically 
smaller if maxi |πi| « N . Similarly, the graph structure affects the complexity of 
inference: while inference in a fully connected graph always requires |X|N time, infer­
ence in a sparse graph is often (but not always) much more efficient. 

There is a close relationship between conditional independence and factorization of 
the distribution. We’ll first analyze at some particular examples from first principles, 
then look at a more general theory. 

2.1 Examples
 

Example 1. First, consider the following graph:
 

x

y

z

This graph represents the factorization 

px ,y ,z = pz|y py |x px . 
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By matching these terms against the chain rule for general probability distributions
 

px ,y ,z = pz|y ,x py |x px , 

we see that pz|y = pz|y ,x , i.e. x ⊥⊥ z |y . 
Example 2. Now consider the graph: 

x

y

z

This graph represents the factorization 

Px ,y ,z = pz|y px |y py . 

We can match terms similarly to the above example to find that x ⊥⊥ z |y in this 
graph as well. 

Example 3. 

x

y

z

The factorization is: 
px ,y ,z = px py |x ,z pz . 

By matching terms, we find that x ⊥⊥ z . However, it’s no longer true that x ⊥⊥ z |y . 
Therefore, we see that the direction of the edges matters. The phenomenon captured 
by this example is known as explaining away. (Suppose we’ve observed an event which 
may result from one of two causes. If we then observe one of the causes, this makes 
the other one less likely – i.e., it explains it away.) The graph structure is called a 
v-structure. 

Example 4. 

x

y

z
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This is a fully connected graph, so as we saw before, it can represent any distribution 
over x , y , and z . That is, we must remove edges in order to introduce indepence 
structure. 

Example 5. The following graph structure is not a valid DAG because it contains 
a cycle: 

x

y

z

Example 6. The following graph is obtained by removing an edge from Example 
3: 

x

y

z

The factorization represented by this graph is 

px ,y ,z = px py |x pz , 

a strict subset of the factorization in Example 3. In general, reducing edges increases 
the number of independencies and decreases the number of distributions the graph 
can represent. 

Example 7. Here is a bigger example with more conditional independencies. 

x2

x1
x6

x3 x5

x4

As before, we can identify many of them using the factorization properties. In par­
ticular, we can read off some conditional independencies by doing the following: 
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•	 Choose a topological ordering of the nodes (i.e. an ordering where any node i 
comes after all of its parents). 

•	 Let νi be the set of nodes that are not parents of i, i.e. πi ∩ νi = ∅, but they 
appear in the topological ordering before i. 

•	 Then the graph implies the conditional independence xi ⊥⊥ xνi |xπi . 

Note that there may be many topological orderings for a graph. With the above 
procedure, different conditional independences can be found using different topolog­
ical orderings. Now, we discuss a simpler and more general procedure for testing 
conditional independence which does not depend on any particular topological order­
ing. 

2.2 Graph Separation and Conditional Independence 

We now introduce the idea of graph separation: testing conditional independence 
properties by looking for particular kinds of paths in a graph. From Examples 1 
and 2 above, we might be tempted to conclude that two variables are dependent if 
and only if they’re connected by a path which isn’t “blocked” by an observed node. 
However, this criterion fails for Example 3, where x and z are dependent only when 
the node between them is observed. We can repair this broken intuition, however, by 
defining a different set of rules for when a path is blocked. 

2.2.1 d-separation and Bayes Ball 

Let A, B, and C be disjoint subsets of the set of vertices V. To test whether xA and 
xB are conditionally independent given xC : 

1. Shade	 nodes in C. Call this primary shade of a node. In addition, assign 
secondary shade to each node as follows: 

•	 All nodes with primary shade also have secondary shade. 

•	 All nodes that are parent of a node with secondary shade have a secondary 
shade. 

2. Place a ball at each node in A. 

3. Let balls bounce around in the graph following rules shown in Figure 3. 

Remark: Balls do not interact. The shade in rules 1 and 2 is from primary 
shading only. While in rule 3, both primary and secondary shading applies. 

4. If no ball can reach any node in B, then xA must be conditionally independent 
of xB given xC . 
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1.

2.

3.

blocked

not blocked

blocked

not blocked

not blocked

blocked

Figure 3: Rules for blocking and non-blocking in the Bayes Ball algorithm. 

2.3 Characterization of DAG’s 

The following two characterizations are equivalent descriptions of probability distri­
butions: 

1. Factorization into a product of conditional probability tables according to the 
DAG structure 

2. Complete list of conditional independencies obtainable by Bayes Ball 

Another way of stating this is that the following two lists are equivalent: 

1. List all distributions which factorize according to the graph structure. 

2. List all possible distributions, and list all the conditional independencies ob­
tainable by Bayes ball. Discard the distributions which do not satisfy all the 
conditional independencies. 

2.4 Notations/Concepts 

A forest is a graph where each node has at most one parent. A connected graph is 
one in which there is a path between every pair of nodes. A tree is a connected forest. 
A polytree is a “singly” connected graph. That is, there is at most one path from 
any node to any other node. (Note that trees are a special case of polytrees.) Trees 
and polytrees will both play an important role in inference. 
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